
Joys and pitfalls of numerical computing

Alex H. Barnett1

10/14/21

FWAM Episode III — Revenge of the Sithngular Value Decomposition

1Center for Computational Mathematics, Flatiron Institute, Simons Foundation



Goals/outline

Crucial practical advice & good habits, examples, further reading

• how does accuracy improve with effort? rate of convergence

• finite-precision (“rounding error”) considerations

• what accuracy is reasonable to demand? conditioning of a problem

• did you mess up getting such accuracy? stability of an algorithm

Please ask questions∗ ∗ with finite time-frequency product ,

PS I will ask YOU questions ,



Goals/outline

Crucial practical advice & good habits, examples, further reading

• how does accuracy improve with effort? rate of convergence

• finite-precision (“rounding error”) considerations

• what accuracy is reasonable to demand? conditioning of a problem

• did you mess up getting such accuracy? stability of an algorithm

Please ask questions∗ ∗ with finite time-frequency product ,

PS I will ask YOU questions ,



Accuracy: how much to you need? have?

Usually care about relative error: ε := size of error of thing
size of thing =

|ycomputed−ytrue|
|ytrue|

eg 0.00123± 0.00001 is not “correct to 5 digits”, rather, 2 digits, rel. err. 10−2, ie 1% err.

Interesting things take a while to compute → is ε = 10−1 ok, or need 10−10 ?

In our line of work there is really only one graph that matters:

• useful to measure and/or understand this even for simple tasks

• is crucial for larger tasks! methods differ in graph shapes (rates)



Accuracy: how much to you need? have?

Usually care about relative error: ε := size of error of thing
size of thing =

|ycomputed−ytrue|
|ytrue|

eg 0.00123± 0.00001 is not “correct to 5 digits”, rather, 2 digits, rel. err. 10−2, ie 1% err.

Interesting things take a while to compute → is ε = 10−1 ok, or need 10−10 ?

In our line of work there is really only one graph that matters:

• useful to measure and/or understand this even for simple tasks

• is crucial for larger tasks! methods differ in graph shapes (rates)



Accuracy: how much to you need? have?

Usually care about relative error: ε := size of error of thing
size of thing =

|ycomputed−ytrue|
|ytrue|

eg 0.00123± 0.00001 is not “correct to 5 digits”, rather, 2 digits, rel. err. 10−2, ie 1% err.

Interesting things take a while to compute → is ε = 10−1 ok, or need 10−10 ?

In our line of work there is really only one graph that matters:

• useful to measure and/or understand this even for simple tasks

• is crucial for larger tasks! methods differ in graph shapes (rates)



Convergence of a computational routine/method

Often a routine has one (usually many) convergence parameters: “dials”

eg how many iterations you run an iterative method, resolution h = 1/N in discretization,

number of terms in summing a series, depth/width of a neural net, # of input data,

# independent samples you average, size of box (or # particles) in a random simulation,

. . . and convergence parameters of any sub-functions called inside your beast

Let’s simplify: 1 such param, call it N, with limN→∞ giving true answer

Defn. convergence of a method is ε(N): how rel. err. ε drops as N grows

+ =

Eg. say ε(N) = cN−2 (“2nd-order”), but complexity O(N3). Qu: cost for 1 extra digit?

Ans: ε→ ε/10 needs N →
√

10N, which needs effort mult. by 103/2 ≈ 32 times longer run

• some useful methods do not converge, eg asymptotic methods
(
√
π/2) erfc(x) :=

∫∞
x e−t2

dt = e−x2
(1/2x − 1/4x3 + . . . ) please don’t use N→∞ terms!



Convergence of a computational routine/method

Often a routine has one (usually many) convergence parameters: “dials”

eg how many iterations you run an iterative method, resolution h = 1/N in discretization,

number of terms in summing a series, depth/width of a neural net, # of input data,

# independent samples you average, size of box (or # particles) in a random simulation,

. . . and convergence parameters of any sub-functions called inside your beast

Let’s simplify: 1 such param, call it N, with limN→∞ giving true answer

Defn. convergence of a method is ε(N): how rel. err. ε drops as N grows

+ =

Eg. say ε(N) = cN−2 (“2nd-order”), but complexity O(N3). Qu: cost for 1 extra digit?

Ans: ε→ ε/10 needs N →
√

10N, which needs effort mult. by 103/2 ≈ 32 times longer run

• some useful methods do not converge, eg asymptotic methods
(
√
π/2) erfc(x) :=

∫∞
x e−t2

dt = e−x2
(1/2x − 1/4x3 + . . . ) please don’t use N→∞ terms!



Convergence of a computational routine/method

Often a routine has one (usually many) convergence parameters: “dials”

eg how many iterations you run an iterative method, resolution h = 1/N in discretization,

number of terms in summing a series, depth/width of a neural net, # of input data,

# independent samples you average, size of box (or # particles) in a random simulation,

. . . and convergence parameters of any sub-functions called inside your beast

Let’s simplify: 1 such param, call it N, with limN→∞ giving true answer

Defn. convergence of a method is ε(N): how rel. err. ε drops as N grows

+ =

Eg. say ε(N) = cN−2 (“2nd-order”), but complexity O(N3). Qu: cost for 1 extra digit?

Ans: ε→ ε/10 needs N →
√

10N, which needs effort mult. by 103/2 ≈ 32 times longer run

• some useful methods do not converge, eg asymptotic methods
(
√
π/2) erfc(x) :=

∫∞
x e−t2

dt = e−x2
(1/2x − 1/4x3 + . . . ) please don’t use N→∞ terms!



Convergence of a computational routine/method

Often a routine has one (usually many) convergence parameters: “dials”

eg how many iterations you run an iterative method, resolution h = 1/N in discretization,

number of terms in summing a series, depth/width of a neural net, # of input data,

# independent samples you average, size of box (or # particles) in a random simulation,

. . . and convergence parameters of any sub-functions called inside your beast

Let’s simplify: 1 such param, call it N, with limN→∞ giving true answer

Defn. convergence of a method is ε(N): how rel. err. ε drops as N grows

+ =

Eg. say ε(N) = cN−2 (“2nd-order”), but complexity O(N3). Qu: cost for 1 extra digit?

Ans: ε→ ε/10 needs N →
√

10N, which needs effort mult. by 103/2 ≈ 32 times longer run

• some useful methods do not converge, eg asymptotic methods
(
√
π/2) erfc(x) :=

∫∞
x e−t2

dt = e−x2
(1/2x − 1/4x3 + . . . ) please don’t use N→∞ terms!



Convergence of a computational routine/method

Often a routine has one (usually many) convergence parameters: “dials”

eg how many iterations you run an iterative method, resolution h = 1/N in discretization,

number of terms in summing a series, depth/width of a neural net, # of input data,

# independent samples you average, size of box (or # particles) in a random simulation,

. . . and convergence parameters of any sub-functions called inside your beast

Let’s simplify: 1 such param, call it N, with limN→∞ giving true answer

Defn. convergence of a method is ε(N): how rel. err. ε drops as N grows

+ =

Eg. say ε(N) = cN−2 (“2nd-order”), but complexity O(N3). Qu: cost for 1 extra digit?

Ans: ε→ ε/10 needs N →
√

10N, which needs effort mult. by 103/2 ≈ 32 times longer run

• some useful methods do not converge, eg asymptotic methods
(
√
π/2) erfc(x) :=

∫∞
x e−t2

dt = e−x2
(1/2x − 1/4x3 + . . . ) please don’t use N→∞ terms!



Convergence of a computational routine/method

Often a routine has one (usually many) convergence parameters: “dials”

eg how many iterations you run an iterative method, resolution h = 1/N in discretization,

number of terms in summing a series, depth/width of a neural net, # of input data,

# independent samples you average, size of box (or # particles) in a random simulation,

. . . and convergence parameters of any sub-functions called inside your beast

Let’s simplify: 1 such param, call it N, with limN→∞ giving true answer

Defn. convergence of a method is ε(N): how rel. err. ε drops as N grows

+ =

Eg. say ε(N) = cN−2 (“2nd-order”), but complexity O(N3). Qu: cost for 1 extra digit?

Ans: ε→ ε/10 needs N →
√

10N,

which needs effort mult. by 103/2 ≈ 32 times longer run

• some useful methods do not converge, eg asymptotic methods
(
√
π/2) erfc(x) :=

∫∞
x e−t2

dt = e−x2
(1/2x − 1/4x3 + . . . ) please don’t use N→∞ terms!



