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Crucial practical advice & good habits, examples, further reading

how does accuracy improve with effort? rate of convergence

finite-precision (“rounding error”) considerations

what accuracy is reasonable to demand? conditioning of a problem

did you mess up getting such accuracy? stability of an algorithm



Crucial practical advice & good habits, examples, further reading

how does accuracy improve with effort? rate of convergence

finite-precision (“rounding error”) considerations

what accuracy is reasonable to demand? conditioning of a problem

did you mess up getting such accuracy? stability of an algorithm

Please ask questions* * with finite time-frequency product ®

PS | will ask YOU questions ©



Accuracy: how much to you need? have?

size of error of thing __ |Ycomputed — Ytrue|

Usually care about relative error: € := >—_ == thing Voue]
eg 0.00123 4+ 0.00001 is not “correct to 5 digits”, rather, 2 digits, rel. err. 1072, ie 1% err.
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size of error of thing __ |Ycomputed — Ytrue|

Usually care about relative error: € := >—_ == thing Voue]
eg 0.00123 4+ 0.00001 is not “correct to 5 digits”, rather, 2 digits, rel. err. 1072, ie 1% err.

Interesting things take a while to compute — ise=10"" ok, or need 1010 ?
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Accuracy: how much to you need? have?

size of error of thing __ |Ycomputed — Ytrue|

Usually care about relative error: € := >—_ == thing Dood]
eg 0.00123 4+ 0.00001 is not “correct to 5 digits”, rather, 2 digits, rel. err. 1072, ie 1% err.

Interesting things take a while to compute — ise=10"" ok, or need 1010 ?
In our line of work there is really only one graph that matters:

(V‘:[- ."Ji'é() THE MOST
i IMPORTANT

1{3" S ARATrL
- * _\

e useful to measure and/or understand this even for simple tasks

e is crucial for larger tasks! methods differ in graph shapes (rates)
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Convergence of a computational routine/method

Often a routine has one (usually many) convergence parameters:  “dials”
eg how many iterations you run an iterative method, resolution h = 1/N in discretization,
number of terms in summing a series, depth/width of a neural net, # of input data,
# independent samples you average, size of box (or # particles) in a random simulation,

...and convergence parameters of any sub-functions called inside your beast
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number of terms in summing a series, depth/width of a neural net, # of input data,
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...and convergence parameters of any sub-functions called inside your beast
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Often a routine has one (usually many) convergence parameters:  “dials”
eg how many iterations you run an iterative method, resolution h = 1/N in discretization,
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Convergence of a computational routine/method

Often a routine has one (usually many) convergence parameters:  “dials”
eg how many iterations you run an iterative method, resolution h = 1/N in discretization,
number of terms in summing a series, depth/width of a neural net, # of input data,
# independent samples you average, size of box (or # particles) in a random simulation,

...and convergence parameters of any sub-functions called inside your beast
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Eg. say (N) = cN—2 (“2nd-order”), but complexity O(N3). Qu: cost for 1 extra digit?
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Ans: € — €/10 needs N — /10N, which needs effort mult. by 103/2 & 32 times longer run




Convergence of a computational routine/method

Often a routine has one (usually many) convergence parameters:

eg how many iterations you run an iterative method, resolution h = 1/N in discretization,

“dials”

number of terms in summing a series, depth/width of a neural net, # of input data,
# independent samples you average, size of box (or # particles) in a random simulation,

..and convergence parameters of any sub-functions called inside your beast
Let's simplify: 1 such param, call it N, with limy_, o, giving true answer

Defn. convergence of a method is e(N): how rel. err. ¢ drops as N grows
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Eg. say (N) = cN—2 (“2nd-order”), but complexity O(N3). Qu: cost for 1 extra digit?

Ans: € — €/10 needs N — /10N, which needs effort mult. by 103/2 & 32 times longer run
e some useful methods do not converge, eg asymptotic methods
(V7 /2)erfe(x) := [° e tdt = e*X2(1/2x —1/4x3+...) please don't use N—occ terms!




