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1 Introduction

Diffuse Optical Tomography (DOT) is a non-invasive, non-ionizing method
for medical imaging whose applications include neuro-imaging, breast tumor
detection, tracking muscular oxygenation and arthritic joint imaging. DOT
includes fast temporal resolution of 10 ms and can determine spatial informa-
tion to a depth of several centimeters, making it of great use in brian imaging
applications. The apparatus for DOT is inexpensive, portable and capable
of continuous monitoring. The DOT process involves illuminating the tissue
with multiple light sources and measuring the light leaving the tissue at dif-
ferent detectors (Figure 1). The available signals comprise light intensities
at each detector due to each source. For each of these source-detector pairs,
it is possible to measure a dc intensity (continuous-wave systems), or obtain
the intensity distribution as a function of time of flight (time-domain sys-
tems). In this paper, we delve into the mathematical model used to resolve
the propagation of light within the tissue, parametrized in terms of scattering
and absorption as a function of the position in the tissue [1].

The key challenge of DOT is that of extracting spatial maps of the opti-
cal properties (absorption coefficient µa and reduced scattering coefficient µ′

s)
within a highly scattering tissue volume by coupling multiple light sources
and multiple detectors to the surface of the skin. The path taken by pho-
tons from source to detector is diffusive rather than straight since the tissue
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dimensions are much larger than the photon mean free path. Recovery of
µa(r) and µs(r)

′ from measured signals requires the solving of an inverse
problem, non-linear in the optical parameters and known to be ill-posed [1].
In this paper, we concern ourselves solely with measuring absorption changes.

Due to the complexities of real-world physical situations, we approach
the problem through analyzing simple geometries in which the analytical
forward model solutions can be obtained. We use Bayesian inference to
handle the uncertainty in the inverse problem. Our goal is to find the relative
improvement in the quality of our reconstructed image when considering
various physical configurations of sources and detectors.

1.1 History of DOT

Optical imaging of biological tissue dates to the late 1920s, when use of
continuous wave light to detect breast lesions was originally proposed by
Cutler. This procedure was not very successful since it overheated the pa-
tient’s skin. Diaphanography, in which the breast is positioned between a
visible (or infrared) light- source and the physician, was introduced in the
1970s, with several advancements made during the 1980s. Due to a Swedish
study in 1992 that found the method inferior to traditional imaging tech-
niques, optical imaging of the breast was abandoned in the early 90s. Later
developments in the field, made possible through development of pulse oxime-
try (which provides accurate information on blood oxygen saturation), laser
Doppler blood-flowmetry, and near-infrared spectroscopy, renewed interest
in optical imaging in the late 1990s. Research on the possibility of extending
photon migration spectroscopy to imaging by solving the inverse problem was
done in the late 1980s. Modern DOT imaging evolved from these various,
disparate developments [7].

1.2 Outline

Resolving the DOT problem is a multi-stage procedure. As such, the next
section will discuss the Forward Problem – simulation of flux measurements
at the detectors. We ground the analysis in solid theoretical terms, providing
analytical solutions to the forward problem in 2D by solving the steady-state
diffusion approximation using Green’s funtion for the Laplacian. The for-
ward problem in 3D and in cases with non-zero baseline tissue absorption
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are dealt with in the Appendix. Probing the forward problem allows us to
gain a greater understanding of the eventual optimization process involving
positions of sources and detectors.

In Section 3, we analyze the Inverse Problem, providing the theoretical
basis for image reconstruction based on the measurements obtained through
the forward model. We use Bayesian inference to model the inverse problem.
The goal is to update our knowledge of absorption at voxels using our for-
ward model measurements; we use the posterior distribution thus obtained
in order to differentiate between different configurations of sources and de-
tectors. Such differentiation allows us to identify the configuration that will
reconstruct the image in the best possible manner. In this section we go into
detail about the Singular Value Decomposition and how our work connects
to Tikhonov regularization, a method for smoothing the data. In particular,
we show that the reconstructed image obtained through Tikhonov regulariza-
tion is the same as the posterior mean of a product of multivariate Gaussians
under certain conditions. Lastly, we provide support for using the Volume
Ratio (equivalent to the Occam factor in the literature [3]) of the posterior
distribution in relation to the prior to evaluate the boost in information we
receive from our measurements for a particular source-detector configuration.

Sections 4 and 5 provide a description of the experimental setup in MAT-
LAB and a discussion of the results, respectively. In Section 4, we describe
our setup for simulating different arrays of voxels, finding the measurement
matrix, and, consequently, the singular values. In addition, we describe min-
imization of the objective function using fmincon, the MATLAB function
used to find global minima of a function of several variables. In Section 5,
we discuss the results of our simulations, showing images of different source-
detector configurations over the voxel geometries and analyzing the relative
improvement in image reconstruction of adding more sources and detectors.
We conclude with a summary of our findings, applicability to real-world
problems, and directions for future research.

2 The Forward Problem

At its heart, the forward problem involves the simulation of flux measure-
ments at certain distances from the sources, given an optical model of the un-
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Figure 1: Source-Detector Pairs Setup

derlying tissue. In our case, the geometry of the forward problem is modeled
using a semi-infinite slab with sources and detectors placed at the tissue-air
boundary. In this section, we use a 2D representation of the model, with
sources and detectors placed along the x -axis and the tissue region located
in the upper-half plane (see Figure 1).

Real-world applications of DOT involve various geometries and a baseline
absorption level ≥ 0 for the tissue. While our approach may seem limiting,
we show in the Appendix that solving the 2D problem without baseline ab-
sorption provides a template for obtaining an analytic solution, allowing us
to easily generalize to three dimensions and to cases with a non-zero baseline
absorption.

In our representation, voxels, representing tissues with properties possibly
differing from the homogeneous medium, are placed at a certain depth along
the y-axis. Photon transport in a homogeneous, absorbing medium is well
described by the time-dependent diffusion approximation (DA):
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∇ · (κ∇u) − µa(x)u = ut (1)

where u(x) (x := (x, y)) is the photon density, µa(x) is the local absorp-
tion function with units L−1, and κ(x) is the diffusion coefficient1. Since the
physical system we are modeling reaches steady-state rather quickly, taking
ut = 0 in (1) we obtain the steady-state diffusion approximation:

∇ · (κ∇u) − µa(x)u = 0 (2)

The semi-infinite slab can be represented by Ω = (−∞,∞)× (0,∞). The
measurement model for the detectors at some r = (xd, 0) involves the normal
derivative of the flux at the boundary [2].

md =
du

dy
(xd, 0) (3)

Using the [model approximation] homogeneous scattering medium κ = 1
(in suitable dimensionless units) and the Dirchlet approximation for tissue-air
boundary conditions, (2) becomes:





∆u − µa(x)u = 0
u → 0 when y → ∞
u(x, 0) = 0 ∀x

(4)

In this problem, we will consider small changes from uniformity. Imagine
a simple region has a µa change of functional form F (x). Then, µa(x) =
ǫF (x), where F (x) is the voxel shape function.