Convergence of a computational routine/method

Often a routine has one (usually many) convergence parameters: “dials”

eg how many iterations you run an iterative method, resolution h = 1/N in discretization,

number of terms in summing a series, depth/width of a neural net, # of input data,

# independent samples you average, size of box (or # particles) in a random simulation,

. . . and convergence parameters of any sub-functions called inside your beast

Let’s simplify: 1 such param, call it N, with limN→∞ giving true answer

Defn. convergence of a method is ε(N): how rel. err. ε drops as N grows

+ =

Eg. say ε(N) = cN−2 (“2nd-order”), but complexity O(N3). Qu: cost for 1 extra digit?

Ans: ε→ ε/10 needs N →
√

10N, which needs effort mult. by 103/2 ≈ 32 times longer run

• some useful methods do not converge, eg asymptotic methods
(
√
π/2) erfc(x) :=

∫∞
x e−t2

dt = e−x2
(1/2x − 1/4x3 + . . . ) please don’t use N→∞ terms!



Convergence of a computational routine/method

Often a routine has one (usually many) convergence parameters: “dials”

eg how many iterations you run an iterative method, resolution h = 1/N in discretization,

number of terms in summing a series, depth/width of a neural net, # of input data,

# independent samples you average, size of box (or # particles) in a random simulation,

. . . and convergence parameters of any sub-functions called inside your beast

Let’s simplify: 1 such param, call it N, with limN→∞ giving true answer

Defn. convergence of a method is ε(N): how rel. err. ε drops as N grows

+ =

Eg. say ε(N) = cN−2 (“2nd-order”), but complexity O(N3). Qu: cost for 1 extra digit?

Ans: ε→ ε/10 needs N →
√

10N, which needs effort mult. by 103/2 ≈ 32 times longer run

• some useful methods do not converge, eg asymptotic methods
(
√
π/2) erfc(x) :=

∫∞
x e−t2

dt = e−x2
(1/2x − 1/4x3 + . . . ) please don’t use N→∞ terms!



Convergence ε(N): EXAMPLE I (series)

Toy example: goal compute y := 1 + 1
4 + 1

9 + · · · =
∑∞

k=1 k
−2

function y = truncsum(N)

y = 0;

for k=1:N

y = y + 1/k^2;

end

Expected accuracy ε(N) ?

Quick to experiment with your func:

N yN
102 1.63498390018489
103 1.64393456668156
104 1.64483407184807
105 1.64492406689824
106 1.64493306684877
107 1.64493396684726
108 1.64493405783458

• “self-convergence” to unknown ytrue digits “freeze”

• Rate? Use your best y as ytrue,
plot errors relative to it.

see ε(N) ∼ cN−1 1st-order, algebraic → use loglog plot:

math: rigorous tail bnds ε(N) ≤
∫∞
N k−2dk = N−1

rigor unusual; but think, read, measure the rate, compare!

• slow! accelerate? Richardson (etc) extrapolation



Convergence ε(N): EXAMPLE I (series)

Toy example: goal compute y := 1 + 1
4 + 1

9 + · · · =
∑∞

k=1 k
−2

function y = truncsum(N)

y = 0;

for k=1:N

y = y + 1/k^2;

end

Expected accuracy ε(N) ?
Quick to experiment with your func:

N yN
102 1.63498390018489
103 1.64393456668156
104 1.64483407184807
105 1.64492406689824
106 1.64493306684877
107 1.64493396684726
108 1.64493405783458

• “self-convergence” to unknown ytrue digits “freeze”

• Rate? Use your best y as ytrue,
plot errors relative to it.

see ε(N) ∼ cN−1 1st-order, algebraic → use loglog plot:

math: rigorous tail bnds ε(N) ≤
∫∞
N k−2dk = N−1

rigor unusual; but think, read, measure the rate, compare!

• slow! accelerate? Richardson (etc) extrapolation



Convergence ε(N): EXAMPLE I (series)

Toy example: goal compute y := 1 + 1
4 + 1

9 + · · · =
∑∞

k=1 k
−2

function y = truncsum(N)

y = 0;

for k=1:N

y = y + 1/k^2;

end

Expected accuracy ε(N) ?
Quick to experiment with your func:

N yN
102 1.63498390018489
103 1.64393456668156
104 1.64483407184807
105 1.64492406689824
106 1.64493306684877
107 1.64493396684726
108 1.64493405783458

• “self-convergence” to unknown ytrue digits “freeze”

• Rate? Use your best y as ytrue,
plot errors relative to it.

see ε(N) ∼ cN−1 1st-order, algebraic → use loglog plot:

math: rigorous tail bnds ε(N) ≤
∫∞
N k−2dk = N−1

rigor unusual; but think, read, measure the rate, compare!

• slow! accelerate? Richardson (etc) extrapolation



Convergence: EXAMPLE II (toy big PCA)

Given M × N dense matrix A big, eg M = 40000 genes, N = 20000 samples, 7 GB

Seek σ1(A) =
√
λmax(ATA), and assoc. singular vec. v1 1st cmpnt, PCA

Simple method: power iteration on ATA takes 14 s; svd(A) would be ∼ 1 hr

v = randn(N,1); v = v/norm(v);

for k=1:30

v = A’*(A*v);

vnrm = norm(v); v = v/vnrm;

sig1est(k) = sqrt(vnrm);

end

plot abs(sig1est/sig1est(end)-1) vs param. k:

• See ε ∼ cak = ce−αk → use log-lin. plot. Called geometric/exponential conv.

• fast (beats any algebraic order) unless a ≈ 1 /. Plenty of theory; we skip

But much better methods exist: Randomized SVD, Lanczos (ATA)
→ lesson is not “code your own methods”, rather “test convergence”!



Convergence: EXAMPLE II (toy big PCA)

Given M × N dense matrix A big, eg M = 40000 genes, N = 20000 samples, 7 GB

Seek σ1(A) =
√
λmax(ATA), and assoc. singular vec. v1 1st cmpnt, PCA

Simple method: power iteration on ATA takes 14 s; svd(A) would be ∼ 1 hr

v = randn(N,1); v = v/norm(v);

for k=1:30

v = A’*(A*v);

vnrm = norm(v); v = v/vnrm;

sig1est(k) = sqrt(vnrm);

end

plot abs(sig1est/sig1est(end)-1) vs param. k:

• See ε ∼ cak = ce−αk → use log-lin. plot. Called geometric/exponential conv.

• fast (beats any algebraic order) unless a ≈ 1 /. Plenty of theory; we skip

But much better methods exist: Randomized SVD, Lanczos (ATA)
→ lesson is not “code your own methods”, rather “test convergence”!



Convergence: EXAMPLE II (toy big PCA)

Given M × N dense matrix A big, eg M = 40000 genes, N = 20000 samples, 7 GB

Seek σ1(A) =
√
λmax(ATA), and assoc. singular vec. v1 1st cmpnt, PCA

Simple method: power iteration on ATA takes 14 s; svd(A) would be ∼ 1 hr

v = randn(N,1); v = v/norm(v);

for k=1:30

v = A’*(A*v);

vnrm = norm(v); v = v/vnrm;

sig1est(k) = sqrt(vnrm);

end

plot abs(sig1est/sig1est(end)-1) vs param. k:

• See ε ∼ cak = ce−αk → use log-lin. plot. Called geometric/exponential conv.

• fast (beats any algebraic order) unless a ≈ 1 /. Plenty of theory; we skip

But much better methods exist: Randomized SVD, Lanczos (ATA)
→ lesson is not “code your own methods”, rather “test convergence”!



Convergence: EXAMPLE II (toy big PCA)

Given M × N dense matrix A big, eg M = 40000 genes, N = 20000 samples, 7 GB

Seek σ1(A) =
√
λmax(ATA), and assoc. singular vec. v1 1st cmpnt, PCA

Simple method: power iteration on ATA takes 14 s; svd(A) would be ∼ 1 hr

v = randn(N,1); v = v/norm(v);

for k=1:30

v = A’*(A*v);

vnrm = norm(v); v = v/vnrm;

sig1est(k) = sqrt(vnrm);

end

plot abs(sig1est/sig1est(end)-1) vs param. k:

• See ε ∼ cak = ce−αk → use log-lin. plot. Called geometric/exponential conv.

• fast (beats any algebraic order) unless a ≈ 1 /. Plenty of theory; we skip

But much better methods exist: Randomized SVD, Lanczos (ATA)
→ lesson is not “code your own methods”, rather “test convergence”!