Convergence £(N): EXAMPLE | (series)
Toy example: goal compute y : =1+ 711 + % +e =300 k=2
function y = truncsum(N)
y=0;
for k=1:N
y =y + 1/k"2;
end

Expected accuracy ¢(N) ?
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Convergence £(N): EXAMPLE | (series)

Toy example: goal compute y : =1+ % + % +e =300 k=2
function y = truncsum(N) N yn
y = 0; 102 1.63498390018489
for k=1:N 103 1.64393456668156
y =y + 1/k"2; 10* 1.64483407184807
end 10°  1.64492406689824
106  1.64493306684877
Expected accuracy e(N) ? 107 1.64493396684726
Quick to experiment with your func: 108  1.64493405783458

e ‘“self-convergence” to unknown y,.. digits “freeze”
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Toy example: goal compute y :=1+ % + % +-.=

PO

YN

function y = truncsum(N) N
y = 0; 10?
for k=1:N 10°
y =y + 1/k"2; 10*
end 10°
10°

Expected accuracy (N) ? 107
Quick to experiment with your func: 108

e ‘“self-convergence” to unknown y,.,. digits “freeze”
e Rate? Use your best y as Vi,

plot errors relative to it.
see e(N) ~ cN~1

math: rigorous tail bnds e(N) < fN

rigor unusual; but think, read, measure the rate, compare!

e slow! accelerate? Richardson (etc) extrapolation

1st-order, algebraic — use loglog plot: é

k—2dk = N-1°

1.63498390018489
1.64393456668156
1.64483407184807
1.64492406689824
1.64493306684877
1.64493396684726
1.64493405783458

Convergence plot £(N)




Convergence: EXAMPLE Il (toy big PCA)

Given M x N dense matrix A  big, eg M = 40000 genes, N = 20000 samples, 7 GB
Seek 01(A) = \/Amux(ATA), and assoc. singular vec. v 1st cmpnt, PCA
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Convergence: EXAMPLE Il (toy big PCA)

Given M x N dense matrix A  big, eg M = 40000 genes, N = 20000 samples, 7 GB
Seek 01(A) = \/Amux(ATA), and assoc. singular vec. v 1st cmpnt, PCA

Simple method: power iteration on ATA  takes 14 s; svd(A) would be ~ 1 hr

v = randn(N,1); v = v/norm(v);
for k=1:30

v = Ax(Axv);

vaorm = norm(v); v = v/vnrm;

siglest(k) = sqrt(vnrm);
end
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Convergence: EXAMPLE Il (toy big PCA)

Given M x N dense matrix A

Seek 01(A) = v/ Amax(ATA), and assoc. singular vec. vy

Simple method: power iteration on AT A

V=
for k=1:30

v = Ax(Axv);

vnrm =
siglest (k)
end

randn(N,1); v =

norm(v); v =

v/norm(v) ;

v/vnrm;

= sqrt(vanrm) ;

plot abs(siglest/siglest(end)-1) vs param. k:

e See ¢ ~ cak

= ce

ak

— use log-lin. plot.

big, eg M = 40000 genes, N = 20000 samples, 7 GB

1st cmpnt, PCA

takes 14 s; svd(A) would be ~ 1 hr

est rel err £

107

10%

R ;
. e
S &,

Convergence plol. < (k)

preasymptotic region

2
R
%,

3
%,

‘4')0
fake improvement
due to using final

as "true” value

5 10 15
iteration k

20 25

Called geometric/exponential conv.

o fast (beats any algebraic order) unless a~ 1 @.

Plenty of theory; we skip
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Convergence: EXAMPLE Il (toy big PCA)

Given M x N dense matrix A  big, eg M = 40000 genes, N = 20000 samples, 7 GB
Seek 01(A) = v/ Amax(ATA), and assoc. singular vec. vy 1st cmpnt, PCA

Simple method: power iteration on ATA  takes 14 s; svd(A) would be ~ 1 hr
_ . _ . Convergence plol. < (k)
o v s wmme; L
v = A7k (Axv); 4\\ /%"so;%
varm = norm(v); v = v/vnrm; M . %m

10%

est rel err £

4
&,

N

siglest(k) = sqrt(vnrm);

fake improvement

end due to using final
10°}  as "true” value

plot abs(siglest/siglest(end)-1) vs param. k: \*i

5 10 15 20 25
iteration k

k ak

e Seec~ ca“=ce”
e fast (beats any algebraic order) unless a~ 1 ®. Plenty of theory; we skip

But much better methods exist: Randomized SVD, Lanczos (ATA), . ...
— lesson is not “code your own methods”, rather “test convergence”!