Doing perturbation theory for a general, small absorption change, we can
postulate that the solution is of the form:

u = u0 + ǫu1 + O(ǫ2) (5)

Substituting (5) into (4), we have the PDE:

∆(u0 + ǫu1 + ...) − ǫF (x)(u0 + ǫu1 + ...) = 0 (6)

In (6) the zero-th order solution is just the unperturbed problem (µa(x) =
0), which amounts to solving Laplace’s equation in the upper-half plane:

1Note: ∇ · (κ∇u) = κ∆u when κ is a constant.
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



∆u = 0
x ∈ R, y > 0
u(x, 0) = f(x)
f(x) = δ(x − xs)

(7)

where xs is the position of the source along the x-axis and δ is the Dirac
delta function. We will now find the Green’s function, which solves (7) for a
general f(x). Taking the Fourier transform of (7) on x with y as a parameter:

ûyy − ξ2û = 0 (8)

û(ξ, y) = a(ξ)e−ξy + b(ξ)eξy (9)

= c(ξ)e−|ξ|y (10)

Using the boundary conditions from (7) we can see that

û(ξ, y) = f̂(ξ)e−|ξ|y (11)

Applying the Convolution Theorem:

u(x, y) =
y

π

1

x2 + y2
∗ f (12)

=
y

π

∫ ∞

−∞

f(η)dη

(x − η)2 + y2
(13)

When f(η) = δ(η − xs), we get the Poisson Kernel for the half-plane:

u0(x, y) =
y

π

1

(x − xs)2 + y2
(14)

this is u0, the zeroth-order solution in (5).

It should be noted that (14) is actually twice the normal derivative at
the boundary (due to using the Method of Images, explained later in this
section) of the 2D free space Green’s function. We now demonstrate this
claim. As we know, the free space Green’s function for the 2-dimensional
Laplacian is given by
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G(r) =
1

2π
ln r (15)

where r =
√

x2 + y2 is the distance (not to be confused with the x and
y coordinates used above). Taking the derivative of (15) with respect to y,
multiplying by 2, and substituting in the source and voxel coordinates:

2
d( 1

2π
ln r)

dy
= 2(

1

2π

y

r2
) (16)

=
y

π

1

(x − xs)2 + y2
(17)

See Appendix for a derivation of (15).

Next, at O(ǫ), we have Poisson’s equation with homogeneous boundary
conditions:

{
∆u1 = F (x)u0

BCs: u1(x, 0) = 0
(18)

Note that by matching the O(ǫ) terms:

u0(x, 0) + ǫu1(x, 0) = 0 ∀x

⇒ u1(x, 0) = 0

Let g(x) = F (x)u0 be the right hand side of (18). The problem can
then be solved by using the Green’s function in two dimensions. Assume the
Green’s function for our BCs and g(x) has the form G0(r, s) where r = (x1, y1)
and s = (x2, y2), in cartesian coordinates, and G0(·, s) satisfies the boundary
conditions for all s ∈ Ω. The condition for the Green’s function is given by

∆rG0(r, s) = δ(r − s) (19)

If such a Green’s function exists, we can solve (18). Using the above form
of Green’s function, the solution is

u1(r) =

∫

Ω

G0(r, s)g(s)ds (20)
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Figure 2: Method of Images

Since we know that ∆u1 = g, this implies

⇒ ∆u1(r) =

∫
δ(r − s)g(s)ds = g(r) (21)

showing that (20) solves (18).

In free space, that is, if there were no boundary conditions, G0(r, s) =
G0(r − s). Let ρ = |r − s|, then, as we saw before, the Green’s function for
the 2-dimensional Laplacian is

G0(ρ) =
1

2π
ln ρ (22)

Referring back to (18), the BCs require that the Green’s function is 0
when y = 0. As such, we use the Method of Images to find the solution.
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Placing an imaginary voxel that emits photons to the detector in the lower
half the plane, we make G0 = 0 along the [x-axis] tissue-air boundary (Figure
2). We know that if s = (x2, y2), then s′ = (x2,−y2). Which implies

G0(r, s) =
1

2π
ln(|r − s|) − 1

2π
ln(|r − s′|) (23)

Substituting (23) in (20), we get

u1(r) =
1

2π

∫

Ω

(ln(|r − s|) − ln(|r − s′|))g(s)ds (24)

=
1

2π

∫

Ω

(ln(|r − s|) − ln(|r − s′|))F (s)u0(s)ds (25)

Going back to (19), we now make a simplifying assumption about the form
of the voxel shape function, namely F (x) = δ(x − rv). This corresponds to
assuming each voxel is much smaller than other distances in the problem.
This enables us to remove the integral using the Delta function’s sifting
property and substituting r = (x1, y1), rv = (xv, yv), and r′v = (xv,−yv), and
since contributions for many different voxels can be added together in the
1st order case, we see that the solution for (18) is

u1(r) =
1

2π
(ln(|r − rv|) − ln(|r − r′v|)u0(rv) (26)

The actual measurement at the detector positioned at r = (xd, 0) can be
obtained from the measurement model (3).

md =
1

2π

d

dy1

[(ln[(x1 − xv)
2 + (y1 − yv)

2] − ln[(x1 − xv)
2 + (y1 + yv)

2])
1

π
u0(rv)](27)

Defining

h1(r, rv) := ln[(x1 − xv)
2 + (y1 − yv)

2] (28)

the derivative is

dh1

dy1

=
2(y1 − yv)

(x1 − xv)2 + (y1 − yv)2
(29)

Evaluating this at x1 = xd and y1 = 0
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dh1

dy1

=
−yv

(xd − xv)2 + y2
v

(30)

Similarly, defining

h2(r, r
′
v) := − ln[(x1 − xv)

2 + (y1 + yv)
2] (31)

the derivative is

dh2

dy1

= − 2(y1 + yv)

(x1 − xv)2 + (y1 + yv)2
(32)

Evaluating this at x1 = xd and y1 = 0

dh2

dy1

=
−yv

(xd − xv)2 + y2
v

(33)

Finally, substituting this back into (27) gives us the simplified expression
for the linearized sensitivity of a measurement to changes in ǫ, the absorption
perturbation:

md = − 1

π2

yv

(xd − xv)2 + y2
v

yv

(xv − xs)2 + y2
v

(34)

where md is the signal detected at a detector placed at xd from a voxel
at r that is hit by light from a source at xs. Note that (34) has the form

md = −u0
(s)(rv)u0

(d)(rv) (35)

where u0
(s)(x, y) is the same as u0 from before and evaluating u0

(d) simply
involves replacing xs with xd. This is a useful relation that can be generalized
for other geometries and for cases with a positive baseline absorption. See
Appendix for details.

Using the formula given in (34), we can construct our measurement ma-
trix, which we will call A. This matrix simply measures how changes in µa

at the voxels cause changes in the detected signals.