Convergence: EXAMPLE III (stochastic)

Monte Carlo: iid samples yj drawn from a pdf p
simple task: estimate µ :=

∫
yp(y)dy ?

usual estimator µ̂ = 1
N

∑N
j=1 yj sample mean

• convergence 1
2 -order (theory: CLT) → v. slow!

• error ε stochastic → now conv. accel. not poss.

OTHER CONVERGENCE EXAMPLES

• Taylor series, poly interpolants: exponential ε ∼ e−αN if func analytic

once you have them, integrate/differentiate analytically: spectral methods (Dan, Fri 11:30am)

• Newton methods (root-find in R, or min in Rd): ε ∼ e−cN
2

“quadratic”

Point isn’t to memorize rates of methods: rather measure them (type &
prefactor) by habit in any routine you use/write

Then you can pick a good N to get acceptable ε, trust results



Convergence: EXAMPLE III (stochastic)

Monte Carlo: iid samples yj drawn from a pdf p
simple task: estimate µ :=

∫
yp(y)dy ?

usual estimator µ̂ = 1
N

∑N
j=1 yj sample mean

• convergence 1
2 -order (theory: CLT) → v. slow!

• error ε stochastic → now conv. accel. not poss.

OTHER CONVERGENCE EXAMPLES

• Taylor series, poly interpolants: exponential ε ∼ e−αN if func analytic

once you have them, integrate/differentiate analytically: spectral methods (Dan, Fri 11:30am)

• Newton methods (root-find in R, or min in Rd): ε ∼ e−cN
2

“quadratic”

Point isn’t to memorize rates of methods: rather measure them (type &
prefactor) by habit in any routine you use/write

Then you can pick a good N to get acceptable ε, trust results



Convergence: EXAMPLE III (stochastic)

Monte Carlo: iid samples yj drawn from a pdf p
simple task: estimate µ :=

∫
yp(y)dy ?

usual estimator µ̂ = 1
N

∑N
j=1 yj sample mean

• convergence 1
2 -order (theory: CLT) → v. slow!

• error ε stochastic → now conv. accel. not poss.

OTHER CONVERGENCE EXAMPLES

• Taylor series, poly interpolants: exponential ε ∼ e−αN if func analytic

once you have them, integrate/differentiate analytically: spectral methods (Dan, Fri 11:30am)

• Newton methods (root-find in R, or min in Rd): ε ∼ e−cN
2

“quadratic”

Point isn’t to memorize rates of methods: rather measure them (type &
prefactor) by habit in any routine you use/write

Then you can pick a good N to get acceptable ε, trust results



Convergence: EXAMPLE III (stochastic)

Monte Carlo: iid samples yj drawn from a pdf p
simple task: estimate µ :=

∫
yp(y)dy ?

usual estimator µ̂ = 1
N

∑N
j=1 yj sample mean

• convergence 1
2 -order (theory: CLT) → v. slow!

• error ε stochastic → now conv. accel. not poss.

OTHER CONVERGENCE EXAMPLES

• Taylor series, poly interpolants: exponential ε ∼ e−αN if func analytic

once you have them, integrate/differentiate analytically: spectral methods (Dan, Fri 11:30am)

• Newton methods (root-find in R, or min in Rd): ε ∼ e−cN
2

“quadratic”

Point isn’t to memorize rates of methods: rather measure them (type &
prefactor) by habit in any routine you use/write

Then you can pick a good N to get acceptable ε, trust results



Floating-point representation, rounding error

So far rounding error basically irrelevant. Now let’s face its consequences:

εmach ≈ 1.1e-16 double (64bit)

εmach ≈ 6e-8 single (32bit), GPU/TPU

εmach ≈ 5e-4 “half” (16bit), GPU/TPU

Represents any real to rel. err. ε ≤ εmach; all arith. done to rel. err. ε ≤ εmach

eg, in double: (1 + 1e-16) - 1 = ? 0 And: (1 - 1e-16) - 1 = ? -1.11022302462516e-16

A) Most common way εmach amplified is subtraction “catastrophic cancellation”

eg, by querying values of f (x), estim. f ′(x)?

let’s use simplest formula f (x+h)−f (x)
h

:

h err. in f ′ dominant cause?
10−4 10−4 1st-order conv.
10−8 10−8 (balanced causes)
10−12 10−4 2εmach/h “CC” /

B) Even without subtraction (or equiv), err. can accumulate:

eg recall∑N
k=1 k

−2 :

N yN
108 1.64493405783458
109

Here ε ≈ √εmach, bad! /
fix? sum small to large, most stable

Usually stoch. ε ∼
√

# flops εmach



Floating-point representation, rounding error

So far rounding error basically irrelevant. Now let’s face its consequences:

εmach ≈ 1.1e-16 double (64bit)

εmach ≈ 6e-8 single (32bit), GPU/TPU

εmach ≈ 5e-4 “half” (16bit), GPU/TPU

Represents any real to rel. err. ε ≤ εmach; all arith. done to rel. err. ε ≤ εmach

eg, in double: (1 + 1e-16) - 1 = ? 0 And: (1 - 1e-16) - 1 = ? -1.11022302462516e-16

A) Most common way εmach amplified is subtraction “catastrophic cancellation”

eg, by querying values of f (x), estim. f ′(x)?

let’s use simplest formula f (x+h)−f (x)
h

:

h err. in f ′ dominant cause?
10−4 10−4 1st-order conv.
10−8 10−8 (balanced causes)
10−12 10−4 2εmach/h “CC” /

B) Even without subtraction (or equiv), err. can accumulate:

eg recall∑N
k=1 k

−2 :

N yN
108 1.64493405783458
109

Here ε ≈ √εmach, bad! /
fix? sum small to large, most stable

Usually stoch. ε ∼
√

# flops εmach



Floating-point representation, rounding error

So far rounding error basically irrelevant. Now let’s face its consequences:

εmach ≈ 1.1e-16 double (64bit)

εmach ≈ 6e-8 single (32bit), GPU/TPU

εmach ≈ 5e-4 “half” (16bit), GPU/TPU

Represents any real to rel. err. ε ≤ εmach; all arith. done to rel. err. ε ≤ εmach

eg, in double: (1 + 1e-16) - 1 = ?

0 And: (1 - 1e-16) - 1 = ? -1.11022302462516e-16

A) Most common way εmach amplified is subtraction “catastrophic cancellation”

eg, by querying values of f (x), estim. f ′(x)?

let’s use simplest formula f (x+h)−f (x)
h

:

h err. in f ′ dominant cause?
10−4 10−4 1st-order conv.
10−8 10−8 (balanced causes)
10−12 10−4 2εmach/h “CC” /

B) Even without subtraction (or equiv), err. can accumulate:

eg recall∑N
k=1 k

−2 :

N yN
108 1.64493405783458
109

Here ε ≈ √εmach, bad! /
fix? sum small to large, most stable

Usually stoch. ε ∼
√

# flops εmach



Floating-point representation, rounding error

So far rounding error basically irrelevant. Now let’s face its consequences:

εmach ≈ 1.1e-16 double (64bit)

εmach ≈ 6e-8 single (32bit), GPU/TPU

εmach ≈ 5e-4 “half” (16bit), GPU/TPU

Represents any real to rel. err. ε ≤ εmach; all arith. done to rel. err. ε ≤ εmach

eg, in double: (1 + 1e-16) - 1 = ? 0 And: (1 - 1e-16) - 1 = ?

