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Future Direction

The 3-D model which we found to quite well represent the real
phenomenon ensures that our study is heading towards the right
direction. However, there are also unexpected behavior in the ac-
tual recording. For example, the strength of the signal seems to be
strongly dependent on position of sources and receivers: atsome
position, the recording of the chirp is loud and clear whereas we
could barely hear the chirp at some other position. Also, in con-
trast to previous results, the spectrogram of some recordings, the
chirps create absent lines instead of bright lines. Such aspects of
the result might be potential direction to continue the research.
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Figure 11: Spectrogram
of a recorded signal,
showing absent lines
instead of bright lines

Spectrogram Comparison and 3-D model

A spectrogramis a plot which shows the frequency content of a signal as it changes in time. The
axes are time and frequency. It exctracts similar information to the human ear. Therefore we can
study the behavior of the sound waves by comparing the spectrograms.

In order to see how well the simulation can model the phenomenon, we also use fourier series
and spectrogram to analyze the actual sound recordings. Then we compare the spectograms of
the simulated sound waves and the actual recordings.

In the spectrogram we see certain straight lines rising withvarious slopes. The lines occur be-
cause of the frequency spacing, giving the slope of the line equals to multiples of2c

2

L2 , wherec is
the velocity of sound andL is the distance between image sources.
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Figure 7: Sound signal of the actual
recording of a clap
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Figure 8: Spectrogram analysis of
the actual recording of a clap gen-
erated
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Figure 9: Spectrogram generated
from the signal of 2-D model
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Figure 10: Spectrogram generated
from the signal of 3-D model

The 2-D simulation seems to still allow improvement of the result, therefore we move on to the
3-D simulation using the same method as 2-D simulation. In 3-D simulation, we also experiment
with the source and the receiver whose positions are not exactly at the middle of the racquetball
court. The slope of the lines from 3-D simulation seems to match the lines from the actual
recordings better than the 2-D simulation as expected.

Proof of Equivalence

Our goal is to prove that proposition 1 and 2 are equivalent. Fromn in definition 2, then an arbitrary factor ofn can be writtend = 2α0pα1

1
. . . pαm

m qβ1

1
. . . qβr

r , whereα ’s
andβ ’s are integers, which0 ≤ α0 ≤ 2a0, 0 ≤ α1 ≤ 2a1, . . . , 0 ≤ αm ≤ 2am, 0 ≤ β1 ≤ b1, . . . , 0 ≤ βr ≤ br.

By the fundamental theorem of arithmetic, stating that every natural number greater than 1 can be written as a unique product of prime numbers, each set of
{α0, α1, . . . , αm, β1, . . . , βr} results in a distinct factor. Since each member of the set canbe chosen independently, therefore the number of ways to construct a
factor ofn is

(a0 + 1)(2a1 + 1) . . . (2am + 1)(b1 + 1) . . . (br + 1)

Ford that can be written in the form ofd = 2k, 2 needs to be a factor ofd. So1 ≤ α0 ≤ a0. Therefore, the number of factorsd in the form ofd = 2k is

a0(2a1 + 1) . . . (2am + 1)(b1 + 1) . . . (br + 1)

According to the definition ofχ (d) in Proposition 2,χ of even number is zero. Therefore, even factors don’t contribute to the sum in proposition 2. So from now on
we will considerχ value of odd factors only. The rest of the factors are odd factors, which therefore number

(2a1 + 1) . . . (2am + 1)(b1 + 1) . . . (br + 1)

Now, we try to catagorize the odd factors in two groups, ones that can be written in the form of4k + 1, and ones that can be written in the form of4k + 3. From

(4k1 + 1)(4k2 + 1) ≡ 1 · 1 ≡ 1 (mod 4)

(4k1 + 1)(4k2 + 3) ≡ 1 · 3 ≡ 3 (mod 4)

(4k1 + 3)(4k2 + 3) ≡ 3 · 3 ≡ 1 (mod 4)

thenqβ1

1
. . . qβr

r ≡ 1 (mod 4) for anyβ1, . . . , βr. So it is only the powers ofp1, . . . , pm which determines whetherd ≡ 1 or 3 (mod 4)

We first show
∑

d|n χ(d) = 0 if any of the powers2a1, 2a1, . . . , 2am appearing in definition 2 are odd.
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Figure 6: Combinations of power of prime factors in the form4k + 1 (left) when
there is at least one prime which has even power and (right ) when all prime has odd power.

Let 2ai be odd, in other word,ai is a half-integer. Then the number of choice ofαi is even. For each choice of otherα’s, the parity of the sum of power ofp’s when
αi = 0 and whenαi = 1 are opposite. So among whenαi = 0 andαi = 1, the number of factors ofn with odd and even sum of power are equals. And so the factors
of n whenαi = 2 andαi = 3 can be paired up with opposite parity, and in the same way, thefactors ofn whenαi = 2ai − 1 andαi = 2ai can also be paired up with
opposite parity.

Since
∑

d|n = #{d : d = 4k + 1} − #{d : d = 4k + 3} and the number of both catagories of prime numbers are equal,therefore,
∑

d|n χ(d) = 0.