Say there are N voxels with locations rj, j = 1 . . . N . If w is a vector
of absorption changes at the voxels, that is, F (r) =

∑
j wjδ(r − rj), then

the first-order perturbation result derived above implies that z, the change
in measurement vector, is z = Aw. The dimensions of A correspond to
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the number of source-detector pairs (rows) and the total number of voxels
(columns). Each entry of the matrix – A(i, j) – corresponds to the ith source-
detector pair for an individual voxel (j).

3 The Inverse Problem

The inverse problem involves using the forward problem iteratively to get
information about µa(x) – the absorption at the actual voxel positions (or
image) – using the measurements (34) from and knowledge of the forward
problem. In our case, it is a series of source-detector measurements of the
absorption at the voxels. Since we restricted to first order perturbation (lin-
ear changes), the inverse problem is a linear one.

The inverse problem can be described as follows:

z = Aw + n (36)

n = z − Aw (37)

Here, z is a column vector of the measurements, of which there are as
many as there are source-detector pairs; w is a column vector of µa values
which multiply delta functions at the voxels; and n is a column vector of the
measurement noise.

We will use a Bayesian framework in order to model the inverse problem.
At its heart, the Bayesian process quantifies our knowledge about the validity
of a hypothesis before evidence to support it has been collected, and then
updates this estimate using the collected evidence. Bayesian inference adjusts
probabilities with the following relation

p(hypothesis|data, I) ∝ p(data|hypothesis, I) × p(hypothesis| I)(38)

p(H|D, I) =
p(D|H, I) × p(H| I)

p(D| I)
(39)

where I is our assumed model. Our unknowns or hypothesis (in this case,
the absorption measurements at the voxels) have a posterior probability dis-
tribution function (PDF), which is obtained by multiplying the prior PDF –
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our state of knowledge about the problem – with a likelihood function (the
conditional probability function) which uses our data measurements.

The likelihood function for additive noise is given by a Gaussian in n,
that is:

p(z|w, σ2) =
1

(2π)N/2
√

det Λ
e

−1

2
(z−Aw)T Λ−1(z−Aw) (40)

where the noise has zero mean and a covariance matrix Λ. A common
model is that (37) is normally distributed with variance β2, that is, n ∼
N(0, β2). When the covariance matrix is of the simpler form Λ = β2I, we
have the following form

1

(2πβ2)N/2
e

−1

2β2
|z−Aw|2

(41)

In order to evaluate the boost in information we receive, in updating
from the prior to the posterior PDF, we evaluate the volume of the posterior
in relation to that of the prior. Although a Gaussian PDF does not have
compact support, it only has significant size in a certain region of parameter
space. The volume of this region we may define as follows.

Definition. The volume of a N-dimensional Gaussian Probability Density
function (pg(x) = 1

(2π)N/2
√

detΓ
e

−1

2
xT Γ−1x) is the square-root of the determinant

of its covariance matrix (Γ)

volume(pg(x)) =
√

det Γ (42)

This concept of volume has some intuitive appeal, as it is not only 1/max
value of the PDF, it is proportional to the volume of a multi-dimensional
ellipsoid.

An ellipsoid is obtained when a matrix acts upon a multi-dimensional
sphere. For any ellipse, the area is proportional to the lengths of its semi-
axes. Similarly, for an m-dimensional ellipsoid the volume is proportional to
the lengths of its m semi-axes. The length of the semi-axes for an ellipsoid
obtain by acting upon the unit sphere N with an m×m matrix Γ (covariance
matrices are by definition square matrices) is given by the square root of the
eigenvalues (λi) of Γ; this is a standard result in the literature. The volume

12



Figure 3: Occam Factor

of the corresponding ellipsoid ΓN is proportional to the product of those
lengths:

√
det Γ =

∏

i

√
λi (43)

The ratio of the volume of the prior PDF to the posterior PDF is a natural
measure for evaluating the boost in information upon measurement of the
data. If we take σpos (proportional to covariance matrix of the posterior) to
be the posterior uncertainty in the reconstructed image and σprior to be the
prior uncertainty in the image, we can define the ratio as the Occam factor
[3]

Occam Factor =
σpos

σprior

(44)

David MacKay [3] describes the Occam factor as follows

The Occam factor is equal to the ratio of the posterior accessi-
ble volume of I’s parameter space to the prior accessible volume,
or the factor by which I’s hypothesis space collapses when the
data arrive.

13



Note that we do not believe this definition of imaging success has been
applied in DOT before. Using the above definition (42), we can calculate the
volume for our posterior PDF. The image can be described as a set of absorp-
tion measurements µa at the voxels (w in R

N) which are unknown. What
we do know is the measurement matrix (A): how changes in µa at the voxels
cause changes in the detected signals. Given S sources and D detectors, we
get S×D measurements at each voxel from our array of source-detector pairs
that form the components of the matrix A.

Assuming a Gaussian prior with a mean centered at w0 and covariance
matrix Γ, we obtain the posterior distribution by multiplying it with the
maximum likelihood function (41).

p(w|z, β2) ∝ e−
1

2
(w−w0)T Γ−1(w−w0)e−

1

2
(z−Aw)T Λ−1(z−Aw) (45)

⇒ p(w|z, β2) ∝ exp−1

2




wT Γ−1w − w0
T Γ−1w − wT Γ−1w0

+w0
T Γ−1w0 + zT Λ−1z − wT AT Λ−1z

−zT Λ−1Aw + wT AT Λ−1Aw




We can ignore the prefactors since they can always be worked out later
given the covariance matrix for a normalized Gaussian PDF. As such, we
focus on the quadratic form in the exponent (quadratic function of w).

The term in the exponent can be simplified as follows:

wT (Γ−1 +AT Λ−1A)w−2(w0Γ
−1 +zT Λ−1A)w+(w0

T Γ−1w0 +zT Λ−1z) (46)

The last term is a constant. Since we are multiplying two Gaussians, the
product – the posterior distribution – will also take the form of a Gaussian.
The analogy, in this case, is completing the square. Since the exponent in
(45) is of a quadratic form, the posterior will have be of quadratic form,
implying the existence of a Gaussian distribution for the posterior.

Let us assume the posterior [having unknown mean value wp and un-
known variance Γp] is of the following form:

14



e−
1

2
(w−wp)T Γp

−1(w−wp) (47)

Rewriting the exponent in the posterior as follows,

wT Γp
−1w − 2wpΓp

−1w + wp
T Γp

−1wp (48)

we can see that the last term is a constant. Matching terms between the
(46) and (48) we get,

Γp
−1 = Γ−1 + AT Λ−1A (49)

wp = (Γ−1 + AT Λ−1A)−1(w0Γ
−1 + zT Λ−1A) (50)

These are the rules for Bayesian updating within a Gaussian Approxima-
tion [4].

3.1 Calculating the Volume Ratio

Given (50), we are basically updating the prior to the posterior covariance
matrix. If we choose Λ = β2I, implying constant variance (noise) at each
measurement, we update Γp

−1 = Γ−1 + β−2AT A. We will assume this case
from now on. Our aim is to find the volume of this posterior distribution
using the volume definition (42) from above.