-1.11022302462516e-16

A) Most common way εmach amplified is subtraction “catastrophic cancellation”

eg, by querying values of f (x), estim. f ′(x)?

let’s use simplest formula f (x+h)−f (x)
h

:

h err. in f ′ dominant cause?
10−4 10−4 1st-order conv.
10−8 10−8 (balanced causes)
10−12 10−4 2εmach/h “CC” /

B) Even without subtraction (or equiv), err. can accumulate:

eg recall∑N
k=1 k

−2 :

N yN
108 1.64493405783458
109

Here ε ≈ √εmach, bad! /
fix? sum small to large, most stable

Usually stoch. ε ∼
√

# flops εmach



Floating-point representation, rounding error

So far rounding error basically irrelevant. Now let’s face its consequences:

εmach ≈ 1.1e-16 double (64bit)

εmach ≈ 6e-8 single (32bit), GPU/TPU

εmach ≈ 5e-4 “half” (16bit), GPU/TPU

Represents any real to rel. err. ε ≤ εmach; all arith. done to rel. err. ε ≤ εmach

eg, in double: (1 + 1e-16) - 1 = ? 0 And: (1 - 1e-16) - 1 = ? -1.11022302462516e-16

A) Most common way εmach amplified is subtraction “catastrophic cancellation”

eg, by querying values of f (x), estim. f ′(x)?

let’s use simplest formula f (x+h)−f (x)
h

:

h err. in f ′ dominant cause?
10−4 10−4 1st-order conv.
10−8 10−8 (balanced causes)
10−12 10−4 2εmach/h “CC” /

B) Even without subtraction (or equiv), err. can accumulate:

eg recall∑N
k=1 k

−2 :

N yN
108 1.64493405783458
109

Here ε ≈ √εmach, bad! /
fix? sum small to large, most stable

Usually stoch. ε ∼
√

# flops εmach



Floating-point representation, rounding error

So far rounding error basically irrelevant. Now let’s face its consequences:

εmach ≈ 1.1e-16 double (64bit)

εmach ≈ 6e-8 single (32bit), GPU/TPU

εmach ≈ 5e-4 “half” (16bit), GPU/TPU

Represents any real to rel. err. ε ≤ εmach; all arith. done to rel. err. ε ≤ εmach

eg, in double: (1 + 1e-16) - 1 = ? 0 And: (1 - 1e-16) - 1 = ? -1.11022302462516e-16

A) Most common way εmach amplified is subtraction “catastrophic cancellation”

eg, by querying values of f (x), estim. f ′(x)?

let’s use simplest formula f (x+h)−f (x)
h

:

h err. in f ′ dominant cause?
10−4 10−4 1st-order conv.
10−8 10−8 (balanced causes)
10−12 10−4 2εmach/h “CC” /

B) Even without subtraction (or equiv), err. can accumulate:

eg recall∑N
k=1 k

−2 :

N yN
108 1.64493405783458
109

Here ε ≈ √εmach, bad! /
fix? sum small to large, most stable

Usually stoch. ε ∼
√

# flops εmach



Floating-point representation, rounding error

So far rounding error basically irrelevant. Now let’s face its consequences:

εmach ≈ 1.1e-16 double (64bit)

εmach ≈ 6e-8 single (32bit), GPU/TPU

εmach ≈ 5e-4 “half” (16bit), GPU/TPU

Represents any real to rel. err. ε ≤ εmach; all arith. done to rel. err. ε ≤ εmach

eg, in double: (1 + 1e-16) - 1 = ? 0 And: (1 - 1e-16) - 1 = ? -1.11022302462516e-16

A) Most common way εmach amplified is subtraction “catastrophic cancellation”

eg, by querying values of f (x), estim. f ′(x)?

let’s use simplest formula f (x+h)−f (x)
h

:

Better: use several p > 2 values to get pth order!

h err. in f ′ dominant cause?
10−4 10−4 1st-order conv.
10−8 10−8 (balanced causes)
10−12 10−4 2εmach/h “CC” /

B) Even without subtraction (or equiv), err. can accumulate:

eg recall∑N
k=1 k

−2 :

N yN
108 1.64493405783458
109

Here ε ≈ √εmach, bad! /
fix? sum small to large, most stable

Usually stoch. ε ∼
√

# flops εmach



Floating-point representation, rounding error

So far rounding error basically irrelevant. Now let’s face its consequences:

εmach ≈ 1.1e-16 double (64bit)

εmach ≈ 6e-8 single (32bit), GPU/TPU

εmach ≈ 5e-4 “half” (16bit), GPU/TPU

Represents any real to rel. err. ε ≤ εmach; all arith. done to rel. err. ε ≤ εmach

eg, in double: (1 + 1e-16) - 1 = ? 0 And: (1 - 1e-16) - 1 = ? -1.11022302462516e-16

A) Most common way εmach amplified is subtraction “catastrophic cancellation”

eg, by querying values of f (x), estim. f ′(x)?

let’s use simplest formula f (x+h)−f (x)
h

:

Better: use several p > 2 values to get pth order!

h err. in f ′ dominant cause?
10−4 10−4 1st-order conv.
10−8 10−8 (balanced causes)
10−12 10−4 2εmach/h “CC” /

B) Even without subtraction (or equiv), err. can accumulate:

eg recall∑N
k=1 k

−2 :

N yN
108 1.64493405783458
109 ?

Here ε ≈ √εmach, bad! /
fix? sum small to large, most stable

Usually stoch. ε ∼
√

# flops εmach



Floating-point representation, rounding error

So far rounding error basically irrelevant. Now let’s face its consequences:

εmach ≈ 1.1e-16 double (64bit)

εmach ≈ 6e-8 single (32bit), GPU/TPU

εmach ≈ 5e-4 “half” (16bit), GPU/TPU

Represents any real to rel. err. ε ≤ εmach; all arith. done to rel. err. ε ≤ εmach

eg, in double: (1 + 1e-16) - 1 = ? 0 And: (1 - 1e-16) - 1 = ? -1.11022302462516e-16

A) Most common way εmach amplified is subtraction “catastrophic cancellation”

eg, by querying values of f (x), estim. f ′(x)?

let’s use simplest formula f (x+h)−f (x)
h

:

Better: use several p > 2 values to get pth order!

h err. in f ′ dominant cause?
10−4 10−4 1st-order conv.
10−8 10−8 (balanced causes)
10−12 10−4 2εmach/h “CC” /

B) Even without subtraction (or equiv), err. can accumulate:

eg recall∑N
k=1 k

−2 :

N yN
108 1.64493405783458
109 1.64493405783458

Here ε ≈ √εmach, bad! /
fix?

sum small to large, most stable

Usually stoch. ε ∼
√

# flops εmach



Floating-point representation, rounding error

So far rounding error basically irrelevant. Now let’s face its consequences:

εmach ≈ 1.1e-16 double (64bit)

εmach ≈ 6e-8 single (32bit), GPU/TPU

εmach ≈ 5e-4 “half” (16bit), GPU/TPU

Represents any real to rel. err. ε ≤ εmach; all arith. done to rel. err. ε ≤ εmach

eg, in double: (1 + 1e-16) - 1 = ? 0 And: (1 - 1e-16) - 1 = ? -1.11022302462516e-16

A) Most common way εmach amplified is subtraction “catastrophic cancellation”

eg, by querying values of f (x), estim. f ′(x)?

let’s use simplest formula f (x+h)−f (x)
h

:

Better: use several p > 2 values to get pth order!

h err. in f ′ dominant cause?
10−4 10−4 1st-order conv.
10−8 10−8 (balanced causes)
10−12 10−4 2εmach/h “CC” /

B) Even without subtraction (or equiv), err. can accumulate:

eg recall∑N
k=1 k

−2 :

N yN
108 1.64493405783458
109 1.64493405783458

Here ε ≈ √εmach, bad! /
fix? sum small to large, most stable

Usually stoch. ε ∼
√

# flops εmach



Floating-point representation, rounding error

So far rounding error basically irrelevant. Now let’s face its consequences:

εmach ≈ 1.1e-16 double (64bit)

εmach ≈ 6e-8 single (32bit), GPU/TPU

εmach ≈ 5e-4 “half” (16bit), GPU/TPU

Represents any real to rel. err. ε ≤ εmach; all arith. done to rel. err. ε ≤ εmach

eg, in double: (1 + 1e-16) - 1 = ? 0 And: (1 - 1e-16) - 1 = ? -1.11022302462516e-16

A) Most common way εmach amplified is subtraction “catastrophic cancellation”

eg, by querying values of f (x), estim. f ′(x)?

let’s use simplest formula f (x+h)−f (x)
h

:

Better: use several p > 2 values to get pth order!

h err. in f ′ dominant cause?
10−4 10−4 1st-order conv.
10−8 10−8 (balanced causes)
10−12 10−4 2εmach/h “CC” /

B) Even without subtraction (or equiv), err. can accumulate:

eg recall∑N
k=1 k

−2 :

N yN
108 1.64493405783458
109 1.64493405783458

Here ε ≈ √εmach, bad! /
fix? sum small to large, most stable

Usually stoch. ε ∼
√

# flops εmach



For which tasks is it reasonable to demand accuracy?

Qu: is sin(1e16) reasonable to compute accurately (in double prec.)?

