A Clap Can Chirp: Waves and Echoes In the Racquetball Court

Vissuta Jiwariyavejlomen In Science Projedlexander BarnetAdvisor, Mathematics Departmeitartmouth College

Introduction

If you stand inside a racquetball court and clap your handstwou
will hear is not a simple echo of the clap. A handclap will gexte a
chirped echo, which is a rising pitch.

Such an echo is generated by superposition of the refleatidhe clap
off the walls. In order for the sound wave from the clap to &lavack
to the listener, the wave needs to reflect off the walls andhbeuack

to the source. However, since the sound wave travels in @ttion

"‘*\\// from the source, there exists more than one reflection pather\\ll

j\D/ reflections are combined, an irregular echo is created, wbiroduces
a chirp.

Figure 1: A person

clapping In the raquet-  |n this project, we are studying the chirping effect usingatmematical
ball court. ' The wave — 55hr9ach to simulate the signal and compare to the recardiiom the

signal travels, reflects _
off the wall and finally ~ actual clap in the racquetball court.

comes back to the per-
son. Similar strange chirp echoes have recently been reported..

"Now | have heard echoes in my life, but this was really st&hgays
David Lubman, an acoustical engineer, after hearing theoeahhis
handclap in front of Maya Pyramid.

Simple 2-D Model

First, we consider the cross-sectional area of the racalletburt which is in the square shape,
size 20'x20’. Let a person stand in the middle of the room giag. The sound wave travels
from the source In all directions and reflects off the walleTaflections which finally come back
to the source can be found by considering a lattice of imagecss (see Figure). Each image
source contributes some certain amount of energy to thesioted wave. However, because the
Image sources are at different distance from the real sptlieeamount of time the wave taken
to travel back to the person are also different. For the iggahtion, the image sources of the
same distance away from the source contributes the samenafanergy and at the same time.
Therefore, finding how many sources contribute to the signa 2-D simulation) is equivalent
to counting the number of solutioris, y) to the equatiom = = + y* for a givenn, wherez, y
are integers.

Definition 1 r5(n) is the number of representations of n by 2 squares, allowangszand distin-
guishing signs and order. In other wordsyn) = #{(z,y) : ° + y°> = n}
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Figure 2: Actual source (S), lat-
tice of image sources (S’), and re-
ceiver (R)

Figure 3:Sum of squares Given a circle whose radius
IS /n, the coordinatesr, y) of all points on the circle
are solutions of the equation= 2> + y?

We use the formulae fon(n) in the next Section to count the contribution of each reftegtand
then generate the sound wave. Assuming a clap is a simple fé#a functiorny(¢)), then one
reflection is also a simple pulse. A reflection pulse come& bathe source at different times,
and by accumulating such pulses we produce a chirp sounthstmwhat we hear in the court.
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Figure 5:Part of the simulated sound wave. Each spike represents the

Figure 4:Simulated sound sig- amount of energy which reaches the listener at ttmé&he number of
nal of a clap source contributing energy at the same time is counted Imgdsrmulae
for ro(n)

Then we use fourier series to compute the spectogram of tiie wa generated.

Formulae for the Number of Sums of Square

Another way to count the number of image sources which ateeagdame distance are to use the following formulae.

Definition 2 Letn = QGOpfc‘l i, .p?gmqfl ...¢” Where thep;s are primes of the form 4k+3 and thyes are primes of
the form 4k+1.

Proposition 1[1]
DefineB = (by +1)...(b, +1) (1)

The number of representationsofis the sum of two squares is given by

0 ifanya,; is a half-integer
ra(n) = { ya ° (2)

| 4B ifall a; are integers

Definition 3 Dirichlet characters modulen, y is defined by

1 fd=1 (mod4)
x(d)=< —1 ifd=3 (mod4)
0  otherwise

Proposition 2[2] The number of integral solutions:, ) wherez > 0,y > 0to the equation’+y* = n is Zd\nX(CD’
where the sum is over all divisors of

Sincex > 0 andy > 0, the proposition only represents a quarter of the xy-plangh®wn in the figure. By rotating
this region by the angle af/2, the entire xy-plane is covered. The number of solutions’of > = n is now

4Zdyn><(d> or
ra(n) =4y x(d)

dn

Proof of Equivalence

Our goal is to prove that proposition 1 and 2 are equivalerdn in definition 2, then an arbitrary factor afcan be writtend = 2%p}* .. .pf,“;anl ...q¢>, wherea’s
andg ’s are integers, which < oy < 2a9,0 < ay < 2ay,.. ., 0<a, <2a,0<06 <b,..., 0 <4, <hb,.