— use log-lin. plot. Called geometric/exponential conv.




Convergence: EXAMPLE Il (stochastic)

Monte Carlo: iid samples y; drawn from a pdf p
simple task: estimate p := [ yp(y)dy ?

usual estimator 2 = 4 ZJNZI yj sample mean
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Convergence: EXAMPLE Il (stochastic)

Monte Carlo: iid samples y; drawn from a pdf p
simple task: estimate p := [ yp(y)dy ?

usual estimator 2 = 4 ZJNZI Y

e convergence 1-order (theory: CLT) —

sample mean

v. slow!

e error ¢ stochastic — now conv. accel. not poss.

est err £

107 SN
| P,
| [T e
L
w2t T,
LA e
H et RRCS
o3 T AR
1 |/ “ / Y
Lol W
. || A
10 I \
|/
|
10? 10* 10° 108

N (samples averaged)
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Convergence: EXAMPLE Il (stochastic)

Monte Carlo: iid samples y; drawn from a pdf p 10"\@\\3@\9?3%
? "f \\ AN o,
simple task: estimate p := [ yp(y)dy wil 15,
) R : TR
usual estimator i = 4; ijl yj sample mean 7 s AN
1 ol v
e convergence 5-order (theory: CLT) — v. slow! - \/ |
. |
e error € stochastic — now conv. accel. not poss. |
102 10* 10° 10°

N (samples averaged)

OTHER CONVERGENCE EXAMPLES

e Taylor series, poly interpolants: exponential & ~ eV i func analytic
once you have them, integrate/differentiate analytically: spectral methods (Dan, Fri 11:30am)
. . . . _ 2
e Newton methods (root-find in R, or min in RY): & ~ e=N"  “quadratic”
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Monte Carlo: iid samples y; drawn from a pdf p
simple task: estimate p := [ yp(y)dy ?

5
3

usual estimator i = % ijl yj sample mean

e convergence i-order (theory: CLT) — v. slow!
e error € stochastic — now conv. accel. not poss. |

10% 10* 108 108
N (samples averaged)

e Taylor series, poly interpolants: exponential ¢ ~ e~*N

if func analytic
once you have them, integrate/differentiate analytically: spectral methods (Dan, Fri 11:30am)

- . e 2
e Newton methods (root-find in R, or min in RY): e ~ e=N"  “quadratic’

Point isn't to memorize rates of methods: rather measure them (type &
prefactor) by habit in any routine you use/write

Then you can pick a good N to get acceptable ¢, trust results



Floating-point representation, rounding error
So far rounding error basically irrelevant. Now let's face its consequences:
Suneh T G L= 0 1€ €mach /= 1.1e-16 double (64bit)

rri—f o Emach & 6e-8 single (32bit), GPU/TPU
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eg, in double: (1 + le-16) - 1 =7
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Floating-point representation, rounding error

So far rounding error basically irrelevant. Now let's face its consequences:
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Floating-point representation, rounding error

So far rounding error basically irrelevant. Now let's face its consequences:

€mach & 1.1e-16 double (64bit)
Emach & 6e-8 single (32bit), GPU/TPU
Emach A Be-4 “half” (16bit), GPU/TPU
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Floating-point representation, rounding error

So far rounding error basically irrelevant. Now let's face its consequences:

€mach & 1.1e-16 double (64bit)
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|Represents any real to rel. err. € < e..; all arith. done to rel. err. € < €.

eg, in double: (1 + le-16) - 1 =70 And: (1 - le-16) - 1 =7 -1.11022302462516e-16

A) Most common way €., amplified is subtraction “catastrophic cancellation”

eg, by querying values of f(x), estim. f’(x)? h err.in f/ dominant cause?
let’ . F(x+h)—f(x) . 10~% 10—* 1st-order conv.
et's use simplest formula T 10-8 10-8 (balanced causes)

Better: use several p > 2 values to get pth order! 10-12 104 2€mach/h “CC" ©




Floating-point representation, rounding error

So far rounding error basically irrelevant. Now let's face its consequences:

€mach & 1.1e-16 double (64bit)
Emach & 6e-8 single (32bit), GPU/TPU
Emach A Be-4 “half” (16bit), GPU/TPU
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|Represents any real to rel. err. € < e..; all arith. done to rel. err. € < €.

eg, in double: (1 + le-16) - 1 =70 And: (1 - le-16) - 1 =7 -1.11022302462516e-16

A) Most common way €., amplified is subtraction “catastrophic cancellation”

eg, by querying values of f(x), estim. f’(x)? h err.in f/ dominant cause?
let’ . F(x+h)—f(x) . 10~% 10—* 1st-order conv.
et's use simplest formula T 10-8 10-8 (balanced causes)

Better: use several p > 2 values to get pth order! 10-12 104 2&mach/h “CC" ®

B) Even without subtraction (or equiv), err. can accumulate:
N yn

10° 1.64493405783458

10° 7

eg recall
N 2.
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Floating-point representation, rounding error

So far rounding error basically irrelevant. Now let's face its consequences:
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€mach & 1.1e-16 double (64bit)
Emach & 6e-8 single (32bit), GPU/TPU
Emach A Be-4 “half” (16bit), GPU/TPU
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|Represents any real to rel. err. € < e..; all arith. done to rel. err. € < €.

eg, in double: (1 + le-16) - 1 =70 And: (1 - le-16) - 1 =7 -1.11022302462516e-16

A) Most common way €., amplified is subtraction “catastrophic cancellation”

eg, by querying values of f(x), estim. f’(x)? h err.in ' dominant cause?
let’ . F(x+h)—f(x) . 10~% 10—* 1st-order conv.
et's use simplest formula T 10-8 10-8 (balanced causes)

Better: use several p > 2 values to get pth order! 10-12 104 2&mach/h “CC" ®

B) Even without subtraction (or equiv), err. can accumulate:

N YN Here ¢ = \/Esen, bad! ®
108  1.64493405783458 fix?
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Floating-point representation, rounding error

So far rounding error basically irrelevant. Now let's face its consequences:
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€mach & 1.1e-16 double (64bit)
Emach & 6e-8 single (32bit), GPU/TPU
Emach A Be-4 “half” (16bit), GPU/TPU

eR, z ‘

|Represents any real to rel. err. € < e..; all arith. done to rel. err. € < €.

eg, in double: (1 + le-16) - 1 =70 And: (1 - le-16) - 1 =7 -1.11022302462516e-16

A) Most common way €., amplified is subtraction “catastrophic cancellation”

eg, by querying values of f(x), estim. f’(x)? h err.in ' dominant cause?
let’ . F(x+h)—f(x) . 10~% 10—* 1st-order conv.
et's use simplest formula T 10-8 10-8 (balanced causes)

Better: use several p > 2 values to get pth order! 10-12 104 2&mach/h “CC" ®

B) Even without subtraction (or equiv), err. can accumulate:

N YN Here € = /€ e, bad! ®
ezg:,\r;ecall 5 ]_08 1.64493405783458 fix? sum small to large, most stable
w1 k77

10°  1.64493405783458




Floating-point representation, rounding error

So far rounding error basically irrelevant. Now let's face its consequences:
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€mach & 1.1e-16 double (64bit)
Emach & 6e-8 single (32bit), GPU/TPU
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eR, z ‘

|Represents any real to rel. err. € < e..; all arith. done to rel. err. € < €.

eg, in double: (1 + le-16) - 1 =70 And: (1 - le-16) - 1 =7 -1.11022302462516e-16

A) Most common way €., amplified is subtraction “catastrophic cancellation”

eg, by querying values of f(x), estim. f’(x)? h err.in ' dominant cause?
let’ . F(x+h)—f(x) . 10~% 10—* 1st-order conv.
et's use simplest formula ————=": 10-8 10-8 (balanced causes)

Better: use several p > 2 values to get pth order! 10712 10* 2&mach/h “CC" ®

B) Even without subtraction (or equiv), err. can accumulate:

YN Here € = /€ e, bad! ®
ezg:,\r;ecall 5 108 1.64493405783458 fix? sum small to large, most stable
w1 k77

109  1.64493405783458 Usually stoch. & ~ \/Z Tlops €macn




For which tasks is it reasonable to demand accuracy?