Ans: no! x = 1016, floating rel. err. εmach

→ abs. err. 1016εmach ≈ 1.1 = O(1) wiggle

→ result garbage, just via input variation

Defn. (relative) condition number of task “eval. f (x)” is

κ(x) :=

∣∣∣∣xf ′(x)

f (x)

∣∣∣∣ ← sensitivity to rel. change in x

← converts abs. to rel. error

gives Rule: for this task, can only demand rel. err. at best ε ≈ κεmach

why? look at picture: ε must exceed change in f due to εmach rel. err. in input x

Eg f (x) = sin(x), κ(x) = |x cot x | x = 1016 ⇒ κ typ. ≥ 1016

the problem is ill-conditioned: meaningless to demand any digits in double-prec!

eg x = 105 ⇒ κ typ. ≥ 105 ⇒ expect ε ∼ ? 10−11

eg x = 1 ⇒ κ(x) = 0.64 ⇒ good method should get ε ≈ ? εmach

eg x = π ? ⇒ κ(x) =∞, can’t demand relative acc. (merely abs. accuracy)



For which tasks is it reasonable to demand accuracy?

Qu: is sin(1e16) reasonable to compute accurately (in double prec.)?

Ans: no! x = 1016, floating rel. err. εmach

→ abs. err. 1016εmach ≈ 1.1 = O(1) wiggle

→ result garbage, just via input variation

Defn. (relative) condition number of task “eval. f (x)” is

κ(x) :=

∣∣∣∣xf ′(x)

f (x)

∣∣∣∣ ← sensitivity to rel. change in x

← converts abs. to rel. error

gives Rule: for this task, can only demand rel. err. at best ε ≈ κεmach

why? look at picture: ε must exceed change in f due to εmach rel. err. in input x

Eg f (x) = sin(x), κ(x) = |x cot x | x = 1016 ⇒ κ typ. ≥ 1016

the problem is ill-conditioned: meaningless to demand any digits in double-prec!

eg x = 105 ⇒ κ typ. ≥ 105 ⇒ expect ε ∼ ? 10−11

eg x = 1 ⇒ κ(x) = 0.64 ⇒ good method should get ε ≈ ? εmach

eg x = π ? ⇒ κ(x) =∞, can’t demand relative acc. (merely abs. accuracy)



For which tasks is it reasonable to demand accuracy?

Qu: is sin(1e16) reasonable to compute accurately (in double prec.)?

Ans: no! x = 1016, floating rel. err. εmach

→ abs. err. 1016εmach ≈ 1.1 = O(1) wiggle

→ result garbage, just via input variation

Defn. (relative) condition number of task “eval. f (x)” is

κ(x) :=

∣∣∣∣xf ′(x)

f (x)

∣∣∣∣ ← sensitivity to rel. change in x

← converts abs. to rel. error

gives Rule: for this task, can only demand rel. err. at best ε ≈ κεmach

why? look at picture: ε must exceed change in f due to εmach rel. err. in input x

Eg f (x) = sin(x), κ(x) = |x cot x | x = 1016 ⇒ κ typ. ≥ 1016

the problem is ill-conditioned: meaningless to demand any digits in double-prec!

eg x = 105 ⇒ κ typ. ≥ 105 ⇒ expect ε ∼ ? 10−11

eg x = 1 ⇒ κ(x) = 0.64 ⇒ good method should get ε ≈ ? εmach

eg x = π ? ⇒ κ(x) =∞, can’t demand relative acc. (merely abs. accuracy)



For which tasks is it reasonable to demand accuracy?

Qu: is sin(1e16) reasonable to compute accurately (in double prec.)?

Ans: no! x = 1016, floating rel. err. εmach

→ abs. err. 1016εmach ≈ 1.1 = O(1) wiggle

→ result garbage, just via input variation

Defn. (relative) condition number of task “eval. f (x)” is

κ(x) :=

∣∣∣∣xf ′(x)

f (x)

∣∣∣∣ ← sensitivity to rel. change in x

← converts abs. to rel. error

gives Rule: for this task, can only demand rel. err. at best ε ≈ κεmach

why? look at picture: ε must exceed change in f due to εmach rel. err. in input x

Eg f (x) = sin(x), κ(x) = |x cot x | x = 1016 ⇒ κ typ. ≥ 1016

the problem is ill-conditioned: meaningless to demand any digits in double-prec!

eg x = 105 ⇒ κ typ. ≥ 105 ⇒ expect ε ∼ ? 10−11

eg x = 1 ⇒ κ(x) = 0.64 ⇒ good method should get ε ≈ ? εmach

eg x = π ? ⇒ κ(x) =∞, can’t demand relative acc. (merely abs. accuracy)



For which tasks is it reasonable to demand accuracy?

Qu: is sin(1e16) reasonable to compute accurately (in double prec.)?

Ans: no! x = 1016, floating rel. err. εmach

→ abs. err. 1016εmach ≈ 1.1 = O(1) wiggle

→ result garbage, just via input variation

Defn. (relative) condition number of task “eval. f (x)” is

κ(x) :=

∣∣∣∣xf ′(x)

f (x)

∣∣∣∣ ← sensitivity to rel. change in x

← converts abs. to rel. error

gives Rule: for this task, can only demand rel. err. at best ε ≈ κεmach

why? look at picture: ε must exceed change in f due to εmach rel. err. in input x

Eg f (x) = sin(x), κ(x) = |x cot x | x = 1016 ⇒ κ typ. ≥ 1016

the problem is ill-conditioned: meaningless to demand any digits in double-prec!

eg x = 105 ⇒ κ typ. ≥ 105 ⇒ expect ε ∼ ? 10−11

eg x = 1 ⇒ κ(x) = 0.64 ⇒ good method should get ε ≈ ? εmach

eg x = π ? ⇒ κ(x) =∞, can’t demand relative acc. (merely abs. accuracy)



For which tasks is it reasonable to demand accuracy?

Qu: is sin(1e16) reasonable to compute accurately (in double prec.)?

Ans: no! x = 1016, floating rel. err. εmach

→ abs. err. 1016εmach ≈ 1.1 = O(1) wiggle

→ result garbage, just via input variation

Defn. (relative) condition number of task “eval. f (x)” is

κ(x) :=

∣∣∣∣xf ′(x)

f (x)

∣∣∣∣ ← sensitivity to rel. change in x

← converts abs. to rel. error

gives Rule: for this task, can only demand rel. err. at best ε ≈ κεmach

why? look at picture: ε must exceed change in f due to εmach rel. err. in input x

Eg f (x) = sin(x), κ(x) = |x cot x | x = 1016 ⇒ κ typ. ≥ 1016

the problem is ill-conditioned: meaningless to demand any digits in double-prec!

eg x = 105 ⇒ κ typ. ≥ 105 ⇒ expect ε ∼ ?

10−11

eg x = 1 ⇒ κ(x) = 0.64 ⇒ good method should get ε ≈ ? εmach

eg x = π ? ⇒ κ(x) =∞, can’t demand relative acc. (merely abs. accuracy)



For which tasks is it reasonable to demand accuracy?

Qu: is sin(1e16) reasonable to compute accurately (in double prec.)?

Ans: no! x = 1016, floating rel. err. εmach

→ abs. err. 1016εmach ≈ 1.1 = O(1) wiggle

→ result garbage, just via input variation

Defn. (relative) condition number of task “eval. f (x)” is

κ(x) :=

∣∣∣∣xf ′(x)

f (x)

∣∣∣∣ ← sensitivity to rel. change in x

← converts abs. to rel. error

gives Rule: for this task, can only demand rel. err. at best ε ≈ κεmach

why? look at picture: ε must exceed change in f due to εmach rel. err. in input x

Eg f (x) = sin(x), κ(x) = |x cot x | x = 1016 ⇒ κ typ. ≥ 1016

the problem is ill-conditioned: meaningless to demand any digits in double-prec!

eg x = 105 ⇒ κ typ. ≥ 105 ⇒ expect ε ∼ ? 10−11

eg x = 1 ⇒ κ(x) = 0.64 ⇒ good method should get ε ≈ ? εmach

eg x = π ? ⇒ κ(x) =∞, can’t demand relative acc. (merely abs. accuracy)



For which tasks is it reasonable to demand accuracy?

Qu: is sin(1e16) reasonable to compute accurately (in double prec.)?

Ans: no! x = 1016, floating rel. err. εmach

→ abs. err. 1016εmach ≈ 1.1 = O(1) wiggle

→ result garbage, just via input variation

Defn. (relative) condition number of task “eval. f (x)” is

κ(x) :=

∣∣∣∣xf ′(x)

f (x)

∣∣∣∣ ← sensitivity to rel. change in x

← converts abs. to rel. error

gives Rule: for this task, can only demand rel. err. at best ε ≈ κεmach

why? look at picture: ε must exceed change in f due to εmach rel. err. in input x

Eg f (x) = sin(x), κ(x) = |x cot x | x = 1016 ⇒ κ typ. ≥ 1016

the problem is ill-conditioned: meaningless to demand any digits in double-prec!

eg x = 105 ⇒ κ typ. ≥ 105 ⇒ expect ε ∼ ? 10−11

eg x = 1 ⇒ κ(x) = 0.64 ⇒ good method should get ε ≈ ?