By the fundamental theorem of arithmetic, stating that yveatural number greater than 1 can be written as a uniqueuptaaf prime numbers, each set of

{ag, aq, ..., Qs B1s -+ -, 3.} results in a distinct factor. Since each member of the setbeanhosen independently, therefore the number of ways tetican a
factor ofn is

(ap+1)2a1+1)...2ap, + 1)1 +1)... (b + 1)

For d that can be written in the form of = 2k, 2 needs to be a factor df Sol < oy < aq¢. Therefore, the number of facto#an the form ofd = 2k is

ap(2a1 +1) ... 2a, +1)(b1+1) ... (b + 1)

According to the definition of (d) in Proposition 2,y of even number is zero. Therefore, even factors don’t couate to the sum in proposition 2. So from now on
we will considery value of odd factors only. The rest of the factors are oddiactvhich therefore number

(201 +1)...2an +1)(by+1)...(b,+1)

Now, we try to catagorize the odd factors in two groups, ohas¢an be written in the form aft + 1, and ones that can be written in the formdéf+ 3. From
(4k1 + 1)(4ky+1)=1-1=1 (mod 4)

(4ky +1)(dko+3)=1-3=3 (mod 4)
(4]€1 + 3)(4]€2 + 3) = 3 . 3 =1 (mod 4)

theng]" ... ¢ =1 (mod 4) foranyg, ..., G,.. Soitis only the powers gfy, . . ., pm Which determines whethefr= 1 or 3 (mod 4)

We first showzdm x(d) = 0 if any of the powera,, 2ay, . . ., 2a,, appearing in definition 2 are odd.

2a,+1] a,+1
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Figure 6 Combinations of power of prime factors in the forth + 1 (left) when
there is at least one prime which has even power &agtt() when all prime has odd power.

Let 2a; be odd, in other wordy; is a half-integer. Then the number of choicengfis even. For each choice of othels, the parity of the sum of power gfs when

«; = 0 and whemy; = 1 are opposite. So among when= 0 anda; = 1, the number of factors ot with odd and even sum of power are equals. And so the factors
of n wheno; = 2 anda; = 3 can be paired up with opposite parity, and in the same wayattters ofn whena; = 2a; — 1 anda; = 2a; can also be paired up with
opposite parity.

Since)_,,, = #{d: d =4k + 1} — #{d : d = 4k + 3} and the number of both catagories of prime numbers are etieaéfore _;,, x(d) = 0.
The only situation left to consider is the case of when thegravi primep;’s are all even. In this case we will show th@dm x(d) =B

ap can bel, 1,2,...,2a,. Similar to the previous case; = 1 can be paired up with; = 2 to cancel the value of the sum @td), and the same pattern continues to
a1 = 2a; — 1 anda; = 2a,. So the only case left to consider is when= 0.

Whena; = 0 ap = 1 can be paired up withy, = 2, and the same pattern continueswto= 2a, — 1 andas = 2a». So the only case left to consider is when= 0.
Continuing in this fasion, all the non-cancelling termshie sum are accounted for by the case=as = ... =, =0

When alla’s is 0, the factor of: that can be constructed is in the forim= 209 .. .10 ¢"* ... ¢ which equals;* . .. ¢”. The number of such choices 6f, . . ., B, is
(b1 +1)...(b,+1)=B. QED.

Spectrogram Comparison and 3-D mode|

A spectrograms a plot which shows the frequency content of a signal asahges in time. The
axes are time and frequency. It exctracts similar infororato the human ear. Therefore we can
study the behavior of the sound waves by comparing the spgeaims.

In order to see how well the simulation can model the phenamewe also use fourier series
and spectrogram to analyze the actual sound recordingsa Wheecompare the spectograms of
the simulated sound waves and the actual recordings.

In the spectrogram we see certain straight lines rising wathous slopes. The lines occur be-

cause of the frequency spacing, giving the slope of the linalks to multiples 0%2, wherec is
the velocity of sound and is the distance between image sources.
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Figure 8: Spectrogram analysis of
the actual recording of a clap gen-

erated
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Figure 7: Sound signal of the actual
recording of a clap
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Figure 9. Spectrogram generated
from the signal of 2-D model

Figure 10: Spectrogram generated
from the signal of 3-D model

The 2-D simulation seems to still allow improvement of theulg therefore we move on to the
3-D simulation using the same method as 2-D simulation. Dhs3mulation, we also experiment
with the source and the receiver whose positions are notlgxacdhe middle of the racquetball
court. The slope of the lines from 3-D simulation seems tocmdhe lines from the actual
recordings better than the 2-D simulation as expected.

Future Direction

The 3-D model which we found to quite well represent the real -

phenomenon ensures that our study is heading towards thie rig -
direction. However, there are also unexpected behavidrarat-

tual recording. For example, the strength of the signal sgerhe

strongly dependent on position of sources and receiveisorae

position, the recording of the chirp is loud and clear wherea

could barely hear the chirp at some other position. Also,an-c
trast to previous results, the spectrogram of some recgsglithe
chirps create absent lines instead of bright lines. Sucbdsf

the result might be potential direction to continue the agske.
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