In order to find the volume, we must first simplify the term AT A in (50).
This can be done using the Singular Value Decomposition of the matrix A,
since every matrix has a SVD [5].

3.1.1 Singular Value Decomposition

The motivation for the Singular Value Decomposition comes from considering
the unit sphere in n-dimensional space. Any m × n matrix M will map this
sphere onto an ellipsoid in m-dimensional space. We define σi as the length
of a semi-axis of this ellipsoid and ui as the unit vector in the direction
that semi-axis. There are r = rank(M) different lengths of the semi-axes –
known as singular values (σ1, ..., σr) – of the ellpisoid. There are just as many
directions (u1, ..., ur), known as the left singular vectors of M. The original
matrix also has a set of preimages of the axes (v1, ..., vr) defined as the right
singular vectors of M [5]. Given these values, the relation
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Mvi = σiui (51)

is satisfied. The SVD factorizes any m × n matrix M into three parts:

M = UΣV ∗ (52)

• A matrix U in C
m×m consisting of m orthonormal columns that com-

prise the left singular vectors.

• A matrix V in C
n×n consisting of n orthonormal columns that comprise

the right singular vectors.

• A diagonal matrix Σ in R
m×n consisting of the singular values in de-

creasing order.

Note that U and V are simply the vectors u1, ..., ur and v1, ..., vr with,
respectively, m − r and n − r additional columns. The matrix Σ only has
r positive diagonal entries, with the rest being 0. Also, both U and V are
unitary matrices, which implies

UT = U−1

V T = V −1

Using this result, we can decompose our measurement matrix A and sim-
plify AT A. The following Lemma helps us do that [5].

Lemma 3.1. For an m×n matrix A, the determinant of AT A is the product
of the square of the singular values of A.

Proof. Using the SVD of A, we can decompose AT A.

AT A = (UΣV T )T (UΣV T ) = V ΣT UT UΣV T = V ΣT ΣV T

Since V is a unitary matrix, its determinant is 1. Taking the determinant
of the last expression,we obtain

det AT A = det V ΣT ΣV T = det V det ΣT Σ det V T = det ΣT Σ =
∏

i

σi
2
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Using Lemma 3.1, we return to (42) and calculate the volume of the
posterior. If our prior distribution is characterized as Γ = υ2I and our noise
model by Λ = β2I, then our update rule is as follows:

Γp
−1 = υ−2I + β−2AT A (53)

= β−2(
β2

υ2
I + AT A) (54)

Defining ǫ2 := β2

υ2 in our case, we calculate volume of the posterior dis-
tribution. The following lemma helps us find the singular values when a
constant is added to the diagonal of a matrix .

Lemma 3.2. For a m×m matrix M, adding cI, where I is the identity matrix
and c is a constant, shifts each eigenvalue by c.

Proof. Taking the SVD of M:

M = V DV T

D consists of the ordered eigenvalues of M along the diagonal. We also
know that V V T is the just identity matrix, so

M + cI = V DV T + cI

= V (D + cI)V T

Thus, each eigenvalue is shifted by c.

As we know, det A is the product of the eigenvalues of A and that the
eigenvalues of AT A are the squares of the singular values of A. Ignoring
prefactors as before
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volume(Γp) = volume(Γp
−1)−1 (55)

=
1√

det β−2(ǫ2I + AT A)
(56)

=
βN

√∏
i(λi(AT A) + ǫ2)

(57)

=
βN

√∏
i(σi

2(A) + ǫ2)
(58)

=
N∏

i=1

β√
σi

2(A) + ǫ2
(59)

The term σi
2(A) represents the square of the singular values of A and

(59) is our expression for the volume of the posterior PDF.

As we mentioned before, the Occam factor quantifies the boost in infor-
mation upon measurement of the data. As such, in order to find the volume
ratio, we need to find the volume of the prior PDF. Since our prior PDF is
characterized as Γ = υ2I, we can use (42) to find the volume of our prior:

volume(Γ) =
√

det Γ (60)

=

√√√√
N∏

i=1

υ2 (61)

=
N∏

i=1

υ (62)

Since we have analytical expressions for both the prior and posterior
volumes, we can calculate the volume ratio as follows:
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Volume Ratio =

(
volume of posterior

volume of prior

)
(63)

=

(
N∏

i=1

β
υ√

σi
2(A) + ǫ2

)
(64)

=
N∏

i=1

ǫ√
σi

2(A) + ǫ2
(65)

We can use this number as a guide to the improvement obtained through
different source-detector configurations. If we rewrite (65) as

N∏

i=1

ǫ

σi

√
σi

2

σi
2 + ǫ2

(66)

then the expression underneath the square-root is the Tikhonov filter
function (which we explain in the next section) with parameter ǫ2.

3.2 Connection to Tikhonov Regularization

Under certain conditions the posterior mean obtained using Bayesian infer-
ence is the same as the regularized approximation to the true image obtained
by doing Tikhonov regularization on the singular values. If we return to our
data model from (37), we know that w represents the true image whereas
n is the additive Gaussian noise or error in the data (recall, the noise had a
mean of zero and a variance of β2). As we have previously established, all
matrices have a singular value decomposition .

The SVD for our measurement matrix A can be represented as follows,

A = UΣV T (67)

where Σ is a diagonal matrix with positive, decreasing singular values,
which we can represent as σi. Using the properties of the SVD discussed
earlier, we know that the pseudo-inverse of A [5] can be represented as,

A−1 = V Σ−1UT (68)

Returning to (37), we multiply both sides by A−1 [9]
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V Σ−1UTw = z +
n∑

i=1

σi
−1(ui

Tn)vi (69)

As we can see in (69), we are dividing by very small singular values, often
very close to zero. The consequent multiplication by large factors distorts the
answers and can lead to meaningless results in practice. Thus, it is desirable
to somehow remedy this situation by modifying the small singular values.
One way to do it is by regularizing the singular values using a filter function
known as the Tikhonov Filter Function, defined as

ωα(σ2) =
σ2

σ2 + α
(70)

The α in (70) is called the regularization parameter. One can think of it
as determining a sort of cut-off for the filter. The size of α directly correlates
with the degree of filtering, with a small α filtering out little noise and large
values of α filtering out most of it. Of course, as with any filter, Tikhonov
regularization filters out a good part of the solution and smooths the function
too much at high values of α. The correct value of α to use is generally
unknown. Armed with this filter, we multiply ωα(σ2) with the singular values
in (69) and obtain an approximation wp for w [9],

wp = V ωα(σ2)Σ−1UTz (71)

=
n∑

i=1

σi(ui
Tz)vi

σi
2 + α

(72)

= (AT A + αI)
−1

ATz (73)

Note that the second term in (69) has been dropped since n has a mean
of 0. The equation in (73) seems quite familiar, and it should, since under
certain assumptions, it is equivalent to (50), the posterior mean obtained
through Bayesian inference.