εmach

eg x = π ? ⇒ κ(x) =∞, can’t demand relative acc. (merely abs. accuracy)



For which tasks is it reasonable to demand accuracy?

Qu: is sin(1e16) reasonable to compute accurately (in double prec.)?

Ans: no! x = 1016, floating rel. err. εmach

→ abs. err. 1016εmach ≈ 1.1 = O(1) wiggle

→ result garbage, just via input variation

Defn. (relative) condition number of task “eval. f (x)” is

κ(x) :=

∣∣∣∣xf ′(x)

f (x)

∣∣∣∣ ← sensitivity to rel. change in x

← converts abs. to rel. error

gives Rule: for this task, can only demand rel. err. at best ε ≈ κεmach

why? look at picture: ε must exceed change in f due to εmach rel. err. in input x

Eg f (x) = sin(x), κ(x) = |x cot x | x = 1016 ⇒ κ typ. ≥ 1016

the problem is ill-conditioned: meaningless to demand any digits in double-prec!

eg x = 105 ⇒ κ typ. ≥ 105 ⇒ expect ε ∼ ? 10−11

eg x = 1 ⇒ κ(x) = 0.64 ⇒ good method should get ε ≈ ? εmach

eg x = π ?

⇒ κ(x) =∞, can’t demand relative acc. (merely abs. accuracy)



For which tasks is it reasonable to demand accuracy?

Qu: is sin(1e16) reasonable to compute accurately (in double prec.)?

Ans: no! x = 1016, floating rel. err. εmach

→ abs. err. 1016εmach ≈ 1.1 = O(1) wiggle

→ result garbage, just via input variation

Defn. (relative) condition number of task “eval. f (x)” is

κ(x) :=

∣∣∣∣xf ′(x)

f (x)

∣∣∣∣ ← sensitivity to rel. change in x

← converts abs. to rel. error

gives Rule: for this task, can only demand rel. err. at best ε ≈ κεmach

why? look at picture: ε must exceed change in f due to εmach rel. err. in input x

Eg f (x) = sin(x), κ(x) = |x cot x | x = 1016 ⇒ κ typ. ≥ 1016

the problem is ill-conditioned: meaningless to demand any digits in double-prec!

eg x = 105 ⇒ κ typ. ≥ 105 ⇒ expect ε ∼ ? 10−11

eg x = 1 ⇒ κ(x) = 0.64 ⇒ good method should get ε ≈ ? εmach

eg x = π ? ⇒ κ(x) =∞, can’t demand relative acc. (merely abs. accuracy)



Stability of an algorithm (method) for some task

Recap: task “eval. f (x)” has cond. # κ(x) :=
∣∣ xf ′(x)

f (x)

∣∣ indep. of any method

Defn. A method for this task called backward stable if returns an exact
answer f (x̃) for some perturbed data x̃ with |x̃ − x |/|x | = O(εmach)

• modern notion of stability here O implies some “small” const, eg . 102

Thus: backward stable ⇒ rel. err. ε = O(κεmach) by rule: can’t demand more!

1) Consequences for physical simulations (nonlinear ODEs, PDEs. . . )

Eg, task: solve ODE{
u′ = F (t, u) for 0 ≤ t ≤ T
u(0) = x initial condition

Output “f (x)” is final state u(T )
κ = sensitivity to IC

• common that κ ∼ eλT (Lyapunov exponent λ > 0, chaos, eg n-body sims.)

• then even stable solver must soon lose all accurate digits see: shadowing

• meaning of long-T numerics is only statistical (correlations, manifold, etc)



Stability of an algorithm (method) for some task

Recap: task “eval. f (x)” has cond. # κ(x) :=
∣∣ xf ′(x)

f (x)

∣∣ indep. of any method

Defn. A method for this task called backward stable if returns an exact
answer f (x̃) for some perturbed data x̃ with |x̃ − x |/|x | = O(εmach)

• modern notion of stability here O implies some “small” const, eg . 102

Thus: backward stable ⇒ rel. err. ε = O(κεmach) by rule: can’t demand more!

1) Consequences for physical simulations (nonlinear ODEs, PDEs. . . )

Eg, task: solve ODE{
u′ = F (t, u) for 0 ≤ t ≤ T
u(0) = x initial condition

Output “f (x)” is final state u(T )
κ = sensitivity to IC

• common that κ ∼ eλT (Lyapunov exponent λ > 0, chaos, eg n-body sims.)

• then even stable solver must soon lose all accurate digits see: shadowing

• meaning of long-T numerics is only statistical (correlations, manifold, etc)



Stability of an algorithm (method) for some task

Recap: task “eval. f (x)” has cond. # κ(x) :=
∣∣ xf ′(x)

f (x)

∣∣ indep. of any method

Defn. A method for this task called backward stable if returns an exact
answer f (x̃) for some perturbed data x̃ with |x̃ − x |/|x | = O(εmach)

• modern notion of stability here O implies some “small” const, eg . 102

Thus: backward stable ⇒ rel. err. ε = O(κεmach) by rule: can’t demand more!

1) Consequences for physical simulations (nonlinear ODEs, PDEs. . . )

Eg, task: solve ODE{
u′ = F (t, u) for 0 ≤ t ≤ T
u(0) = x initial condition

Output “f (x)” is final state u(T )

κ = sensitivity to IC

• common that κ ∼ eλT (Lyapunov exponent λ > 0, chaos, eg n-body sims.)

• then even stable solver must soon lose all accurate digits see: shadowing

• meaning of long-T numerics is only statistical (correlations, manifold, etc)



Stability of an algorithm (method) for some task

Recap: task “eval. f (x)” has cond. # κ(x) :=
∣∣ xf ′(x)

f (x)

∣∣ indep. of any method

Defn. A method for this task called backward stable if returns an exact
answer f (x̃) for some perturbed data x̃ with |x̃ − x |/|x | = O(εmach)

• modern notion of stability here O implies some “small” const, eg . 102

Thus: backward stable ⇒ rel. err. ε = O(κεmach) by rule: can’t demand more!

1) Consequences for physical simulations (nonlinear ODEs, PDEs. . . )

Eg, task: solve ODE{
u′ = F (t, u) for 0 ≤ t ≤ T
u(0) = x initial condition

Output “f (x)” is final state u(T )
κ = sensitivity to IC

• common that κ ∼ eλT (Lyapunov exponent λ > 0, chaos, eg n-body sims.)

• then even stable solver must soon lose all accurate digits see: shadowing

• meaning of long-T numerics is only statistical (correlations, manifold, etc)



Stability of an algorithm (method) for some task

Recap: task “eval. f (x)” has cond. # κ(x) :=
∣∣ xf ′(x)

f (x)

∣∣ indep. of any method

Defn. A method for this task called backward stable if returns an exact
answer f (x̃) for some perturbed data x̃ with |x̃ − x |/|x | = O(εmach)

• modern notion of stability here O implies some “small” const, eg . 102

Thus: backward stable ⇒ rel. err. ε = O(κεmach) by rule: can’t demand more!

1) Consequences for physical simulations (nonlinear ODEs, PDEs. . . )

Eg, task: solve ODE{
u′ = F (t, u) for 0 ≤ t ≤ T
u(0) = x initial condition

Output “f (x)” is final state u(T )
κ = sensitivity to IC

• common that κ ∼ eλT (Lyapunov exponent λ > 0, chaos, eg n-body sims.)

• then even stable solver must soon lose all accurate digits see: shadowing

• meaning of long-T numerics is only statistical (correlations, manifold, etc)



Stability of algorithms: more examples

Recap: (backward) stable if “exact answer to nearly the right question”

2) There are unstable algorithms . . . don’t use them!
Eg eval. f (x) = 1− cos(x), for |x | � 1 we all know f (x) = x2/2 +O(x4)

ALWAYS FIRST ASK: Is task (problem) well-conditioned?

yes, κ ≈ 2

Now, methods: naive code 1-cos(x) stable ? no: catastrophic cancellation!

. . . w/o clarity on conditioning vs stability, may conclude ill-conditioned problem. Not so!

Suggest stable methods? i) 2*sin(x/2)^2 ii) Taylor series (how many terms? conv. . . )

3) Linear systems: solve Ac = b, square N × N needs whole lecture

Task is f(b) = “c solving Ac = b” brain hurts because b is input, c is output!