Qu: is sin(1e16) reasonable to compute accurately (in double prec.)?
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For which tasks is it reasonable to demand accuracy?

Qu: is sin(1e16) reasonable to compute accurately (in double prec.)?

Ans: nol  x = 100, floating rel. err. emach

504 = sine Femm "/fr@ .
W%ﬁ = % — abs. err. 10%%¢ ., = 1.1 = O(1) wiggle

et A Tk X | — result garbage, just via input variation
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For which tasks is it reasonable to demand accuracy?

Qu: is sin(1e16) reasonable to compute accurately (in double prec.)?

Ans: nol  x = 100, floating rel. err. emach

S04 = sinx Femm f'/ff@
W\/%/ - % — abs. err. 10%%¢ ., = 1.1 = O(1) wiggle
e T oaa X

— result garbage, just via input variation

Defn. (relative) condition number of task “eval. f(x)" is

_ )
K(x) == )

<— sensitivity to rel. change in x

<— converts abs. to rel. error
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For which tasks is it reasonable to demand accuracy?

Qu: is sin(1e16) reasonable to compute accurately (in double prec.)?

/ Ans: nol  x = 100, floating rel. err. emach

£(A = sinx f(r)
WV\ —\ /ﬁ % — abs. err. 10%%¢ ., = 1.1 = O(1) wiggle

< eme S au X — result garbage, just via input variation

Defn. (relative) condition number of task “eval. f(x)" is

_ )
K(x) == )

<— sensitivity to rel. change in x

<— converts abs. to rel. error

gives Rule: for this task, can only demand rel. err. at best € &~ K& pacn

why? look at picture: & must exceed change in f due to emach rel. err. in input x
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For which tasks is it reasonable to demand accuracy?

Qu: is sin(1e16) reasonable to compute accurately (in double prec.)?

Ans: nol  x = 100, floating rel. err. emach

£(A = sinx f"(r)
WV\ —\ /ﬁ % — abs. err. 10%%¢ ., = 1.1 = O(1) wiggle

< eme S au X — result garbage, just via input variation

Defn. (relative) condition number of task “eval. f(x)" is

_ )
K(x) == )

<— sensitivity to rel. change in x

<— converts abs. to rel. error

gives Rule: for this task, can only demand rel. err. at best € &~ K& pacn

why? look at picture: & must exceed change in f due to emach rel. err. in input x

Eg f(x) =sin(x), k(x)=|xcotx| x =101 = k typ. > 106

the problem is ill-conditioned: meaningless to demand any digits in double-prec!
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For which tasks is it reasonable to demand accuracy?

Qu: is sin(1e16) reasonable to compute accurately (in double prec.)?

Ans: nol  x = 100, floating rel. err. emach

£(A = sinx f"(r)
WV\ —\ /ﬁ % — abs. err. 10%%¢ ., = 1.1 = O(1) wiggle

< eme S au X — result garbage, just via input variation

Defn. (relative) condition number of task “eval. f(x)

_ )
K(x) == )

<— sensitivity to rel. change in x

<— converts abs. to rel. error

gives Rule: for this task, can only demand rel. err. at best € &~ K& pacn

why? look at picture: & must exceed change in f due to emach rel. err. in input x
Eg f(x) =sin(x), k(x)=|xcotx| x =101 = k typ. > 106

the problem is ill-conditioned: meaningless to demand any digits in double-prec!
eg x=10° = ktyp. > 10° = expecte~ ?
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For which tasks is it reasonable to demand accuracy?

Qu: is sin(1e16) reasonable to compute accurately (in double prec.)?

Ans: nol  x = 100, floating rel. err. emach

£(A = sinx f"(r)
WV\ —\ /ﬁ % — abs. err. 10%%¢ ., = 1.1 = O(1) wiggle

< eme S au X — result garbage, just via input variation

Defn. (relative) condition number of task “eval. f(x)

_ )
K(x) == )

<— sensitivity to rel. change in x

<— converts abs. to rel. error

gives Rule: for this task, can only demand rel. err. at best € &~ K& pacn

why? look at picture: & must exceed change in f due to emach rel. err. in input x
Eg f(x) =sin(x), k(x)=|xcotx| x =101 = k typ. > 106

the problem is ill-conditioned: meaningless to demand any digits in double-prec!
eg x =10° = Kk typ. > 10° = expecte~ ? 10~ 1!
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For which tasks is it reasonable to demand accuracy?