The only situation left to consider is the case of when the power of primepi’s are all even. In this case we will show that
∑

d|n χ(d) = B

α1 can be0, 1, 2, . . . , 2a1. Similar to the previous case,α1 = 1 can be paired up withα1 = 2 to cancel the value of the sum ofχ(d), and the same pattern continues to
α1 = 2a1 − 1 andα1 = 2a1. So the only case left to consider is whenα1 = 0.

Whenα1 = 0 α2 = 1 can be paired up withα2 = 2, and the same pattern continues toα2 = 2a2 − 1 andα2 = 2a2. So the only case left to consider is whenα2 = 0.

Continuing in this fasion, all the non-cancelling terms in the sum are accounted for by the caseα1 = α2 = . . . = αm = 0

When allαi’s is 0, the factor ofn that can be constructed is in the formd = 20p0

1
. . . p0

mqb1

1
. . . qbr

r which equalsqb1

1
. . . qbr

r . The number of such choices ofβ1, . . . , βr is
(b1 + 1) . . . (br + 1) = B. QED.

Formulae for the Number of Sums of Square
Another way to count the number of image sources which are at the same distance are to use the following formulae.

Definition 2 Let n = 2a0p2a1
1 . . . p2am

m qb1
1 . . . qbr

r Where thepis are primes of the form 4k+3 and theqis are primes of
the form 4k+1.

Proposition 1 [1]
DefineB = (b1 + 1) . . . (br + 1) (1)

The number of representations ofn as the sum of two squares is given by

r2(n) =

{

0 if anyai is a half-integer
4B if all ai are integers

(2)

Definition 3 Dirichlet characters modulom, χ is defined by

χ(d) =







1 if d ≡ 1 (mod 4)
−1 if d ≡ 3 (mod 4)
0 otherwise

Proposition 2 [2] The number of integral solutions(x, y) wherex > 0, y ≥ 0 to the equationx2+y2 = n is
∑

d|n χ(d),
where the sum is over all divisors ofn.

Sincex > 0 andy ≥ 0, the proposition only represents a quarter of the xy-plane as shown in the figure. By rotating
this region by the angle ofπ/2, the entire xy-plane is covered. The number of solutions ofx2 + y2 = n is now
4
∑

d|n χ(d) or

r2(n) = 4
∑

d|n
χ(d)Simple 2-D Model

First, we consider the cross-sectional area of the racquetball court which is in the square shape,
size 20’x20’. Let a person stand in the middle of the room clapping. The sound wave travels
from the source in all directions and reflects off the wall. The reflections which finally come back
to the source can be found by considering a lattice of image sources (see Figure). Each image
source contributes some certain amount of energy to the total sound wave. However, because the
image sources are at different distance from the real source, the amount of time the wave taken
to travel back to the person are also different. For the idealsituation, the image sources of the
same distance away from the source contributes the same amount of energy and at the same time.
Therefore, finding how many sources contribute to the signal(in a 2-D simulation) is equivalent
to counting the number of solutions(x, y) to the equationn = x2 + y2 for a givenn, wherex, y
are integers.

Definition 1 r2(n) is the number of representations of n by 2 squares, allowing zeros and distin-
guishing signs and order. In other words,r2(n) = #{(x, y) : x2 + y2 = n}
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Figure 2: Actual source (S), lat-
tice of image sources (S’), and re-
ceiver (R)
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Figure 3:Sum of squares Given a circle whose radius
is
√

n, the coordinates(x, y) of all points on the circle
are solutions of the equationn = x2 + y2

We use the formulae forr2(n) in the next Section to count the contribution of each reflection, and
then generate the sound wave. Assuming a clap is a simple pulse (delta functionδ(t)), then one
reflection is also a simple pulse. A reflection pulse comes back to the source at different times,
and by accumulating such pulses we produce a chirp sound similar to what we hear in the court.

Figure 4:Simulated sound sig-
nal of a clap

Figure 5:Part of the simulated sound wave. Each spike represents the
amount of energy which reaches the listener at timet. The number of
source contributing energy at the same time is counted by using formulae
for r2(n)

Then we use fourier series to compute the spectogram of the wave we generated.

Introduction

Figure 1: A person
clapping in the raquet-
ball court. The wave
signal travels, reflects
off the wall and finally
comes back to the per-
son.

If you stand inside a racquetball court and clap your hands, what you
will hear is not a simple echo of the clap. A handclap will generate a
chirped echo, which is a rising pitch.

Such an echo is generated by superposition of the reflectionsof the clap
off the walls. In order for the sound wave from the clap to travel back
to the listener, the wave needs to reflect off the walls and bounce back
to the source. However, since the sound wave travels in all direction
from the source, there exists more than one reflection path. When all
reflections are combined, an irregular echo is created, which produces
a chirp.

In this project, we are studying the chirping effect using a mathematical
approach to simulate the signal and compare to the recordings from the
actual clap in the racquetball court.

Similar strange chirp echoes have recently been reported. ..
”Now I have heard echoes in my life, but this was really strange,” says
David Lubman, an acoustical engineer, after hearing the echo of his
handclap in front of Maya Pyramid.
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