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Abstract

Calculating the capacitance of a unit cube requires the numerical
solution of a Laplace boundary value problem (BVP). However, cur-
rent methods observe a slow algebraic error convergence. In this paper,
we suggest the method of particular solutions (MPS) with domain
decomposition technique to the BVP, which can handle the corner
singularity of the cube and is spectrally accurate. The 2D analogous
problem of calculating the capacity of the unit square with MPS is
demonstrated, and for the 3D problem we focus on accurate meth-
ods to compute the needed basis functions based at the corner of the
cube. This involves solving a Dirichlet boundary eigenvalue problem
on 7/8 of a sphere. Fast algorithms for evaluating the required as-
sociated Legendre function are also discussed. We have obtained 15
digits accuracy in computing the capacity of the unit square with an
exponential error convergence. For the related Dirichlet eigenvalue
problem, we got 5 digits accuracy for the eigenvalues on the sphere.

1 Introduction

Computation of the electrical capacitance of a geometrically-complex con-
ducting body is a common engineering problem, occurring for instance in

∗Thesis paper under full supervision of Professor Alexander Barnett
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designing micro-chip interconnects [13] or evaluating capacitances of biomem-
branes [10]. The self-capacitance of a unit cube in 3D space (i.e. [−1

2
, 1

2
]3 in

R3) is a paradigm problem: as no analytical expression is known, a numerical
approximation is crucial.

To numerically solve for the capacitance, we need to solve a boundary
value problem (BVP), which is a partial differential equation (PDE) with con-
ditions on surfaces for the function values. The BVP in question is Laplace’s
equation in a domain Ω ⊂ Rn, i.e. the PDE:

∆u = 0 in Ω (1)

with the boundary condition:

u = f on ∂Ω (2)

The capacitance is a linear functional of the solution u to the Laplace
equation. Traditional methods to solve a PDE include finite difference method
which represents the solution on a grid [18, p.1029], finite elements method
(FEM) which represents the solution by polynomials on an irregular triangu-
lar mesh [20] and boundary integral equation (operator equation for unknown
surface charge density) method [12].

However, owing to the corners and edges in a cube that will give rise to
field singularities, standard numerical methods become difficult as we observe
slow convergence to the true answer.

As a result, several numerical approaches have been developed to solve
the above mentioned BVP and compute the value of the capacitance to high
precision. One type of approach is deterministic such as using the boundary
element method (BEM, also known as integral equation method) which is
a finite-element approximation that uses quadrature to solve the boundary
integral equation.

The idea is to segment the surface of a unit cube into N small pieces.
Then, the problem can be turned into solving a set of linear equations that
describe the dependence between segment potentials and charges [11]. Read
[19] tries to extrapolate the number of subdivisions to infinity (Richardson
extrapolation), though the best result he get has a relative error of magnitude
10−6, along with an algebraic error convergence rate.

Another type of numerical approach depends on probabilistic random
walk (Monte Carlo) simulations (since electrostatics is described by the same
equation as steady-state diffusion). This type of method, so called ”random
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walk on the boundary” is claimed to be more efficient than the above deter-
ministic methods and also holds the record of 7 digits as the highest accuracy
currently known for the cube capacitance [14]. However, to reach 7-digit ac-
curacy, 1014 trajectories are required because the Monte Carlo method only
has an algebraic convergence rate of 1/

√
N : this arises from standard result

that the sample mean differs from true mean by O(
√
N) for sample size N .

To date, here is a table of most accurate digits obtained by previous
researches:

Table 1: Previous Results for the Capacitance of the Unit Cube

Researcher Method Result
Read[19] Refined BEM 0.6606785 ± 6× 10−7

Mascagni-Simonov[14] Random Walk on ∂Ω 0.6606780 ± 2.7× 10−7

Hwang-Mascagni[11] Walk on Planes 0.6606782 ± 1× 10−7

Our project will develop a new spectrally accurate method that will pro-
duce an exponential error convergence with respect to N (the number of
degree of freedom), which is faster than the algebraic convergence rate ob-
tained by previous methods. With this method, we may finally be able to
calculate the self-capacitance of a unit cube with much higher precision. In
this work we will demonstrate the application of this method in the 2D case:
i.e. calculating the capacity of a unit square and we will construct basis
functions appropriate for the 3D cube capacitance problem (this in itself is
a tricky task).

We notice that as the PDE (1) is a constant coefficient homogeneous
PDE, we can therefore obtain the general solution to the boundary value
problem by the method of particular solutions (MPS), summerized by the
following steps [5]:

1. Find the particular solutions (basis functions) to the PDE above. For
example, in polar coordinate system in R2, we can write basis (n ∈ Z):

ξ2n(r, θ) =

{
rn cosnθ, n 6= 0
1, n = 0

(3)

and

ξ2n+1(r, θ) =

{
rn sinnθ, n 6= 0
log r, n = 0

(4)
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2. Select a suitable basis (for instance, if u(x) ∼ 0 when x→∞, then we
have to restrict the above basis to n < 0). Next, we approximate the
solution by the linear combination of possibly a subset of these basis
functions: u(x) =

∑N
i=1 ciξi(x), where {ci} is a set of coefficients.