Theorem 3.1. The mean of the posterior distribution obtained by doing
Bayesian inference with constant variance in the noise level (Λ = β2I), con-
stant variance in the prior (Γ = υ2I), and a zero mean in the prior (w0 = 0)
is equivalent to the regularized approximation to the true image obtained by
Tikhonov regularization using a Tikhonov filter function with regularization
parameter α = β2

υ2 .
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Proof. The regularized approximation to wp using the Tikhonov filter func-
tion is shown in (73). Going back to (50), we substitute in Γ−1 = υ−2I,
Λ−1 = β−2I, and w0 = 0. Solving for wp, we obtain.

wp = (
1

υ2
I +

1

β2
IAT A)−1(0 +

1

β2
zT A)

= β2(AT A + αI)−1 1

β2
(ATz)

= (AT A + αI)−1ATz

Thus, with the given noise and prior models, the posterior mean ob-
tained by Bayesian inference is equivalent to approximation obtained through
Tikhonov regularization.

4 Optimization of the Source and Detector

Locations

As we have mentioned, volume of the posterior gives a measure of the quality
of the reconstructed image or the information context of the measurement
process. We are concerned with the ratio of the volume of the posterior to
the prior in order to optimize across sources and detector locations. Better
configurations will yield a lower ratio, as the posterior volume contracts and
the prior volume remains the same.

If N = rank(A), then we can take the log of (65) in order to specify our
objective function as follows:

Objective function = J(A) = log

(
N∏

i=1

ǫ√
σi

2(A) + ǫ2

)
(74)

=
N∑

i=1

log

(
ǫ√

σi
2(A) + ǫ2

)
(75)

We choose a prior PDF of order 1, implying a prior volume of 1:
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ν ∼ 1 ⇒ det Γ = 1

This simplifies (75), giving us our final objective function

N∑

i=1

log

(
β√

σi
2(A) + β2

)
(76)

We want to make this expression more negative in magnitude, as that
would indicate a smaller number (hence a tighter posterior volume) in the
log expression. The Gaussian noise β is a key parameter. For our model and
apparatus, this measurement error is roughly β = 10−3. This value comes
from real-world uses of the DOT apparatus.

4.1 Generating the Singular Values

In order to simulate real-world measurements, we wrote a program in MAT-
LAB to simulate the geometry of the problem and model different source
and detector configurations. The problem was simulated in both 2D and 3D
geometries, with and without a baseline absorption. As we will see later,
the presence of baseline absorption did not significantly affect the optimum
configurations. Since our objective function takes singular values as inputs,
our first step is to generate those values.

4.1.1 Voxel Configurations

While there are several possible configurations of voxels that can be encoun-
tered in the real world, we wanted configurations that could be generalized or
would allow us to test particular properties. As such, we restrict the analysis
to four particular configurations that we believe are representative of both
real-world applications and the overall problem.

1. In the 2D case, we optimize over a 5 × 5 grid consisting of 25 voxels
equally spaced in the square with corners (-0.5, 1), (-0.5, 2), (0.5, 2),
and (0.5, 1) (see Figure 4a).

2. In 3D, we first optimize over a 5× 5× 5 cubic lattice consisting of 125
voxels contained within a box of height 1 unit at depth 1 unit below
the surface, with length and breadth given by the square used above
(see Figure 4b).
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3. In 3D, we remove depth from the above lattice and use a voxel sheet
at depth 0.5 units below the surface, with length and breadth same as
above (see Figure 4c). This is simply the first sheet of the above lattice
at a depth of 1 unit.

4. Lastly, in 3D, we use a column of 20 voxels centered at the origin,
equally placed at depths between 1 and 3 along the z-axis (see Figure
4d).

The voxel grid and lattice are directly applicable to brain imaging, where
researchers are often interested in the properties of a small region below the
surface. The voxel column allows us to explore pure depth sensitivity.

These voxel configurations are centered at the origin in order to highlight
the symmetries we see in our result. As such, these configurations can be
translated to anywhere else in the plane (or space) to yield idential results.

4.1.2 Filling the Measurement Matrix

Any set of singular values correspond to a certain measurement matrix A.
The first step was to fill the A measurement matrix, which corresponded to a
certain source-detector configuration and a particular voxel grid. As such, we
wrote a program that takes cartesian coordinates for the source and detector
locations and the voxel grid as inputs and returns the singular values of the
measurement matrix as outputs. Using the measurement model (35), the
program computes the measurement at each voxel for a particular source-
detector pair and fills in the corresponding A(i, j) entry in the measurement
matrix where i is the source-detector pair and j is the voxel.

4.1.3 Normalization of Measurements Based on Distance

Having computed the measurement matrix, we proceed to normalize each
row of the matrix by multiplying each entry of the row by a factor that
scales the values based on the distance from the source to detector. This
factor is an attempt to model the intrinsic gain of the system, which is
defined for each source-detector pair. This scaling models the correct form
of light intensity, preventing a nearby source from flooding a detector with
light signals. Defining the factor as ηsidi

for a source-detector pair i

FactorS−D = ηsidi
=

1
1

(xs−xd)2+(ys−yd)2
+ 1

(77)
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Figure 4: Voxel configurations

where (xs, ys) and (xd, yd) are the coordinates of the particular source-
detector pair that corresponds to that row2. We then proceed to normalize
the measurement matrix:

Ãij = ηsidi
Aij ∀i, j (78)

We can see the evolution of the gain factor in 2D and 3D as the distance
between the particular source and detector increases (see Fig. 5). The be-
haviour is similar to what we see in the real world, as we cannot set the gain

2Note: ys and yd are both zero in the 2D case.
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Figure 5: Normalization as a function of distance between source and detector

arbitrarily high. From here on, A will refer to the normalized measurement
matrix.

4.2 Minimizing the Objective Function

Having found the singular values for a particular source-detector configura-
tion, we proceed to find the volume ratio corresponding to that configuration
using (76). In order to find the unique minima, we use the function optimiza-
tion algorithm fmincon built into MATLAB, which finds the constrained
minimum of a function of several variables. If x is a vector of source-detector
coordinates corresponding to a particular configuration and Fobj(x) is our
objective function, then fmincon uses a given start point vector x0 in order
to find the minimum subject to specified parameters and constraints.

For our optimization, we constrain our solutions to realistic bounds of
x ∈ [-10, 10] in the 2D case and x ∈ [-10, 10] and y ∈ [-10, 10] in the 3D case.
The baseline absorption is set to 0.1 dimensionless units, which is realistic for
a homogeneous tissue medium. In addition, we specify a tolerance of 10−6 for
both x and the evaluated function Fobj(x) at that minima. Basically, we can
identify two different configurations and their respective values of calculated
objective functions to an accuracy of 10−6. Since the function fmincon finds
minima through repeated iteration, results can differ from one iteration to
the next. As such, we find the minima for n = 3000 iterations in the 2D cases
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and n = 1000 in the 3D cases, designating the configuration that minimizes
the objective function to the greatest degree as the Best Configuration. The
above values of n have been chosen based on repeated experimentation aimed
at finding a reasonable number of iterations required to find the unique global
minima using fmincon. As such, although we can identify the unique global
minima to a high degree of certainty, we are not as certain about the 2nd
and 3rd best solutions. Repeated iterations, perhaps of several magnitudes
greater, are required to pin down solutions close to the first-best.

