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Fast Solvers for Highly Oscillatory
Problems

Alex Barnett

Sound, light, and other electromagnetic waves such
as microwaves surround us, enabling communication
and imaging technologies both ancient and modern.
Elastic waves bounce through the earth’s crust, en-
abling us to “see” thousands of kilometers deep. Such
propagating waves are highly oscillatory in time and
space, and may scatter off obstacles or get trapped
in resonant cavities. Accurate numerical modeling
of these important phenomena is slow even on large
modern computers, because linear systems involving
huge numbers of unknowns must be solved. However,
recent progress in designing algorithms has allowed
much more rapid solutions.

1 Time harmonic waves in one and more dimensions

We are all familiar with the waves that spread out in growing circles when a
raindrop hits a puddle, or a stone is thrown into a pond. This is an example
of a wave equation in two dimensions. If z and y are Cartesian coordinates in
the horizontal plane, then the height U(z,y,t) of the water surface varies in
space (z,y) and time ¢. In fact U obeys a partial differential equation (PDE)

There are many good books on PDEs; a basic one is [4] and a more mathematical one [7].
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Figure 1: Simple traveling time harmonic wave in 1D with frequency w/2m = 5,
and constant wave speed ¢(x) = 1, hence constant wavelength \ =
2w /k = 0.2. The left shows U(z,t) = Re[e?**e~%!] as a 3D height
plot in space and time. Note that the crests all move to the right
with unit speed. The right graphs the real and imaginary parts of
the complex-valued spatial function u(z) = e?**.

relating its space and time derivatives. Let’s start with a simpler case: waves
in one dimension (1D). You can easily observe these by plucking a long elastic
string such as a washing line, and watching the waves bounce back and forth
along it. From Newton’s 2nd law it is easy to derive that the displacement
U(z,t), where x is the coordinate along the string, obeys a “hyperbolic” PDE
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=0, (1D wave equation) (1)

where ¢(x) is the local speed of waves at the point x, which may vary with
position (imagine the washing line is heavy in some places, slowing down the
waves, but light in others). To summarize (1), “acceleration is proportional to
local spatial curvature.” This 1D PDE is a decent model for the majority of
musical instruments [5], including strings, guitars, wind, brass, and pianos.

Often one cares about a single frequency of wave: this is called “time har-
monic,” and means that everything vibrates with the same sinusoidal function
of time. Imagine continuously vibrating the washing line, in which case its
response would settle into a steadily repeating pattern. A general sinusoidal
function of time with frequency f (i.e. repetition period 1/f) can be written
acos(wt) 4+ bsin(wt) for some constants a and b, where w = 27 f. Includ-
ing variation in space we could write U(x,t) = uy(x) cos(wt) + ug(z) sin(wt).

For a fascinating reason—the irregular spacing of their resonant frequencies—most percus-
ston instruments instead involve either the 2D wave equation, or wave equations for bending
beams or plates (which are 4th order).



Mathematicians find it simpler to rewrite this using complex numbers,
U(z,t) = Re[u(z)e™ 1] , (definition of time harmonic solution) (2)

where you can check that u(z) = u(x) —iua(z). It is now easy to substitute (2)
into (1) to give the differential equation satisfied by this complex function w,

u”(x) + k(z)?u(z) = 0 (1D Helmbholtz equation) (3)

where the known function k(x) = w/c(x) is called the wavenumber. Notice
that u is a function of only one variable, so is easier to solve for than U which
depended on two. Fig. 1 shows an example U and w. Also notice that u(x) =0
is a (very boring!) solution to (3). In practice one adds a “source term” g which
specifies the strength of vibrational driving at each point in space, so

u’ 4 k(x)?u = g(x) (1D Helmholtz equation with source) ,  (4)

or one sends in waves from far away so that they scatter or reflect. Finally,
one usually cares only about a bounded region of space, such as an interval
Q = (0,L); on its endpoints one needs “boundary conditions” which enforce
that waves are only radiating away from the region. Another type of boundary
condition—common for washing lines—is that u is pinned down to zero at some
point; this is called a Dirichlet condition.

Many more wave phenomena occur in 2D (surface waves) or in 3D (acoustic,
electromagnetic, and elastic waves). These are much harder to simulate in the
computer than in 1D, essentially because of all the different directions waves
can travel. The generalization of (3) is then written

Au+k(x)?u = g(x) (Helmholtz equation with source)  (5)

where x = (z,y) in 2D, or (z,y,2) in 3D. Here, A = 8?/92? 4+ 9% /0y? in 2D, or
0?/0x2 + 0%/0y? + 0?/02? in 3D, and is called the Laplacian operator. (5) is
an “elliptic” PDE. To create a mathematically well-posed problem, boundary or
radiation conditions must also be applied on a curve or surface enclosing €, the
region of interest. Fig. 2 shows example scattering and source problems in 2D.