3. Choosing boundary points pj, j = 1, 2, · · · ,m on ∂Ω, we want the

boundary conditions satisfied, i.e.
∑N

i=1 ciξi(yj) = f(yj) for 1 ≤ j ≤ m.
This turns out to be solving a linear system Ac = b, and we choose the
least-square solution that gives the minimum l2 error in the boundary
point vector, hence a good approximation to the minimum boundary
error in L2(∂Ω) norm.

In order to adopt the method of particular solutions with basis functions
adapted to the cubical corners, we need to use domain-decompositon tech-
niques [3]: although the corner lives in one domain, expansion of the solution
at∞ lies in a different domain. Generally speaking, we can divide Ω into two
parts: Ω = Ω1 +Ω2, and we denote Γ = Ω1∩Ω2 as the intersection of the two
sub-domains. Then, according to the method of particular solutions, we can
find solution u1 in Ω1 and u2 in Ω2. Finally, to get the solution on the whole
domain Ω, we only need to match the sub-domain solutions on Γ, i.e. u1 = u2

and also match their normal derivatives on Γ: define n as the normal vector on
Γ into Ω1 but out of Ω2, then ∂nu1 = ∂nu2. The new matching errors (i.e. the
L2 norms) have to be incorporated into the least square error we mentioned
before: we will now minimize ‖u1−u2‖L2(Γ)+‖∂nu1−∂nu2‖L2(Γ)+‖u−f‖L2(∂Ω).

However, because of the separation of variables, computing these basis
functions involves a Dirichlet eigenvalue problem on the sphere with one
octant removed, which is a difficult problem in itself due to the singular
corners of the octant. In this project we first present the analogous problem
in 2D and solve the capacity for unit square in Section 2. Next, we introduce
the 3D capacitance problem in Section 3, which translates to solving an
eigenvalue problem on part of the sphere in Sections 4-5. We then focus
on accurate methods to solve this eigenvalue problem, using again the MPS
through Sections 7-9. We will also discuss fast methods for evaluating the
needed associated Legendre functions via recurrence relations in Section 6.
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2 Application of MPS with Domain Decom-

position to unit square in 2D

Let S ⊂ R2 be a bounded closed domain that is compact on R2 and Ω =
R2 \ S. If u is a unique solution that satisfies the following Laplace equation
with Dirichlet boundary data on ∂Ω (Fig. 1):

∆u = 0 in Ω (5)

u = 0 on ∂Ω (6)

u(x) ∼ log |x|+O(1) as |x| → ∞ (7)

Figure 1: 2D general domain for the Laplace Equation

Here, the sign ‘∼’ means ‘is asymptotic to’. In our example, this means
there exists constants M > 0 and K > 0, such that |u(x)− log |x|| < M for
all |x| > K.

Then, the following limit exisits and is called a Robin constant of S [6]:

lim
|x|→∞

(u(x)− log |x|) =: α (8)

We thus define the (logarithmic) capacity of S on the plane R2 to be

c(S) = e−α. (9)

Consider the special case when S = [−1
2
, 1

2
]2 (i.e. S is a unit square

centered at the origin). (Fig. 2) The exact value of its capacity is known
analytically: c(S) = 1

4π3/2 · Γ(1
4
)2 [8]. We want to test if we can use MPS
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Figure 2: 2D Laplace Equation with unit square domain

with domain-decomposition techniques to get a high-precision numerical ap-
proximation of u. If successful, these methods would be worth pursuing in
3D.

If we naively use the basis functions ξ2n or ξ2n+1 outside the square (this
requires n ≤ 0, as we will see later), we will get into trouble with convergence
when we approach the corner of the square because the corner is singular
[5](i.e. the exterior angle of the corner is of the form π/n for some n ∈ N. We
also notice that the normal on the corner is ill-defined in our case). Instead
we place an artificial circle outside the square (for example, a circle centered
at the origin with R = 1.5) and separately solve the Laplace equation inside
and outside the circle using MPS so we can match up on the boundaries.
Due to the geometric symmetry of the square and the circle, we only need
to look at the red-shaded region illustrated in Fig. 3.

First, let us consider the solution in region A, which is outside the circle.
If we write

v(r, θ) = u(r, θ)− log r, (10)
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Figure 3: The artificial circle boundary used to match solution in region A
to region B. The unit square is also shown.

then v must satisfy the following Laplace equation:

∆v = 0 in Ω (11)

v = − log r on ∂Ω (12)

v ∼ O(1) as r → +∞ (13)

Since v is harmonic at infinity, we use basic functions in the form r−n sinnθ
for n ≥ 1 or r−n cosnθ for n ≥ 0. (Note we have used the fact that outside
the disk, a Laurent expansion is complete.)

Also, since the solution u preserves the symmetry of the square and the
boundary conditions, we need these basis functions to be even symmetric on
the lines θ = 0 and θ = π/4.

Thus the only basis functions we can use are of the form ξn(r, θ) =
r−4n cos(4nθ), n = 0, 1, 2, · · · .