In addition, the program found many duplicate solutions due to the in-
herent symmetry of our setup. For example, in 2D, source 1 at x1 and source
2 at x2 is exactly the same as source 2 at x1 and source 1 at x2; the is true
for detectors. We report only one of the many solutions, making it clear that
a switch between source and detector positions along the x-axis will yield a
similar result. Similarly, the optimum solution in 3D often had rotational
symmetry; its many variants were excluded from the results and treated as
a single solution. Thus, the 2nd and 3rd best solutions are both spatially
distinct from the first-best.

5 Results

Using the setup described above, we simulate optimization for our different
voxel configurations. This section is divided into subsections based on the
configuration being used. Note that in the images, a red ’X’ denotes a voxel,
while a blue ’*’ denotes a source, and an ’O’ denotes a detector.

Figure 6: Legend
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5.1 Voxel Configuration: 5×5 Grid

We first find the optimum source-detector placement in the case of 2 sources
and 2 detectors in 2D. The three best placement schemes are shown in Figure
7.

In Table 1, we can see the locations of the sources and detectors (along
the x-axis) for each configuration. We can see that the best solution has a
remarkable symmetry; indeed, several variants of the first-best with switched
coordinates for sources and detectors turned up as optimal solutions. While
the 2nd and 3rd best solutions aren’t entirely symmetric, they nevertheless
aren’t too far from the positioning of the best configuration. Indeed, all con-
figurations have both a source and detector on either side of the y-axis.

Since the objective function is measuring the collapse of the prior distri-
bution over the posterior, a natural way to compare different configurations
is to compare by how much they collapse the parameter space as compared
to the best configuration. If we denote the value of the objective function for
the best configuration as Fbest and for any other configuration i as Fi, then
the value Percent of Best column is calculated using the following formula:

Percent of Besti = 100 × exp(Fbest − Fi)

As such, the second column in Table 1 shows how well the 2nd and 3rd
best configurations compare to the first-best.

Rank Percent of Best Obj. Function S (1) S (2) D (1) D (2)
1 100 -12.9817 -1.3908 0.4257 -0.4257 1.3908
2 95.4493 -12.9351 -1.395 0.3942 -0.3942 1.2231
3 94.7019 -12.9272 -0.3346 1.5158 -1.298 0.4158

Table 1: Optimum configurations for a 5 × 5 grid with 2 sources and 2 detectors, no
baseline absorption

The simulation is repeated with a baseline absorption and results are
shown in Table 2. As we can see in Table 2, adding a baseline absorption
of µa = 0.1 does not change the first-best results markedly, as the locations
for the optimum configuration are less than 1 percent away from the opti-
mum configuration without baseline absorption. As we expect, we get better
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Figure 7: Optimum configurations for a 5 × 5 grid with 2 sources and 2 detectors, no
baseline absorption
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results without baseline absorption, since the objective function at each con-
figuration is lower, indicating a smaller ratio of posterior volume to prior.

Rank Percent of Best Obj. Function S (1) S (2) D (1) D (2)
1 100 -12.7903 -0.4217 1.3753 -1.3753 0.4217
2 99.1474 -12.7818 -0.4219 1.3076 -1.4083 0.4219
3 96.0299 -12.7498 -1.3724 0.3588 -0.3932 1.2326

Table 2: Optimum configurations for a 5 × 5 grid with 2 sources and 2 detectors, with
baseline absorption

One thing to note is that the collapse in the parameter space for the best
configuration in Table 2 is only 82.58 percent of the best configuration in
Table 1. As such, adding baseline absorpotion markedly affects the quality
of our reconstructed image. From here on, we restrict our analysis in 2D to
cases without baseline absorption.

This particular configuration consists of an equal number of sources and
detectors, so a natural question to ask is what happens when we add or re-
move a source or a detector? We can see the optimum configurations for the
case with 3 sources and 1 detector and 1 source and 3 detectors in Figure 8.

We can see clearly that the two cases are entirely symmetric, implying
that sources and detectors are spatially interchangeable. In Table 3 we com-
pare the best configuration for these 2 cases with the optimum configuration
in the 2 source and 2 detector case. Note that here Percent of Best refers to
the best configuration in the symmetric case with 2 sources and 2 detectors.
As we can see, our results are indifferent to an extra source or detector. Hav-
ing an equal number of sources and detectors is more beneficial than having
an extra one of either when the total number of sources and detectors in
the system remains constant. In addition, the improvement from having a
symmetric configuration is very drastic: unequal numbers produce roughly
10 percent of the resolution of a symmetric system.

We will see later that these results hold in cases with non-zero baseline
absorption and in 3D geometry. As such, we keep the focus on cases where
there are equal numbers of sources and detectors (or one less source in odd-
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Figure 8: Comparison of optimum configurations for a 5 × 5 grid with unequal numbers
of sources and detectors, no baseline absorption

Number of
Detectors

Percent of
Best

Obj. Func-
tion

S (1) S (2) D (1) D (2)

2 100 -12.9817 -1.3908 0.4257 -0.4257 1.3908
1 10.5315 -10.7309 -1.3315 0.6645 1.8393 -0.2087
3 10.5315 -10.7309 -0.2087 -1.3315 0.6645 1.8393

Table 3: Comparison of optimum configurations for a 5 × 5 grid, no baseline absorption

number cases).

Another question to ask is the degree of improvement in our reconstructed
image upon changing the total number of sources and detectors. Naturally,
we expect that the marginal improvement gained by an extra source or detec-
tor (we have already established that they are substitutable) should decrease
as the total number increases. This is exactly what we see in Table 4

Despite the improvements in the objective function at higher numbers of
sources and detectors, we notice something peculiar about the positioning of
the sources and detectors in the optimum configurations at when we have
7 or more in our system. As we can see in Figure 9, at S-D pairs ≥ 7, we
hit a wall in terms of optimal placement. We need to place certain sources
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Number of Sources Number of Detec-
tors

Percent of Best
Case

Obj. Function

5 5 100.00 -20.3504
4 4 45.075 -19.5536
4 4 17.766 -18.6226
3 4 6.7653 -17.6571
3 3 2.8065 -16.7722
2 3 0.5469 -15.1418
2 2 0.0631 -12.9816

Table 4: Comparison of improvement in reconstructed image for higher numbers of
sources and detectors for a 5 × 5 grid, no baseline absorption

and detectors on top of existing sources and detectors. It appears that given
this geometry, there is an optimum spatial configuration for 7 sources and de-
tectors, with any greater numbers simply being piled on to existing locations.