Qu: is sin(1e16) reasonable to compute accurately (in double prec.)?

Ans: nol  x = 100, floating rel. err. emach

£(A = sinx f"(r)
WV\ —\ /ﬁ % — abs. err. 10%%¢ ., = 1.1 = O(1) wiggle

< eme S au X — result garbage, just via input variation

Defn. (relative) condition number of task “eval. f(x)

_ )
K(x) == )

<— sensitivity to rel. change in x

<— converts abs. to rel. error

gives Rule: for this task, can only demand rel. err. at best € &~ K& pacn

why? look at picture: & must exceed change in f due to emach rel. err. in input x
Eg f(x) =sin(x), k(x)=|xcotx| x =101 = k typ. > 106

the problem is ill-conditioned: meaningless to demand any digits in double-prec!
eg x =10° = Kk typ. > 10° = expecte~ ? 10~ 1!
egx =1 = k(x) =0.64 = good method should get ¢ = ?
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For which tasks is it reasonable to demand accuracy?

Qu: is sin(1e16) reasonable to compute accurately (in double prec.)?

Ans: nol  x = 100, floating rel. err. emach

£(A = sinx f"(r)
WV\ —\ /ﬁ % — abs. err. 10%%¢ ., = 1.1 = O(1) wiggle

< eme S au X — result garbage, just via input variation

Defn. (relative) condition number of task “eval. f(x)

_ )
K(x) == )

<— sensitivity to rel. change in x

<— converts abs. to rel. error

gives Rule: for this task, can only demand rel. err. at best € &~ K& pacn

why? look at picture: & must exceed change in f due to emach rel. err. in input x

Eg f(x) =sin(x), k(x)=|xcotx| x =101 = k typ. > 106

the problem is ill-conditioned: meaningless to demand any digits in double-prec!
eg x =10° = Kk typ. > 10° = expecte~ ? 10~ 1!

egx =1 = k(x) =0.64 = good method should get € = ? £mach
il_ FLATIRON
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For which tasks is it reasonable to demand accuracy?

Qu: is sin(1e16) reasonable to compute accurately (in double prec.)?

Ans: nol  x = 100, floating rel. err. emach

£(A = sinx f"(r)
WV\ —\ /ﬁ % — abs. err. 10%%¢ ., = 1.1 = O(1) wiggle

< eme S au X — result garbage, just via input variation

Defn. (relative) condition number of task “eval. f(x)

_ )
K(x) == )

<— sensitivity to rel. change in x

<— converts abs. to rel. error

gives Rule: for this task, can only demand rel. err. at best € &~ K& pacn

why? look at picture: & must exceed change in f due to emach rel. err. in input x
Eg f(x) =sin(x), k(x)=|xcotx| x =101 = k typ. > 106

the problem is ill-conditioned: meaningless to demand any digits in double-prec!
eg x =10° = Kk typ. > 10° = expecte~ ? 10~ 1!
egx =1 = k(x) =0.64 = good method should get € = ? £mach
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Stability of an algorithm (method) for some task
_ |xf (x)

Recap: task “eval. f(x)" has cond. # r(x ‘ indep. of any method




Stability of an algorithm (method) for some task

Recap: task “eval. f(x)" has cond. # k(x) := xf(x) indep. of any method
f(x)

Defn. A method for this task called backward stable if returns an exact
answer f(X) for some perturbed data X with |%x — x|/|x| = O(€mnaen)

e modern notion of stability here O implies some “small” const, eg < 102
Thus: backward stable = rel. err. ¢ = O(KJ&?mach) by rule: can't demand more!




Recap: task “eval. f(x)" has cond. # k(x) := | indep. of any method

Defn. A method for this task called backward stable if returns an exact
answer f(x) for some perturbed data X with |x — x|/|x| = O(€macn)

e modern notion of stability here © implies some “small’ const, eg < 102
Thus: backward stable = rel. err. ¢ = O(K/Emach) by rule: can't demand more!