In other words,

v(r, θ) =
N∑
i=0

ciξn(r, θ) (14)

where {ci} are undetermined coefficients.
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Note that here it is important that we start with the index i = 0 instead
of with the index i = 1. This is because at exterior, the function v really is
O(1) plus a harmonic function that dies at infinity. As a result, a constant
term should be included in the set of basis functions.

Now we consider the solution in the region B. To simplify the expression
of u, we switch the polar coordinate system (centered at O) to be centered
at M , the top-right corner of the square, which can be illustrated in Fig. 4.

Figure 4: Solution u(ρ, α) in region B, with polar coordinate system centered
at M . Solution v(r, θ) in region A with polar coordinate system centered at
O is also shown.

We now use separation of variables appropriate for the corner region.
Since the solution u has to satisfy the boundary data on segment MN (i.e.
u(ρ, 0) = 0) and it has to preserve symmetry according to the line α = 3π/4,
we can only use basis functions of the form:

ϕn(ρ, α) = ρ2(2n−1)/3 · sin(
2(2n− 1)α

3
), n ∈ N (15)

Hence, we can write u as a linear combination of these basis functions:

u(ρ, α) =
N∑
i=1

aiϕi(ρ, α), (16)
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where {ai} are also undetermined coefficients. It is this corner expansion
that allows us high (spectral) accuracy.

We denote b = (a1, a2, · · · , aN , c0, c1, c2, · · · , cN)T the coefficient vector.
To solve for b, we need to match up all the boundary conditions. In fact,
there are three boundary conditions we need to fit (1) function values on

the arc
_

ST , (2) normal derivatives on the line segment NT and (3) normal

derivatives on
_

ST :
(1) Let R denote the radius of our imaginary circle. If we choose a

Gaussian quadrature θ1, θ2, · · · , θm on [0, π/4], we can place m corresponding

nodes n1, n2, · · · , nm on
_

ST , where ni = (R, θi) in polar coordinate system.
Now, u and v has to agree on these m nodes, with a jump logR because of
(10). (Fig. 5)

Figure 5: Matching u and v with nodes n1, n2, · · · , nm on the boundary
_

ST
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In other words, the following m linear equations must hold:

N∑
i=1

aiϕi(n1) −
N∑
j=1

cjξj−1(n1) = logR (17)

N∑
i=1

aiϕi(n2) −
N∑
j=1

cjξj−1(n2) = logR (18)

· · · (19)
N∑
i=1

aiϕi(nm) −
N∑
j=1

cjξj−1(nm) = logR (20)

We have to be cautious since ϕk(nj) and ξk(nj) are actually using different
coordinate systems as we have discussed before.

For future convenience, we denote:

S1 =

 ϕ1(n1) ϕ2(n1) ... ϕN (n1) −ξ0(n1) −ξ1(n1) ... −ξN−1(n1)
ϕ1(n2) ϕ2(n2) ... ϕN (n2) −ξ0(n2) −ξ1(n2) ... −ξN−1(n2)
... ... ... ... ... ... ... ...

ϕ1(nm) ϕ2(nm) ... ϕN (nm) −ξ0(nm) −ξ1(nm) ... −ξN−1(nm)


(2) If we place m Guassian nodes t1, t2, · · · , tm on the line segment NT ,

then the normal derivative of u on each of the node tj should always equal
zero because we want u to have correct symmetry. (Fig. 6)

Notice that in polar coordinate system (ρ, r),
−→
∇ = ( ∂

∂ρ
, 1
ρ
∂
∂α

). Hence, the
normal derivative of a basis function ϕk on node tj can be calculated as:

∂

∂n
ϕk(ρj, αj) = − cosα · ∂ϕk

∂ρ
(ρj, αj) + sinα · 1

ρ
· ∂ϕk
∂α

(ρj, αj) (21)

We therefore require the following linear equations to hold:

N∑
j=1

ajϕn̂j
(t1) = 0 (22)

N∑
j=1

ajϕn̂j
(t2) = 0 (23)

· · · (24)
N∑
j=1

ajϕn̂j
(tm) = 0 (25)
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Figure 6: Normal derivative of u at node tj on NT

Let us write:

S2 =

 ϕn̂1(t1) ϕn̂2(t1) ... ϕn̂N
(t1) 0 0 ... 0

ϕn̂1(t2) ϕn̂2(t2) ... ϕn̂N
(t2) 0 0 ... 0

... ... ... ... ... ... ... ...
ϕn̂1(tm) ϕn̂2(tm) ... ϕn̂N

(tm) 0 0 ... 0


(3) Finally, the normal derivative of u and v must agree on the node nj,

j = 1, 2, · · · ,m (Fig. 7):
Same as what we have done in (2), the normal derivative of a basis func-

tion ϕk on node nj can be calculated as:

∂

∂n
ϕk(ρj, αj) = nρ ·

∂ϕk
∂ρ

(ρj, αj) + nα ·
∂ϕk
∂α

(ρj, αj), (26)

where nρ = cos β, nα = sin β and β = π/2 + θ − α.
On the other hand, since the unit normal derivative n̂ at node nj agrees

with the direction of r̂ at node nj in the polar system (r, θ), we have:

∂

∂n
ξk(rj, θj) = 1 · ∂ξk

∂r
(rj, θj) + 0 · 1

r

∂ξk
∂θ

(rj, θj) =
∂ξk
∂r

(rj, θj) (27)
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Figure 7: Matching the normal derivative of u and v on
_

ST

Adding the jump in the values of ∂
∂n
v compared to ∂

∂n
u, the following

linear equations mush hold:

N∑
i=1

aiϕni
(n1) −

N∑
j=1

cjξnj−1
(n1) = 1/R (28)

N∑
i=1

aiϕni
(n2) −

N∑
j=1

cjξnj−1
(n2) = 1/R (29)

· · · (30)
N∑
i=1

aiϕni
(n1) −

N∑
j=1

cjξnj−1
(n1) = 1/R (31)

Again, write:

S3 =

 ϕn̂1(n1) ϕn̂2(n1) ... ϕn̂N
(n1) −ξn̂0(n1) −ξn̂1(n1) ... −ξn̂N−1(n1)

ϕn̂1(n2) ϕn̂2(n2) ... ϕn̂N
(n2) −ξn̂0(n2) −ξn̂1(n2) ... −ξn̂N−1(n2)

... ... ... ... ... ... ... ...
ϕn̂1(nm) ϕn̂2(nm) ... ϕn̂N

(nm) −ξn̂0(nm) −ξn̂1(nm) ... −ξn̂N−1(nm)


Now we have listed all the linear conditions that have to be imposed on
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u and v, it’s time to solve for the whole linear system:

Let A =

 S1

S2

S3

, c = (logR, logR, · · · , logR, 0, 0, · · · , 0, 1
R
, 1
R
, · · · , 1

R
)T .

Thus the linear system is just Ab = c and we can solve for the coefficient
vector b using Matlab’s least-squares dense solver.

If we let N = 20 and m = 60, here is the final solution of u in contour
plot (Fig. 8):

Figure 8: Contour plot for the solution u with N = 20 and m = 60

These graphs clearly indicate that the boundary data is well satisfied and
contours tend to circles as |x| → ∞.

In fact, if we plot the norm ||Ab− c|| (which indicates roughly within a
small constant L2 norm of the matching error on the boundary), we will get
an exponential convergence as shown in Fig. 9.

Finally, the c0 term in the solved vector b is an approximation to the con-
stant Robin coefficient α. We know that the true capacity is 0.590170299508
up to machine precision. According to the second definition of the capacity
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Figure 9: Least square error ||Ab − c|| against N showing exponential con-
vergence

C = e−α, we test how fast our solution converges to the true value in Fig. 10.
As expected, we get an exponential error convergence: i.e. we need roughly
3-4 basis functions per decimal digit achieved.

3 3D Laplace Equation

Mathematically, the capacitance of a unit cube S = [−1
2
, 1

2
]3 can be expressed

as the surface flux of solution field f satisfying the following Laplace Equation
in R3 with Dirichlet boundary data (Ω =: R3 \ S):

∆f = 0 in Ω (32)

f = 0 on ∂Ω (33)

f(x) ∼ 1 + o(1) as |x| → ∞ (34)

Assume n is the normal pointing away from S, into Ω. The capacitance
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Figure 10: log relative error of the capacity against N , showing exponential
convergence

of the unit cube is defined as

c(S) =

∫
∂Ω

∂f

∂n
ds. (35)

It is well known that the solution f satisfies the following asymptotic
condition [7, p.164]:

f(x) ∼ 1 +
a

r
+ o(

1

r
). (36)

Imagine a sphere E := {x : |x| < Re, x ∈ Ω} outside the cube. Using
the fact that f is a harmonic function and apply the Divergence Theorem
to ∇f , we know that the surface integral of ∂f/∂n vanishes on any closed
boundary. Choose the boundary E \ S, we have:

c(S) =

∫
∂Ω

∂f

∂n
ds =

∫
∂E

∂f

∂n
ds = 4πa, (37)

where a is the monopole coefficient in (36).
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To solve for f , we imagine a sphere with radius R centered at corner O of
the cube (Fig. 11). This is needed, as it is needed in the 2D case, to explicitly
write a set of basis functions adapted for the singularity of f at the corner.

Figure 11: Sphere centered at the corner of the cube

We define a conical domain to be the surface of a cone-shaped region with
base D ∈ S2, as shown in Fig. 12. We see that when Ω is the exterior of the
unit cube, it is locally identical (i.e. identical up to a certain radius) to a
conical domain about any corner.