As we see in Figure 10, this is not the case when the number of source and
detector pairs is less than 7. Perhaps this is why the boost in information
for higher numbers of sources and detectors appears to level off more rapidly
after we have 3 sources and 3 detectors (see Table 4).
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Figure 10: Comparison of optimum configurations for a 5 × 5 grid, no baseline absorption
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Figure 9: Comparison of optimum configurations for a 5 × 5 grid for ≥ 7 sources and
detectors, no baseline absorption

5.2 Voxel Configurations: 5×5×5 Lattice and Voxel

Sheet

Once again, in 3D geometry we first find the optimum source-detector place-
ment in the case of 2 sources and 2 detectors. The three best placement
schemes are shown in Figure 11. As we can see, the symmetry from the 2D
case appears to hold quite well in the best case. The second and third best
cases aren’t quite symmetric, like the 2D case, but appear to be quite close,
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with the sources and detectors switched.

One thing of note that can be seen in Table 5 is that the 2nd and 3rd best
configurations in the 3D case are not as good in comparison to the best as
in the 2D case. Due to the increase in the number of dimensions over which
we are optimizing, it becomes increasingly complex to find global and local
minima. As such, it is possible that we have not found the true 2nd and 3rd
best configurations in this case, which, if found, would yield a substantially
better reconstructed image than our current results and would compare more
favourably to the best case.

Rank Percent of Best Obj. Function
1 100.000 -10.4613
2 89.7171 -10.3528
3 87.3787 -10.3264

Table 5: Optimum configurations for a 5 × 5 × cubic lattice with 2 sources and 2
detectors, no baseline absorption

Once again, we test to see if baseline absorption affects the results signif-
icantly and find little change in the optimum configuration. Images showing
the three best configurations in three dimensions with absorption can be
found in the Appendix (see Figure 15). From here on, we will restrict our
discussion to cases without baseline absorption, unless otherwise noted.

Remarkably, the symmetry between sources and detectors remains in 3D:
their numbers and positions on the surface are entirely interchangeable, as
long as the total number of sources and detectors remains constant, as we can
see in Figure 12 and Table 6. Indeed, the contribution of a source or detec-
tor to the reconstructed image is equivalent, making us once more indifferent
between extra sources and detectors. As in the 2D case, unequal numbers of
sources and detectors provide a reconstructed image that is almost an order
of magnitude worse than the best case. It appears symmetry in numbers of
sources and detectors is at a premium in the 3D case as well.

The computation for the 3D lattice is quite intensive, since the program
has to continually find the SVD of a matrix with 125 columns. As such, we
decided to replace the 3D lattice with a Voxel Sheet of 25 voxels at a depth
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Figure 11: Optimum configurations for a 5 × 5 × 5 cubic lattice, no baseline absorption
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Figure 12: Comparison of optimum configurations for a 5 × 5 × 5 cubic lattice with
unequal numbers of sources and detectors, no baseline absorption

Number of
Detectors

Percent of Sym-
metric Case

Obj.
Function

S (1) S (2) D (1) D (2)

2 100.000 -10.461 (0, 0.73) (0, -0.73) (-0.73, 0) (0.73, 0)
1 12.2456 -8.3614 (-0.023, -0.023) (0.91, -0.35) (-0.72, -0.72) (-0.35, 0.91)
3 12.2456 -8.3614 (-0.35, 0.91) (-0.72, -0.72) (0.91, -0.35) (-0.023, -0.023)

Table 6: Comparison of optimum configurations for a 5 × 5 × 5 cubic lattice with
unequal numbers of sources and detectors, no baseline absorption

of 1 unit from the surface. Indeed, we find that optimizing on the sheet
is less computationally intensive and yields the roughly the same optimal
configurations as the 3D lattice. See Figure 16, for 2 sources and 2 detectors,
and Figure 17, for 2 sources and 5 detectors, in the Appendix3. We pick
the latter case in order to check if symmetry holds with unequal numbers of
sources and detectors in 3D.

5.3 Voxel Configuration: Voxel Column

While our results from the Voxel Sheet indicate that removing the depth pa-
rameter does not affect the results significantly, we now explore pure depth

3Note that while we do not show figures of the close approximation in optimum con-
figurations for the cubic lattice and the voxel sheet for all higher numbers of sources and
detectors, we have experimentally confirmed that to be true upto 5 sources and 5 detectors
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sensitivity using the voxel column setup.

Interestingly, we find, as in the latter cases for 2D setup, the optimum
configuration often involves multiple sources and detectors superimposed on
one another. As we can see in Figure 13, the 2 source 2 detector optimum
configuration has the two sources in the same region. All four sources and
detectors are roughly along a straight line through the voxel column, with
sources on one side and detectors on the other.

In Figure 14 we can see the comparison for higher numbers of sources
and detectors. It appears the symmetry holds and we can’t seem to get
beyond four distinct spatial coordinates (there is rotational symmetry across
the configurations).
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Figure 13: Optimum configurations for a Voxel Column, no baseline absorption
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Figure 14: Comparison of optimum configurations for a Voxel Column, no baseline
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6 Conclusion

In this paper we have found optimal configurations for sources and detectors
given certain voxel geometries. We have shown the existence of a unique op-
timal configuration in a multitude of settings. In addition, our analysis has
shown that this configuration provides a substantial improvement over 2nd
and 3rd best configurations, with a higher difference in three-dimensions. We
find that the optimal configuration is almost always symmetric, with sources
and detectors interchangeable and able to be rotated on some axis. There is
also a premium on equal numbers of sources and detectors, with a symmetric
configuration producing results that are almost an order of magnitude better
than configurations with unequal numbers of sources and detectors (given the
total number is constant). This is likely due to the fact that equal numbers
of sources and detectors will form the most S-D pairs, resulting in a larger
measurement matrix that will likely have more and larger singular values.

The baseline absorption at the level of µa = 0.1 does not affect the re-
sults significantly, with the optimum configuration hardly moving. That
said, background absorption significantly degrades the quality of our recon-
structed image, which is not surprising. In the 2D case, we notice that we
have a diminishing marginal benefit from adding more sources and detectors.
This is particularly important for researchers who need to make a tradeoff
between the higher cost of conducting the experiment with more sources and
detectors and the better image quality obtained from the marginal source or
detector.

We noticed some peculiar behaviour in two cases: when the total number
of sources and detectors is equal to or greater than 7 in the 2D Voxel Grid
and the optimal configurations for a 3D voxel column. In both cases, we see
that the optimal configuration involves superimposition of sources and detec-
tors. In the former case, we also see that there is a natural configuration at
7 sources and detectors. In the latter case, the optimal configuration always
lies on a straight line through the Voxel Column for sources and in cases with
more than 5 sources and detectors, there are only 4 unique positions to place
them.