Stable alg: gives c̃ solving Ac̃ = b̃ exactly, where ‖b̃−b‖‖b‖ = O(εmach)

Defn. relative residual of c̃ is ‖Ac̃−b‖‖b‖ : Stable alg ⇔ Rel. resid. O(εmach)

• even a stable alg doesn’t mean c̃ is close to c . . .

Let’s demo a classic unstable algorithm . . .



Stability of algorithms: more examples

Recap: (backward) stable if “exact answer to nearly the right question”

2) There are unstable algorithms . . . don’t use them!
Eg eval. f (x) = 1− cos(x), for |x | � 1 we all know f (x) = x2/2 +O(x4)

ALWAYS FIRST ASK: Is task (problem) well-conditioned? yes, κ ≈ 2

Now, methods: naive code 1-cos(x) stable ?

no: catastrophic cancellation!

. . . w/o clarity on conditioning vs stability, may conclude ill-conditioned problem. Not so!

Suggest stable methods? i) 2*sin(x/2)^2 ii) Taylor series (how many terms? conv. . . )

3) Linear systems: solve Ac = b, square N × N needs whole lecture

Task is f(b) = “c solving Ac = b” brain hurts because b is input, c is output!

Stable alg: gives c̃ solving Ac̃ = b̃ exactly, where ‖b̃−b‖‖b‖ = O(εmach)

Defn. relative residual of c̃ is ‖Ac̃−b‖‖b‖ : Stable alg ⇔ Rel. resid. O(εmach)

• even a stable alg doesn’t mean c̃ is close to c . . .

Let’s demo a classic unstable algorithm . . .



Stability of algorithms: more examples

Recap: (backward) stable if “exact answer to nearly the right question”

2) There are unstable algorithms . . . don’t use them!
Eg eval. f (x) = 1− cos(x), for |x | � 1 we all know f (x) = x2/2 +O(x4)

ALWAYS FIRST ASK: Is task (problem) well-conditioned? yes, κ ≈ 2

Now, methods: naive code 1-cos(x) stable ? no: catastrophic cancellation!

. . . w/o clarity on conditioning vs stability, may conclude ill-conditioned problem. Not so!

Suggest stable methods?

i) 2*sin(x/2)^2 ii) Taylor series (how many terms? conv. . . )

3) Linear systems: solve Ac = b, square N × N needs whole lecture

Task is f(b) = “c solving Ac = b” brain hurts because b is input, c is output!

Stable alg: gives c̃ solving Ac̃ = b̃ exactly, where ‖b̃−b‖‖b‖ = O(εmach)

Defn. relative residual of c̃ is ‖Ac̃−b‖‖b‖ : Stable alg ⇔ Rel. resid. O(εmach)

• even a stable alg doesn’t mean c̃ is close to c . . .

Let’s demo a classic unstable algorithm . . .



Stability of algorithms: more examples

Recap: (backward) stable if “exact answer to nearly the right question”

2) There are unstable algorithms . . . don’t use them!
Eg eval. f (x) = 1− cos(x), for |x | � 1 we all know f (x) = x2/2 +O(x4)

ALWAYS FIRST ASK: Is task (problem) well-conditioned? yes, κ ≈ 2

Now, methods: naive code 1-cos(x) stable ? no: catastrophic cancellation!

. . . w/o clarity on conditioning vs stability, may conclude ill-conditioned problem. Not so!

Suggest stable methods? i) 2*sin(x/2)^2

ii) Taylor series (how many terms? conv. . . )

3) Linear systems: solve Ac = b, square N × N needs whole lecture

Task is f(b) = “c solving Ac = b” brain hurts because b is input, c is output!

Stable alg: gives c̃ solving Ac̃ = b̃ exactly, where ‖b̃−b‖‖b‖ = O(εmach)

Defn. relative residual of c̃ is ‖Ac̃−b‖‖b‖ : Stable alg ⇔ Rel. resid. O(εmach)

• even a stable alg doesn’t mean c̃ is close to c . . .

Let’s demo a classic unstable algorithm . . .



Stability of algorithms: more examples

Recap: (backward) stable if “exact answer to nearly the right question”

2) There are unstable algorithms . . . don’t use them!
Eg eval. f (x) = 1− cos(x), for |x | � 1 we all know f (x) = x2/2 +O(x4)

ALWAYS FIRST ASK: Is task (problem) well-conditioned? yes, κ ≈ 2

Now, methods: naive code 1-cos(x) stable ? no: catastrophic cancellation!

. . . w/o clarity on conditioning vs stability, may conclude ill-conditioned problem. Not so!

Suggest stable methods? i) 2*sin(x/2)^2 ii) Taylor series (how many terms? conv. . . )

3) Linear systems: solve Ac = b, square N × N needs whole lecture

Task is f(b) = “c solving Ac = b” brain hurts because b is input, c is output!

Stable alg: gives c̃ solving Ac̃ = b̃ exactly, where ‖b̃−b‖‖b‖ = O(εmach)

Defn. relative residual of c̃ is ‖Ac̃−b‖‖b‖ : Stable alg ⇔ Rel. resid. O(εmach)

• even a stable alg doesn’t mean c̃ is close to c . . .

Let’s demo a classic unstable algorithm . . .



Stability of algorithms: more examples

Recap: (backward) stable if “exact answer to nearly the right question”

2) There are unstable algorithms . . . don’t use them!
Eg eval. f (x) = 1− cos(x), for |x | � 1 we all know f (x) = x2/2 +O(x4)

ALWAYS FIRST ASK: Is task (problem) well-conditioned? yes, κ ≈ 2

Now, methods: naive code 1-cos(x) stable ? no: catastrophic cancellation!

. . . w/o clarity on conditioning vs stability, may conclude ill-conditioned problem. Not so!

Suggest stable methods? i) 2*sin(x/2)^2 ii) Taylor series (how many terms? conv. . . )

3) Linear systems: solve Ac = b, square N × N needs whole lecture

Task is f(b) = “c solving Ac = b” brain hurts because b is input, c is output!

Stable alg: gives c̃ solving Ac̃ = b̃ exactly, where ‖b̃−b‖‖b‖ = O(εmach)

Defn. relative residual of c̃ is ‖Ac̃−b‖‖b‖ : Stable alg ⇔ Rel. resid. O(εmach)

• even a stable alg doesn’t mean c̃ is close to c . . .

Let’s demo a classic unstable algorithm . . .



Stability of algorithms: more examples

Recap: (backward) stable if “exact answer to nearly the right question”

2) There are unstable algorithms . . . don’t use them!
Eg eval. f (x) = 1− cos(x), for |x | � 1 we all know f (x) = x2/2 +O(x4)

ALWAYS FIRST ASK: Is task (problem) well-conditioned? yes, κ ≈ 2

Now, methods: naive code 1-cos(x) stable ? no: catastrophic cancellation!

. . . w/o clarity on conditioning vs stability, may conclude ill-conditioned problem. Not so!

Suggest stable methods? i) 2*sin(x/2)^2 ii) Taylor series (how many terms? conv. . . )

3) Linear systems: solve Ac = b, square N × N needs whole lecture

Task is f(b) = “c solving Ac = b” brain hurts because b is input, c is output!

Stable alg: gives c̃ solving Ac̃ = b̃ exactly, where ‖b̃−b‖‖b‖ = O(εmach)

Defn. relative residual of c̃ is ‖Ac̃−b‖‖b‖ :

Stable alg ⇔ Rel. resid. O(εmach)

• even a stable alg doesn’t mean c̃ is close to c . . .

Let’s demo a classic unstable algorithm . . .



Stability of algorithms: more examples

Recap: (backward) stable if “exact answer to nearly the right question”

2) There are unstable algorithms . . . don’t use them!
Eg eval. f (x) = 1− cos(x), for |x | � 1 we all know f (x) = x2/2 +O(x4)

ALWAYS FIRST ASK: Is task (problem) well-conditioned? yes, κ ≈ 2

Now, methods: naive code 1-cos(x) stable ? no: catastrophic cancellation!

. . . w/o clarity on conditioning vs stability, may conclude ill-conditioned problem. Not so!

Suggest stable methods? i) 2*sin(x/2)^2 ii) Taylor series (how many terms? conv. . . )

3) Linear systems: solve Ac = b, square N × N needs whole lecture

Task is f(b) = “c solving Ac = b” brain hurts because b is input, c is output!