Now, consider the spherical coordinate system (r, θ, ϕ) centered at corner
O (θ can be understood as the elevation, or the latitude, while ϕ is the
azimuthal, or the longitude). Denote S2 = {(R, θ, ϕ) : 0 ≤ θ ≤ π, 0 ≤ ϕ <
2π} the surface of the sphere. Let D be the sphere surface with 1/8 removed:
D = S2 \{(R, θ, ϕ) : −π/2 < ϕ < 0 and 0 < θ < π/2} = {(R, θ, ϕ) : 0 < ϕ <
3π/2 or θ > π/2}. Then, the corner domain we are interested in is a conical
domain with base D (Fig. 13).
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Figure 12: A conical domain with D on the sphere S2

4 The Eigenvalue Problem on the 7/8 Sphere

Next, we convert the three-dimensional Laplace Equation into the spherical
coordinate system (r, θ, ϕ) (centered at corner O) [7]:

∆f =
1

r2
· ∂
∂r

(r2 · ∂f
∂r

) +
1

r2 sin θ
· ∂
∂θ

(sin θ · ∂f
∂θ

) +
1

r2 sin2 θ
· ∂

2f

∂ϕ2
= 0 (38)

Note that the latter two terms in the right hand side of the above equation
(38) have no r component besides the common term 1/r2, so we can combine
these two terms and rewrite the equation as

∆f = ∆rf +
1

r2
∆S2f = 0, (39)

where ∆S2 stands for the Laplacian on the sphere S2: i.e. ∆S2f(θ, ϕ) =
1

sin θ
∂θ(sin θ∂θf) + 1

sin2 θ
∂2f
∂ϕ2 .

Since the boundary condition f = 0 does not change with respect to the
radial component in the conical domain (Fig. 12), we can separate the radial
part in f and assume

f(r, θ, ϕ) = R(r)T (θ, ϕ). (40)

Let us show that the radial part R(r) = rν is the correct separable solu-
tion. Since ∆f = Tr2∆rR +R∆S2T = 0, we have:

r2∆rR

R
+

∆S2T

T
= 0. (41)
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Figure 13: 7/8 of the sphere, showing coordinate system (θ, ϕ)

Hence r2∆rR
R

is a constant, let it be ν(ν+1). We have (r2R′)′ = ν(ν+1)R,
or

r2R′′ + 2rR′ − ν(ν + 1)R = 0. (42)

(42) is a second-order homogeneous Cauchy-Euler equation, it’s easy to
find that R = rν is the solution we need.

Now, plugging in R = rν , equation (39) becomes

∆f = T∆rr
ν + rν

1

r2
∆s2T = 0. (43)

Simplifying the equation (43), we obtain

−∆S2T = ν(ν + 1)T. (44)

As a result, we have to deal with a Dirichlet eigenvalue problem (EVP)
for T on D ⊂ S2, 7/8 of the sphere:

−∆S2T = ν(ν + 1)T in D (45)

T = 0 on ∂D (46)

The eigenvalues ν1, ν2, · · · will give us the power in the radial part of the
basis functions, while the corresponding T1, T2, · · · will give us the eigenfunc-
tions.
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5 Helmholtz Basis Functions on S2: Associ-

ated Legendre Functions

Rearrange the equation (44), we have a Helmholtz equation on S2:

(∆S2 + ν(ν + 1))T = 0. (47)

We will approximate T by a sum of basis functions
∑
ciξi(θ, ϕ), where

each ξ ∈ {ξi} is a separable basis function which can be computed analyti-
cally.

Aassume that ξ(θ, ϕ) = P (θ)Q(ϕ). Plugging into the equation (47), we
obtain:

PQ · ν(ν + 1) +
Q

sin θ
· d
dθ

(sin θ · dP
dθ

) +
P

sin2 θ
· d

2Q

dϕ2
= 0. (48)

In order to apply MPS to get an approximation of T , we need to find
basis functions on S2 which are particular solutions to the equation (47).
Rearrange the equation (48), we get:

sin2 θ · {ν(ν + 1) +
1

P sin θ
· d
dθ

(sin θ · dP
dθ

)}+
1

Q
· d

2Q

dϕ2
= 0 (49)

Thus 1
Q
· d2Q
dϕ2 is a constant: 1

Q
· d2Q
dϕ2 = −µ2. This gives us the solution

Q = e±iµϕ for the azimuthal function. Note that the dependence of Q will
be chosen to explicitly handle corner singularity at N .

On the other hand, we can also rearrange the equation (48) to separate
P:

1

sin θ
· d
dθ

(sin θ · dP
dθ

) + {ν(ν + 1)− µ2

sin2 θ
} · P = 0. (50)

Let x = cos θ, the above equation (50) can be rewritten as

(1− x2) · d
2P

dx2
− 2x · dP

dx
+ {ν(ν + 1)− µ2

1− x2
} · P = 0. (51)

The solution to the equation (51) when |x| < 1 is called the associated
Legendre function (on the cut), where the parameters µ and ν are called order
and degree alternatively [17]. We denote the solution P with parameters ν, µ
as P±µν (x).

As Olver explains in his paper [17], solutions which remain bounded as
θ → 0 are denoted P−µν (x) with µ > 0. So from now on, we will only refer
the solution P in the form P−µν (x).
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6 Calculation of the Associated Legendre Func-

tions

Our goal now is to find out the value for P−µν (x), where |x| < 1, µ > 0
and ν > 0. However, as this is a ‘special’ function, there are no explicit
and elementary forms to evaluate these functions, so we will have to use
approximation to the values. Though [17] only deals with the case when µ
is a non-negative integer and ν > −1

2
[17, 2.3], we will base our solution

on their methods and take them to get function evaluations when µ and ν
are both real numbers. Similar to what Olver and Smith have done in their
paper, first we need to give a good approximation when the parameters µ
and ν are relatively small: for example, when µ ∈ [0, 2) and ν ∈ [0, 2).