Since we have restricted ourselves to a few voxel geometries, future work
can explore different voxel configurations and larger numbers of sources and
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detectors. It would be interesting to find out if there is a natural optimal
spatial configuration for any given voxel configuration no matter how many
sources and detectors we have. The practical applications of our work are
substantial, as we can see that there is a sizable difference in reconstructed
image quality between even the first-best and third-best configurations for
any geometry. Our method for optimization can be of use in determining
both optimum configurations and marginal benefits for additional sources
and detectors given any voxel configuration.
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7 Appendix

7.1 Figures for Optimum Configurations
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Figure 15: Optimum configurations for a 5 × 5 × 5 cubic lattice, with baseline absorption
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Figure 16: Optimum configurations for a Voxel Sheet, no baseline absorption
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Figure 17: Optimum configurations for a Voxel Sheet, no baseline absorption

7.2 Deriving the Green’s function for the 2D Laplacian

We know that the Green’s function G(r, s) for the 2D Laplacian must satisfy
the following condition:
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∆G(r, s) = δ(r − s) (79)

Since we are in free space, we can take ρ = |r − s|, substituting that in,
we get

G(r, s) = G0(r − s) (80)

Integrating both sides of (79), we see that integrating the delta function
over a disk with radius greater than 0 is equal to 1

1 =

∫ ∫

A

∆G0dA (81)

We then use the Divergence theorem to obtain

1 =

∫

S

G0ρdS (82)

= 2πρG0ρ (83)

⇒ G0ρ =
1

2πρ
(84)

⇒ G0 =
ln ρ

2π
(85)

Thus, (85) is our expression for the free space Green’s function in 2D
without baseline absorption.

7.3 Deriving the Green’s Function for the 3D Lapla-

cian

Our results can be easily extended to the three-dimensional case without
absorption. Returning to (35), we see that the measurement model requires
us to know only u0, the zero-th order solution from (5), in order to compute
the source-detector measurement at an voxel. When considering no baseline
absorption (µa = 0), we are simply finding the Green’s function for the 3-
dimensional Laplacian. As such, (79) remains valid in 3D. We once again
integrate both sides of (79)
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1 =

∫ ∫ ∫

V

∆G0dV (86)

=

∫ ∫

S

G0ρdS (87)

= 4πρ2G0ρ (88)

⇒ G0ρ =
1

4πρ2
(89)

⇒ G0 = − 1

4πρ
(90)

Thus, (90) is our expression for the free space Green’s function in 3D
without baseline absorption.

7.4 The 3D Forward Problem

At its heart, the forward problem in three dimensions is very similar to that
in two dimensions. In addition, we noted in (15)–(17) that twice the deriva-
tive at the surface of the free space Green’s function is equivalent to u0. Using
these two handy facts, we need only to know the free-space Green’s function
for the Laplacian in 3D in order to complete the measurement model and fill
our measurement matrix.

As we have shown, the free-space Green’s function for the Laplacian in
three-dimensions is

G(ρ) = − 1

4πρ
(91)

where ρ =
√

x2 + y2 + z2. As such, taking twice the normal derivative
on the surface, we get:

2
dG

dz
= − 1

2π

zv

((xs − xv)2 + (ys − yv)2 + (zv)2)3/2
(92)

Our solution for the 3D function is quite similar to the 2D case, and using
(35), we compute the measurement function
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md = −u0
(s)(rv)u0

(d)(rv) (93)

=
1

4π2

zv

((xs − xv)2 + (ys − yv)2 + (zv)2)3/2

zv

((xd − xv)2 + (yd − yv)2 + (zv)2)3/2
(94)

Something to note is the continuation of the symmetry from the 2D case:
switching the positions of the sources and detectors does not alter our result.

7.5 The Forward Problem With Non-Zero Background

Absorption

So far we’ve only considered results with a background absorption of 0. But,
in the real-world most mediums have a baseline background absorption that
needs to be factored into the results. As such, (1) and (2) are no longer
entirely valid. We must modify the diffusion equation in the following way
and obtained a new steady-state PDE

(∆ − κ2)u = 0 (95)

where we’ve made the substitution µa = κ2 since we know µa > 0. This
is the familiar modified Helmholtz equation.

7.5.1 The Forward Problem in 2D

In the 2D case, we can work in polar coordinates:

(∆ − κ2)u = 0 (96)

urr +
1

r
ur − κ2u = 0 (97)

Using dimensional analysis, we can simplify the problem. In this case, we
know that κ2 has units L−2 so κ has units 1/L. We define a natural length
scale in the given parameter

rc =
1

κ
(98)

x =
r

rc

= κr (99)
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Substituting the scaled values into (97)

uxx +
1

x
ux − u = 0 (100)

x2uxx + xux − x2u = 0 (101)

The expression in (101) is a version of the Modified Bessel’s differential
equation, which is given by [6]:

x2 d2y

dx2
+ x

dy

dx
− (x2 + α2)y = 0 (102)

where α is a real or complex number. When α is an integer, it is known
as the order of the equation. There are two known linearly independent
solutions to the Modified Bessel Equation[6]:

Iα(x) = i−αJα(ix) (103)

Kα(x) =
π

2

I−α(x) − Iα(x)

sin απ
(104)

where Jα is the Bessel function of the first kind and a solution to the un-
modified Bessel Equation. It can be expressed as a Taylor expansion around
0

Jα =
∞∑

m=0

(−1)m

m!Γ(m + α + 1)

(x

2

)2m+α

where Γ(x) is the Gamma function. In (101), we get the modified Bessel
equation with α = 0. Since the behaviour of the δ shows a peak at zero, we
will need to use (104), the modified Bessel function of the second kind, which
also diverges at zero.

The free space Green’s function for the modified Helmholtz in 2D must
satisfy the following condition:

(∆ − κ2)G(r, s) = δ(r − s) (105)

We will not go through the entire derivation of the Green’s function for
modified Helmholtz in 2D, as it is quite similar to the 2D Laplacian. As
we saw earlier, the Green’s function for the 2D Laplacian was simply the
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fundamental solution multiplied by a factor of 1
2π

. Since we have the same
geometry for the modified Helmholtz equation, we use the same factor. Once
again, taking ρ = |r − s| and rescaling x = κρ, we obtain the free space
Green’s function for the modified Helmholtz equation

G(ρ) =
1

2π
K0(κρ) (106)

Thus, (106) is our expression for the free-space Green’s function in 2D for
the Modified Helmholtz equation. Note that we can rewrite (106) as follows:

1

2π
K0(κρ) =

1

2π
K0(κ

√
x2 + y2) (107)

Taking twice the derivative in the y-direction, we get an expression of u0,
and plugging that into (35), we compute the measurement function

md = −u0
(s)(rv)u0

(d)(rv) (108)

u0
(s)(rv) =

κ

π

yv√
(xs − xv)2 + y2

v

K1(κ
√

(xs − xv)2 + y2
v) (109)

u0
(d)(rv) =

κ

π

yv√
(xd − xv)2 + y2

v

K1(κ
√

(xd − xv)2 + y2
v) (110)

7.5.2 The Forward Problem in 3D

The procedure of deriving the Green’s function for the 3D Modified Helmholtz
equation is quite similar to the one above. Since a derivation does not en-
hance our understanding of the problem, we will forgo it in this paper. The
Green’s function in this case is known to be[6]:

G(ρ) =
exp(−κρ)

4πρ
(111)

Once again, using (35), the measurement function can be computed by
taking twice the normal derivative on the surface to find an expression for
u0.
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