2 The highly oscillatory case, and real world applications

When might we care about solving the above Helmholtz equations? A key
property of a time harmonic wave is its wavelength (repetition distance) A\ =
27 /k, where recall k is the wavenumber. Larger k (shorter A\) means more
rapid oscillations in space. Remember that we are immersed in a bath of waves:
for instance everything we hear is governed by sound waves of wavelengths A
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Figure 2: Highly oscillatory problems in 2D. Left: numerical computation
of scattering of a “plane wave” (coming from about the 10 o’clock
direction) from the unit square with Dirichlet boundary condition
(k = 50 is constant in space), with error ¢ = 1071%, using the method
of [1]. Note that the waves do not cast a hard shadow; they “diffract”
around the corners. Right: numerical finite-difference computation
of solution where ¢ is a point source in a model for seismic wave
propagation (k(x) varies in space, causing bending and reflection of
waves), from [9]. In both cases Re[u] is plotted using a color scale
where red is positive, blue is negative, and yellow or green is around
Zero.

between about 0.015 m and 15 m, and everything we see is light of wavelengths
between 4 x 1077 m and 7 x 1077 m. Imagine that you are an engineer who has
been given the 3D geometry of a (small) concert hall € of typical dimension
L =15 m, and asked to predict how sound emitted by the performers will be
heard by each audience member (this will involve various reflecting boundary
conditions due to the materials of the walls). In this case, since the air is close
to uniform, ¢(x), and hence k(z), is constant. But the ratio of the shortest
wavelength we can hear (A ~ 0.015 m) to the hall size is L/A ~ 103, a big
number. This regime where L/\ > 1 is called “highly oscillatory.” We will see
below why solving such a problem accurately is very challenging, even on a big
computer.

We’ve just seen an application of highly oscillatory waves in architectural
acoustics. What others are there?(3! Geology is studied, or oil searched for,
using seismic (3D elastic) waves emitted by earthquakes or by special heavy
vibrator trucks.2 Here k(x) varies in unknown ways, so in fact the goal is
to reconstruct k(x) given only a large number of reflected waves detected on

In some of these examples the Helmholtz equation must be replaced by the related Maxwell
or elastodynamic equations.
really!
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Figure 3: Left: Seismic wave solution u in a 3D domain (acoustic approxima-
tion), where g is a point source with frequency f of 6 cycles/second.
The domain is 20 km x 20 km x 4.7 km. Red is positive and blue
negative. Right: setup for 1D finite difference approximation in [0, L].
Each number u; represents u at a gridpoint.

the earth’s surface. This is called an inverse problem, and is even harder than
solving the Helmholtz or elastic equation itself (the “forward problem”). Figs. 2
and 3 include simulated seismic wave solutions. Given an aircraft, engineers
want to know the directional pattern that radar (electromagnetic waves in the
0.01 m to 1 m range) will scatter or reflect from it, or how to design its shape
to minimize reflection or sound pollution.

Whales communicate using underwater sound waves that propagate hundreds
of kilometers through a depth-dependent k(x). The human body is safely imaged
by ultrasound reflection (another inverse problem), yet to get the best pictures
one needs accurate models of wave propagation in the varying tissues. Light
pulses are guided and switched at high speeds in microscopic devices that enable
the internet backbone, and may one day enable ultra-fast optical computing.
The design of more efficient thin-film solar cells for renewable energy requires
modeling light waves in complex geometries (dielectrics like glass which have a
different k from air). Finally, at the microscopic scale, all matter is a quantum
wave, described by Schrodinger’s equation (a multi-dimensional complex-valued
version of (1) but with a single time derivative).

This range of applications shows the importance of efficient numerical meth-
ods for solving highly oscillatory wave problems.

3 Numerical approximate solutions

The above PDEs involve mostly continuous functions: to describe them ezactly
would need their values at an infinite number of points! Of course, computers
can handle only a finite, limited, number of real numbers. An art in numerical
analysis is to approximate u only to some desired accuracy €, using a reasonably
small number N of discrete unknowns—this is called “discretization.” This



often involves relying on the fact that u is smooth. This can create a more
efficient algorithm, thus faster computer solution time. Sometimes it is also
possible to prove that the error is no larger than some e.

We illustrate this with a “finite difference” discretization of (4) (see [8] for
more detail). Let the values u;, for j =1,..., N, represent u(x;) at points x;
on a regular grid of spacing h = L/(N — 1), as in the right panel of Fig. 3. The
simplest way to approximate the 2nd derivative in (4) is then

u"(z) ~ h ™ (uj1 — 2uj + ujy1) (3-point stencil formula)  (6)

Enforcing (4) at each grid point and using (6), we get the linear system Au = g,
where A is an N x N matrix with diagonal entries k(z;) + 2h~2, entries —h 2
adjacent to the diagonal, and zero elsewhere, g is the vector with entries g(z;),
and u the unknown vector with entries u;. Since A has most entries zero it is
called sparse. There are direct solution methods for this “tridiagonal” sparse
structure that requires only O(N) arithmetic operations.® This is much faster
than the O(N?3) operations usually needed for Gaussian elimination.