Instead of performing a series expansion as seen in [17, 4.1], this could
be done with a spectral quadrature of the Schlaefli integral [15, p.174] [2].
Unfortunately, when the parameter µ is getting larger, this method will take
longer computing time and refuse to reach convergence. In Fig. 15, we can
see how the computing time change with µ:

Figure 14: Computing time of P−µν (0.35) with ν = 3.1 and increasing µ

In order to obtain the values for the associated Legendre functions on
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the full domain, we have to further apply recurrence relations between the
functions with varying orders and degrees.

Olver and Smith’s paper has provided us with two recursion formulas:
ν-wise Recursion Formula [17, 3.1]:

(ν + µ+ 1) · P−µν+1(x)− (2ν + 1)x · P−µν (x) + (ν − µ) · P−µν−1(x) = 0 (52)

µ-wise Recursion Formula [17, 3.3]:

(ν−µ)(ν+µ+1) ·P−(µ+1)
ν (x)−2µx(1−x2)−

1
2 ·P−µν (x)+P−(µ−1)

ν (x) = 0 (53)

According to [17], when x ≥ 0, recurring P−µν (x) by the increasing ν
direction or the decreasing µ direction is both stable. The latter means, we
could start with an arbitrary initial condition at high enough µ and recur
down suggested by Miller’s method in [18, ch.6].

Hence, our strategy will be illustrated in the following step:
(1) Using the ν-wise recursion formula (52), we can get the value for

P−µν (x), where µ ∈ [0, 1) and ν > 2 as we know how to get the initial
values P−µνs

(x) and P−µνs+1(x), here νs stands for the fractional part of ν, or
{ν} = ν − bνc (Fig. 15).

(2) Next we calculate P−µν (x) in the case when µ > 1 and ν > 0:
Let µs = µ − bµc ∈ [0, 1), we already know from (1) how to calcu-

late P−µs
ν (x) =: P1. Now, we start at order µH and arbitrary initial values

P−µH
ν (x) = 0, P

−(µH−1)
ν (x) = 1 and then recur downward using the µ-wise

Recursion Formula (53).
During the process, we record values of P−µν (x) =: P0 and P−µs

ν (x) =: P2.
Because P2 is a scaled version of P1 (we start the recursion with arbitrary
initial values), the correct value for P−µν (x) should be given by P0P1/P2. This
is illustrated in Fig. 16.

We validated the above method against Maple’s evaluation of P−µν (x),
which applies for all real valued x, µ and ν. However, we found that this
downwards µ-wise recurrence does not appear to couple into the correct solu-
tion P−µν (x) when x is less than 0 or positive but close to 0, even though this
recurrence direction should be stable (for x > 0.2, say, it works to machine
precision). This is because if we place x = 0 into the equation (52), the
recurrence is no longer a second-order difference equation. In consequence,
Miller’s algorithm will not work since recurrence is merely neutrally stable
in either direction: i.e. we cannot begin at arbitrary initial values and recur
downwards expecting that one solution will die out. For similar reasons, this
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Figure 15: Use of ν-wise recurrence relation to evaluate associated Legendre
function at arbitrary ν for small µ. Stable direction is shown.

problem also applies when x is near 0 [16]. Note that the result provided
by Maple has a phase difference of (−1)µ/2 relative to the definitions used
above [1, 17]. Table 2 shows the comparison of our result for x = 0.69 against
phase-adjusted output from Maple. Our result matches Maple’s result up to
15 digits.

From now on, we shall use Maple’s solution since we find no other way
to handle the case when x is negative or small and positive. However, we
believe that our recurrence-based methods would ultimately be faster when
chains of µ values at fixed (x, ν) are required.

Table 2: A Comparison of Results

Recursion/Miller Alg. Adjusted Maple Output

P−1.3
1.7 (0.69) 0.202044599910812 0.20204459991081169
P−1.3

17.1 (0.69) 0.002391703860784 0.00239170386078405
P−15.8

17.1 (0.69) 0.5443728216591026× 10−20 0.54437282165910212× 10−20
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Figure 16: Use of ν-wise and µ-wise recurrence relations to evaluate associ-
ated Legendre function at arbitrary ν, µ. Stable directions are shown.

7 Geometry and Choice of Order for the Ba-

sis Function

When S2 is viewed from directly above corner O, we have a picture that looks
like Fig. 17. From the discussion of Sec. 5, each basis function will have the
form:

uµ,ν(θ, ϕ) = P−µν (cos θ) sin(µϕ), (54)

where ν is arbitrary and relates to the radial power.
Note that we are not interested in finding every eigenmode Tj of D ⊂ S2.