1) Consequences for physical simulations (nonlinear ODEs, PDEs. . .)
Eg, task: solve ODE

v =F(t,u) for0<t<T
u(0) = x initial condition

Output “f(x)" is final state u(T)



Recap: task “eval. f(x)" has cond. # k(x) := | o) ’ indep. of any method

Defn. A method for this task called backward stable if returns an exact
answer f(x) for some perturbed data X with |x — x|/|x| = O(€macn)

e modern notion of stability here © implies some “small’ const, eg < 102
Thus: backward stable = rel. err. ¢ = O(’fsmach) by rule: can't demand more!

1) Consequences for physical simulations (nonlinear ODEs, PDEs. . .)

Eg’ task: solve ODE i ﬂ)reni‘(l%l) bDE sy‘s‘telﬂt‘ il e
i exponential separation of trajectories | =
u=F(t,u) for0<t<T It I /\

e e - I 7\ [t ,"""'1‘ >
u(0) = x initial condition | L \ | g\ \ i 7
xR A D
Output “f(x)" is final state u(T) \ V’f\j I W gy

K = sensitivity to IC il il ‘ jﬂ‘irpe}‘;in‘siq‘ml‘at?iqn,{




Recap: task “eval. f(x)" has cond. # k(x) := | o) ’ indep. of any method

Defn. A method for this task called backward stable if returns an exact
answer f(x) for some perturbed data X with |x — x|/|x| = O(€macn)

e modern notion of stability here © implies some “small’ const, eg < 102
Thus: backward stable = rel. err. ¢ = O(’fsmach) by rule: can't demand more!

1) Consequences for physical simulations (nonlinear ODEs, PDEs. . .)

Eg’ task: solve ODE i ﬂ)reni‘(l%l) bDE sy‘s‘telﬂt‘ il e
i exponential separation of trajectories | =
u=F(t,u) for0<t<T S e fl
u(0) = x initial condition - . /" | | (i
':x.?‘I I fR :iﬁ /il g
Output “f(x)" is final state u(T) 1? V’f\‘j I %)
K = sensitivity to IC il il ‘ jﬂ‘irpe}‘;in‘siq‘ml‘at?iqn,{

e common that k ~ e*T ¢
e then even stable solver must soon lose all accurate digits see: shadowing

e meaning of long-T numerics is only statistical (correlations, manifold, etc)

Lyapunov exponent A > 0, chaos, eg n-body sims.)



Stability of algorithms: more examples
Recap: (backward) stable if “exact answer to nearly the right question”
2) There are unstable algorithms . ..don't use them!

Eg eval. f(x) =1 —cos(x), for|x|] <1 we all know f(x) = x?/2 + O(x*)
ALWAYS FIRST ASK: s task (problem) well-conditioned?
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Stability of algorithms: more examples

Recap: (backward) stable if “exact answer to nearly the right question”

2) There are unstable algorithms . ..don't use them!
Eg eval. f(x) =1 —cos(x), for|x|] <1 we all know f(x) = x?/2 + O(x*)
ALWAYS FIRST ASK: s task (problem) well-conditioned? yes, Kk /2 2

Now, methods: naive code 1-cos(x) stable ?
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Stability of algorithms: more examples

Recap: (backward) stable if “exact answer to nearly the right question”

2) There are unstable algorithms . ..don't use them!
Eg eval. f(x) =1 —cos(x), for|x|] <1 we all know f(x) = x?/2 + O(x*)
ALWAYS FIRST ASK: s task (problem) well-conditioned? yes, Kk /2 2
Now, methods: naive code 1-cos(x) stable ? no: catastrophic cancellation!
...w/o clarity on conditioning vs stability, may conclude ill-conditioned problem. Not so!

Suggest stable methods?
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Stability of algorithms: more examples

Recap: (backward) stable if “exact answer to nearly the right question”

2) There are unstable algorithms . ..don't use them!
Eg eval. f(x) =1 —cos(x), for|x|] <1 we all know f(x) = x?/2 + O(x*)
ALWAYS FIRST ASK: s task (problem) well-conditioned? yes, Kk /2 2
Now, methods: naive code 1-cos(x) stable ? no: catastrophic cancellation!
...w/o clarity on conditioning vs stability, may conclude ill-conditioned problem. Not so!