How accurate is this scheme? For simplicity consider a source-free region
where k(z)k is constant, then locally let’s take u(z) = €™ [l We know (e**)" =
—k2et*® but (6) gives instead, using the Taylor series for cosine,

eilh=he _ gethe 4 eilhth)e  9(coskh — 1) ;. 12 ik (kh)?
B = [ e = —k"e (1— B >

The second term —(kh)?/12 is thus the relative error of this discretization, so
it is clear that kh < 1 is needed for high accuracy. In other words there must
be several grid points per wavelength, meaning N > L/X. A rigorous error
analysis is quite tricky, but shows that this scheme must even have a growing
number of grid points per wavelength to maintain the same accuracy as k grows
(the “pollution” effect).

People have invented much better ways to numerically solve the 1D Helmholtz
equation, but the point is that the above method easily generalizes to 2D and 3D,
giving the commonly used 5-point and 7-point stencils. The resulting matrices
are sparse but not tridiagonal, so are harder to solve. In 2D, N > (L/))?, and
a direct solution takes O(N3/2). In 3D, N > (L/)\)3, and a direct solution
takes O(N?). Returning to the concert hall problem, where L/\ = 103, we
see that at least a billion unknowns would be needed, and 10'® arithmetic
operations (which would take a year on a desktop computer!) Fortunately,
mathematicians and engineers have developed improved solution methods that

The notation O(N) means that there are positive constants C' and Ny such that, for all
N > Ny, the number of operations never exceeds C'N.
6] In fact u is a linear combination of this and its conjugate. The argument still applies.



are more efficient. Incidentally, this problem size (N ~ 10%) is about the largest
that can be currently solved in 3D variable-k(x) seismic applications.

4 Modern progress and open questions

We saw above that highly oscillatory problems can lead to massive linear systems
when discretized. The other standard discretization approach is called the finite
element method, and is useful when the geometry of the domain and/or the
k(x) variations are complicated. There are plently of iterative methods to solve
such systems that rely only on the ability to compute Ax given a vector Xx.
However, the high frequency k makes these methods slow to converge. Recent
progress has been made by combining direct solutions in sub-regions then using
iterative methods to couple together these regions (for instance [9]), or by
using so-called “sweeping preconditioners” that exploit the fact that in many
applications waves do not reflect very strongly from the medium [3]. Another
direction is to discretize with a higher order of accuracy, meaning e = O(h?) for
some large p (with &k held constant the above finite difference stencils give only
p = 2). The stencils are bigger and the linear systems trickier, but the accuracy
higher. Pushing this to very large p leads to so-called spectral methods, or
spectral collocation.

If k(x) is piecewise constant (as in the concert hall example, or when light
traveling in air hits glass), we know analytically how waves propagate each
constant-k region. For example, a point source for the 3D Helmholtz equation
creates a “Green’s function” solution u = e?*" /r, where r is the distance from
the source. Armed with this, one can use potential theory to rephrase the
problem using unknowns (grid points) living only on the boundaries of such
regions. The result is an integral equation [7] with kernel involving the Green’s
function. The advantage is that the IV needed is now “one dimension lower,” for
instance only (L/A)? in 3D. At large k (short wavelengths) this can be a huge
reduction. Careful design leads to a well-conditioned linear system for which
iterative methods converge rapidly. This contrasts with the above direct PDE
discretizations, which are always ill-conditioned. However, the N x N linear
system is now dense rather than sparse, so computing Ax from x would naively
take O(N?) work. Amazingly, by clever hierarchical use of the fact that the
interaction between distant clusters of points using the Green’s function is well
approximated by a low rank matrix, one may reduce this work to only O(N),
or O(Nlog N). This is called the “fast multipole method” [6, 2]. The extension
of such ideas to fast direct and “butterfly” solvers for integral equations is an
active area of research.

Finally, when L/ is huge (e.g. > 10%) one can often get a decent solution
using a ray optics approximation, or Keller’s geometric theory of diffraction.



This explains why for light waves (with A a million times shorter than for
sound waves), it is very easy to predict that in a concert hall you will see the
performers clearly, unless geometrically obstructed! Even at k = 50, reasonably
sharp geometric shadows are seen in the left panel of Fig. 2, although to get high
accuracy a full PDE solution would be needed. Thus, the numerically difficult
region is actually L/ “large but not extremely large”, often between 10 and 10%.
Numerical methods that combine ray asymptotics with PDE discretizations or
integral equations are an active area of research.

I end with a couple of open questions to think about that could revolutionize
the solution of high frequency wave problems:

1. What is the most efficient or sparse way to numerically represent oscillatory
solutions in 2D or 3D when k is constant? When k(x) varies?

2. How can distributed computer architectures best be used to solve huge wave
problems?

3. Is it generally believed that, when a wave is trapped in a resonant (reflective)
cavity, the complexity of the numerical problem is at least O(k?) in 2D, or
O(k%) in 3D. Can these bounds be beaten for highly oscillatory resonant
cavities?

Image credits

Fig. 2, right panel Ph.D thesis of Leo Zepeda-Nuniez, MIT, 2015.

Fig. 3, left panel Seismic Laboratory for Imaging and Modelling (SLIM), UBC,
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