Instead, we will look for the ones with the high degree of symmetry that the
BVP solution f must itself possess. To maintain the even symmetry about
ϕ = 3π/4, we require that: sin(3π

2
µ) = 0, which gives µ = 2(2n−1)

3
= 4n−2

3
for

positive integer n = 1, 2, 3, · · · .
Thus, the basis functions are:

Un(ν; θ, ϕ) = P
− 4n−2

3
ν (cos θ) · sin(

4n− 2

3
ϕ) (55)

To visualize these basis functions, we can plot them on the sphere S2,
which is shown in Fig. 18.
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Figure 17: Top view on N pole of sphere

8 MPS on S2 and Testing the Spherical Eigen-

mode Problem with Dirichlet BC

Due to the geometrical symmetry, we only need to focus on 1/6 of D, where D
is 7/8 of the sphere S2. Before we move on to matching the boundaries with
Neumann BC, we first test the MPS by finding eigenmodes with Dirichlet
BC on ∂D and Γ with odd symmetry about Γ and even symmetry about L
on 1/3 of D, i.e. the shaded region in Fig. 19.

By picking the basis functions we select in the previous section, Dirichlet
BC on 1/6 of the spherical triangle and the even symmetry is kept. Now, we
have to choose a set of nodes along the geodesic Γ (BC=0 on Γ). We do so
by finding a Gaussian quadrature for ϕ nodes in [0, 3π/4] and calculating the
corresponding θ values (see Appendix A). Then, for a fixed ν, we construct
matrix A of size N×m, where the n-th row of A represents the basis function
Un(ν) evaluated at each (θ, ϕ) nodes on the geodesic Γ (i.e. we select m
nodes).

Next, we construct matrix B the same size of A, but with basis functions
evaluated at random interior points in 1/6 of D. To get the random interior
points so we still use the Gaussian quadrature for ϕ nodes in [0, 3π/4], but
for each of the ϕ node, we choose a random θ value that is inside the region.
Thus, for a fixed ν, the n-th row of matrix B will be the basis function Un(ν)
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Figure 18: Color plot of basis function uµ,ν(θ, ϕ) on S2 for µ=2.53, ν=9.3

evaluated at these random (θ, ϕ) nodes.
For each ν, we can calculate the minimum generalized singular value

t(ν) := min
u∈ span {ξi}

||u||L2(∂D)

||u||L2(D)
from the Generalized Singular Value Decomposi-

tion (GSVD) for matrix A and B [4] [2]. Fig. 20 shows t(ν) against ν for
ν ∈ [1, 10] when N = 15, m = 20.

The eigenvalues we are looking for are those ν values in Fig. 20 that locally
minimizes t(ν). For example, the first five eigenvalues are approximately as
follows: ν1 = 1.71, ν2 = 2.99, ν3 = 4.27, ν4 = 4.55, ν5 = 5.49.

To get more accuracy, we use Matlab’s minimum locator fminbnd which
uses golden section search and parabolic interpolation [9]. Now we investigate
if increasing N (number of basis functions with same ν) or m (number of
nodes) will affect the accurate digits. Table 3 and Table 4 display the outputs
for varying m and N .

Table 3: Eigenvalue ν5 with N = 15 and Increasing m

m = 20 m = 25 m = 30 m = 35
ν5 5.48791048513 5.48791054690 5.48791006353 5.48790995245
t(ν) 0.00055712 0.000586185 0.000647697 0.000683122

As we can see from Table 3, changing the number of nodes does not give
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Figure 19: 1/6 of D with Dirichlet BC, front view and back view

Table 4: Eigenvalue ν5 with m = 50 and Increasing N

N = 10 N = 20 N = 30 N = 40
ν5 5.48792245360 5.48791235986 5.48791211835 5.48791208662
t(ν) 0.00217126 0.000350741 0.000117004 3.01014e-08

us more accurate digits for ν5. However, as we can see from Table 4, the
value of ν5 slowly converges to 5 digits of accuracy (i.e. ν5 = 5.48791) when
N increases to 50. The slow convergence we observed here is mainly due
to the singularity about point B in Fig. 19. Another reason could be noise,
which we show by zooming the interval around ν5 in Fig. 21.

To visualize the eigenfunction which is a linear combination of the basis
functions with fixed eigenvalue ν5, we can plot it on the sphere along with L
and geodesic Γ as shown in Fig. 22, which clearly indicates that the eigen-
function satisfies the Dirichlet boundary and preserves even symmetry about
L.

Similarly, we can calculate the first four eigenvalues to 5 digits accuracy
(listed in Table 5). In Fig. 23 we visualize the eigenfunctions for these eigen-
values.
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Figure 20: Min generalized singular value for A and B at different ν’s

Table 5: First Five Eigenvalues to 5 Digits Accuracy

ν1 ν2 ν3 ν4 ν5

5 digits 1.71262 2.99330 4.27361 4.54764 5.48791

9 The Spherical Eigenmode Problem with Neu-

mann BC

Recall that to solve the eigenvalue problem mentioned in Section 4 with MPS,
we need our basis functions to be even symmetric about both L and Γ in
Fig. 19. The even symmetry about Γ requires that Un = 0 at node P on
geodesic Γ, as shown in Fig. 24. As a result, we have an eigenvalue problem
with Neumann boundary conditions. Appendix A gives the detail about how
to choose the nodes along Γ and how to calculate the normal derivative of
U at each of these nodes. Again, we construct matrix A of size N ×m, but
now the n-th row of A represents the normal derivative of the basis function
Un(ν) evaluated at each (θ, ϕ) nodes on the geodesic Γ.