Stable alg: gives c̃ solving Ac̃ = b̃ exactly, where ‖b̃−b‖‖b‖ = O(εmach)

Defn. relative residual of c̃ is ‖Ac̃−b‖‖b‖ : Stable alg ⇔ Rel. resid. O(εmach)

• even a stable alg doesn’t mean c̃ is close to c . . .

Let’s demo a classic unstable algorithm . . .



MATLAB demo: unstable vs stable linear solve
>> c = [1;2;3]; % "true" solution column vector

>> A = ones(3,3) + 1e-14*rand(3,3) % system matrix (precisely: ill-cond.)

A = 1.00000000000001 1.00000000000001 1

1.00000000000001 1.00000000000001 1.00000000000001

1 1 1.00000000000001

>> b = A*c; % make data (input to solver)

Now let’s do some solving. . .

>> ct = inv(A)*b; % classic pitfall, may be unstable

>> norm(A*ct-b) / norm(b) % rel resid terrible, proving it’s unstable!

0.046875

>> ct = linsolve(A,b); % use (backward) stable solver

>> norm(A*ct-b) / norm(b) % rel resid O(e_mach): must be if stable

8.54650082837135e-17

>> norm(ct-c) / norm(c) % rel err in soln? huge, but that’s ok...

0.0426438890711514

If time: here’s one stable way to store a soln operator. . .

[U,S,V] = svd(A); W = diag(1./diag(S))*U’; % inv(A)=VW, need two factors

ct = V*(W*b); % apply them to any RHS

norm(A*ct-b) / norm(b) % rel resid again O(e_mach)

2.83455365181694e-16



MATLAB demo: unstable vs stable linear solve
>> c = [1;2;3]; % "true" solution column vector

>> A = ones(3,3) + 1e-14*rand(3,3) % system matrix (precisely: ill-cond.)

A = 1.00000000000001 1.00000000000001 1

1.00000000000001 1.00000000000001 1.00000000000001

1 1 1.00000000000001

>> b = A*c; % make data (input to solver)

Now let’s do some solving. . .

>> ct = inv(A)*b; % classic pitfall, may be unstable

>> norm(A*ct-b) / norm(b) % rel resid terrible, proving it’s unstable!

0.046875

>> ct = linsolve(A,b); % use (backward) stable solver

>> norm(A*ct-b) / norm(b) % rel resid O(e_mach): must be if stable

8.54650082837135e-17

>> norm(ct-c) / norm(c) % rel err in soln? huge, but that’s ok...

0.0426438890711514

If time: here’s one stable way to store a soln operator. . .

[U,S,V] = svd(A); W = diag(1./diag(S))*U’; % inv(A)=VW, need two factors

ct = V*(W*b); % apply them to any RHS

norm(A*ct-b) / norm(b) % rel resid again O(e_mach)

2.83455365181694e-16



MATLAB demo: unstable vs stable linear solve
>> c = [1;2;3]; % "true" solution column vector

>> A = ones(3,3) + 1e-14*rand(3,3) % system matrix (precisely: ill-cond.)

A = 1.00000000000001 1.00000000000001 1

1.00000000000001 1.00000000000001 1.00000000000001

1 1 1.00000000000001

>> b = A*c; % make data (input to solver)

Now let’s do some solving. . .

>> ct = inv(A)*b; % classic pitfall, may be unstable

>> norm(A*ct-b) / norm(b) % rel resid terrible, proving it’s unstable!

0.046875

>> ct = linsolve(A,b); % use (backward) stable solver

>> norm(A*ct-b) / norm(b) % rel resid O(e_mach): must be if stable

8.54650082837135e-17

>> norm(ct-c) / norm(c) % rel err in soln? huge, but that’s ok...

0.0426438890711514

If time: here’s one stable way to store a soln operator. . .

[U,S,V] = svd(A); W = diag(1./diag(S))*U’; % inv(A)=VW, need two factors

ct = V*(W*b); % apply them to any RHS

norm(A*ct-b) / norm(b) % rel resid again O(e_mach)

2.83455365181694e-16



MATLAB demo: unstable vs stable linear solve
>> c = [1;2;3]; % "true" solution column vector

>> A = ones(3,3) + 1e-14*rand(3,3) % system matrix (precisely: ill-cond.)

A = 1.00000000000001 1.00000000000001 1

1.00000000000001 1.00000000000001 1.00000000000001

1 1 1.00000000000001

>> b = A*c; % make data (input to solver)

Now let’s do some solving. . .

>> ct = inv(A)*b; % classic pitfall, may be unstable

>> norm(A*ct-b) / norm(b) % rel resid terrible, proving it’s unstable!

0.046875

>> ct = linsolve(A,b); % use (backward) stable solver

>> norm(A*ct-b) / norm(b) % rel resid O(e_mach): must be if stable

8.54650082837135e-17

>> norm(ct-c) / norm(c) % rel err in soln? huge, but that’s ok...

0.0426438890711514

If time: here’s one stable way to store a soln operator. . .

[U,S,V] = svd(A); W = diag(1./diag(S))*U’; % inv(A)=VW, need two factors

ct = V*(W*b); % apply them to any RHS

norm(A*ct-b) / norm(b) % rel resid again O(e_mach)

2.83455365181694e-16



MATLAB demo: unstable vs stable linear solve
>> c = [1;2;3]; % "true" solution column vector

>> A = ones(3,3) + 1e-14*rand(3,3) % system matrix (precisely: ill-cond.)

A = 1.00000000000001 1.00000000000001 1

1.00000000000001 1.00000000000001 1.00000000000001

1 1 1.00000000000001

>> b = A*c; % make data (input to solver)

Now let’s do some solving. . .

>> ct = inv(A)*b; % classic pitfall, may be unstable

>> norm(A*ct-b) / norm(b) % rel resid terrible, proving it’s unstable!

0.046875

>> ct = linsolve(A,b); % use (backward) stable solver

>> norm(A*ct-b) / norm(b) % rel resid O(e_mach): must be if stable

8.54650082837135e-17

>> norm(ct-c) / norm(c) % rel err in soln? huge, but that’s ok...

0.0426438890711514

If time: here’s one stable way to store a soln operator. . .

[U,S,V] = svd(A); W = diag(1./diag(S))*U’; % inv(A)=VW, need two factors

ct = V*(W*b); % apply them to any RHS

norm(A*ct-b) / norm(b) % rel resid again O(e_mach)

2.83455365181694e-16



If time: conditioning of linear systems

For vector map f(x), condition number is

κ(x) := lim
δx→0

sup
‖δx‖≤δx

‖δf‖/‖f‖
‖δx‖/‖x‖

• Lin. solve task: can show κ(b) ≤ κ(A) := ‖A‖ ‖A−1‖ = σ1(A)
σN(A) or ∞

Consequence for how accurate solution c̃ is? Let ε = ‖c̃−c‖
‖c‖ rel. soln. err.

Now recall: stable solver (best you can demand) has ε = O(κεmach)
if A ill-cond, natural that c floppy in certain directions, since residual small

• Idea useful in inverse problems: replace εmach by meas. err; reverse above pic!

Idea to sample all c consistent w/ small residual → Bayes Inv. Prob. (Bob, Fri 9:10am)



Recap

• Convergence rates (type & prefactor) key to measure and understand

• Finite-precision εmach can be amplified by catastrophic cancellation

• Before methods, first understand condition # of your problem
condition number of problem combines with εmach to limit accuracy of any method

• Stable methods: solve exactly some εmach-perturbation of problem
“(un)stable” vs “ill-conditioned” have precise definitions: learn and use!

check for unstable method and avoid

• For linear systems: “stable” ⇔ finds relative residual O(εmach)



References for today material

• Numerical Methods. Anne Greenbaum & Tim Chartier. book (2012)
• Numerical Linear Algebra. Trefethen & Bau. book (1997)

Convergence acceleration and all-round fun:
• The SIAM 100-Digit Challenge. book (2004)

Randomized SVD, PCA, and big matrix factorizations:
• Halko, Martinsson & Tropp. SIAM Rev. 53(2) 217–288 (2011)
• Martinsson’s slides at http://users.oden.utexas.edu/~pgm

I will host slides at https://users.flatironinstitute.org/~ahb

(also see: 2019 FWAM on interpolation & quadrature; Burns on PDE)

Starting new Sci. Comput. Seminar & Concepts, 9:45am Tues, 3rd fl.
(fortnightly from 10/26, see Indico)

THANK-YOU!

http://users.oden.utexas.edu/~pgm
https://users.flatironinstitute.org/~ahb