Similar to what we have done in the previous section, we perform GSVD
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Figure 21: Value of t(ν) nearby ν5 showing noise, N = 15, m = 20

on matrix A and B. However in Fig. 25, we find that t(ν) does not behave
as what we have expected.

The failure of using GSVD here is due to the singularity at intersection
B in Fig. 19. One way to handle this singularity is to put a cap at the back
of sphere and solve for two separate set of basis functions (similar to what
we have done in Section 2). Then, we will have to match the values and
normal derivatives of these basis functions on the corresponding boundaries.
We expect that this will fully solve the singularity as well as give us more
accurate digits in the calculation of the eigenvalues.

10 Conclusion and Future Work

In this paper we have discussed the application of method of particular solu-
tions (MPS) with domain decomposition technique to the BVP, which aims
to deal with the corner singularity of the cube. We have demonstrated the
method in calculating the capacity of the 2D unit square and have obtained
the correct value of the capacity up to 15 digits of accuracy. We find that our
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Figure 22: Eigenfunction on S2 for ν5=5.48791, N = 25, m = 40. Nodes
along geodesic Γ is also shown.

result has an exponential error convergence rate of around 3 basis functions
per accurate digit. For the 3D capacitance problem, we notice that solving
the Laplace PDE involves solving a Dirichlet boundary eigenvalue problem
on 7/8 of a sphere and finding the needed basis functions based at the corner
of the cube. Fast algorithms for evaluating the required associated Legendre
function are also discussed.

For the related Dirichlet eigenvalue problem, we got 5 digits accuracy for
the eigenvalues on the sphere. In the future, we hope to solve the spherical
eigenmode problem with Neumann boundary conditions with high accuracy.
A possible approach to deal with the singularity at B in Fig. 19 is to place
an imaginary cap at the back of the sphere and then separate and match the
solutions as we did in the 2D capacity problem.
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Figure 23: Dirichlet Eigenfunction on S2, N = 25, m = 40
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Figure 24: Matching boundary on the sphere

A Calculation of the Normal Derivatives

In this appendix we will explain how to compute normal derivatives of basis
functions on the geodesic Γ.

(1) (θ, ϕ) coordinates of the surface normals
To pick points along the geodesic Γ more conveniently, we will choose a

Gaussian quadrature on [0, 3π/4] as the ϕ nodes, and we need to calculate
the corresponding θ values (Fig. 26).

According to the spherical law of cosines,

cos θ = cos θ0·cos s+sin θ0·sin s·cos 90◦ =

√
2

2
cos s⇒ cos s =

√
2 cos θ. (56)

On the other hand, according to the sine formula for spherical trigonom-
etry,

sin θ

sin 90◦
=

sin s

sinϕ
⇒ sin s = sinϕ sin θ. (57)
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Figure 25: min generalized singular value for A and B at different ν’s with
Neumann BC

With (56) and (57), we have:

2 cos2 θ + sin2 θ sin2 ϕ = 1 (58)

This yields:

cos2 θ =
1− sin2 ϕ

1 + cos2 ϕ
(59)

We notice that when ϕ = π
2
, we also have θ = π

2
, as a result it is easy to

see that cos θ and cosϕ will have the same sign. Taking the square root on
both side of (59), we obtain:

cos θ =
cosϕ√

1 + cos2 ϕ
, or θ = cos−1(

cosϕ√
1 + cos2 ϕ

) (60)

(2) Derivative of the associated Legendre function
We also can deduct the derivative of the associated Legendre function by

recursion once we know how to evaluate the associated Legendre functions
at given points.

32



Figure 26: spherical triangle

The recursion is given by the following [1, 8.5.4]:

dP−µν (x)

dx
=

νx

x2 − 1
· P−µν (x)− ν − µ

x2 − 1
· P−µν−1(x), where |x| < 1 (61)

(3) Calculating the normals along the geodesic
By the definition of the normal derivative,

∂ui
∂n

= − cos β · ∂ui
∂θ

+ sin β · ∂ui
∂ϕ
· 1

sin θ
(62)

Here ui = P−µi
ν (cos θ) · sin(µiϕ) = Pi(cos θ) · sin(µiϕ).

Replace cos θ by x, from (61) we already know how to calculate dPi

dx
, so

we can write

∂ui
∂n

= − cos β · dPi
dx
· dx
dθ
· sin(µiϕ) + sin β · ∂ui

∂ϕ
· 1

sin θ
. (63)

Therefore,

∂ui
∂n

= cos β · sin θ · dPi
dx
· sin(µiϕ) +

sin β

sin θ
· P−µi

ν (x) · µi · cos(µiϕ) (64)

Finally, we need to calculate β in terms of θ. Again, by the sine formula
for spherical trigonometry:

sin π
2

sin θ
=

sin(π
2
− β)

sin π
4

=
√

2 cos β (65)
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This implies:

cos β =

√
2

2
· 1

sin θ
, or β = cos1(

√
2

2
· 1

sin θ
) (66)
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