Suggest stable methods? i) 2*sin(x/2) "2
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Stability of algorithms: more examples

Recap: (backward) stable if “exact answer to nearly the right question”

2) There are unstable algorithms . ..don't use them!
Eg eval. f(x) =1 —cos(x), for|x|] <1 we all know f(x) = x?/2 + O(x*)
ALWAYS FIRST ASK: s task (problem) well-conditioned? yes, Kk /2 2
Now, methods: naive code 1-cos(x) stable ? no: catastrophic cancellation!
...w/o clarity on conditioning vs stability, may conclude ill-conditioned problem. Not so!

Suggest stable methods? i) 2*sin(x/2)"2 ii) Taylor series (how many terms? conv...)
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Stability of algorithms: more examples

Recap: (backward) stable if “exact answer to nearly the right question”

2) There are unstable algorithms . ..don't use them!
Eg eval. f(x) =1 —cos(x), for|x|] <1 we all know f(x) = x?/2 + O(x*)
ALWAYS FIRST ASK: s task (problem) well-conditioned? yes, Kk /2 2
Now, methods: naive code 1-cos(x) stable ? no: catastrophic cancellation!
...w/o clarity on conditioning vs stability, may conclude ill-conditioned problem. Not so!

Suggest stable methods? i) 2*sin(x/2)"2 ii) Taylor series (how many terms? conv...)

3) Linear systems: solve Ac = b, square N x N needs whole lecture

Task is f(b) ="c soIving Ac =Db" brain hurts because b is input, c is output!
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Stability of algorithms: more examples

Recap: (backward) stable if “exact answer to nearly the right question”

2) There are unstable algorithms . ..don't use them!
Eg eval. f(x) =1 —cos(x), for|x|] <1 we all know f(x) = x?/2 + O(x*)
ALWAYS FIRST ASK: s task (problem) well-conditioned? yes, Kk /2 2
Now, methods: naive code 1-cos(x) stable ? no: catastrophic cancellation!
...w/o clarity on conditioning vs stability, may conclude ill-conditioned problem. Not so!

Suggest stable methods? i) 2*sin(x/2)"2 ii) Taylor series (how many terms? conv...)

3) Linear systems: solve Ac = b, square N x N needs whole lecture

Task is f(b) ="c solving Ac =Db" brain hurts because b is input, c is output!
C e & : = _ B lb—b| _

Stable alg: gives € solving A€ = b exactly, where o = O(Emach)

. . o . ||AE—
Defn. relative residual of € is %:
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Stability of algorithms: more examples

Recap: (backward) stable if “exact answer to nearly the right question”

2) There are unstable algorithms . ..don't use them!
Eg eval. f(x) =1 —cos(x), for|x|] <1 we all know f(x) = x?/2 + O(x*)
ALWAYS FIRST ASK: s task (problem) well-conditioned? yes, Kk /2 2
Now, methods: naive code 1-cos(x) stable ? no: catastrophic cancellation!
...w/o clarity on conditioning vs stability, may conclude ill-conditioned problem. Not so!

Suggest stable methods? i) 2*sin(x/2)"2 ii) Taylor series (how many terms? conv...)
3) Linear systems: solve Ac = b, square N x N needs whole lecture
Task is f(b) ="c solving Ac =Db" brain hurts because b is input, c is output!

Stable alg: gives €& solving A€ = b exactly, where Hl"‘;ﬁ’” = O(Emach)

[AE—b] .

Defn. relative residual of € is HTlll' Stable alg < Rel. resid. O(&paa)

e even a stable alg doesn't mean € is close to c . ..

Let's demo a classic unstable algorithm . .. i\_ SR




MATLAB demo: unstable vs stable linear solve

>> ¢ = [1;2;3]; % "true" solution column vector
>> A = ones(3,3) + le-14xrand(3,3) % system matrix (precisely: ill-cond.)
A= 1.00000000000001 1.00000000000001 1
1.00000000000001 1.00000000000001 1.00000000000001
1 1 1.00000000000001
>> b = Axc; % make data (input to solver)

ﬂ_ FLATIRON

NSTITUTE

N e




MATLAB demo: unstable vs stable linear solve

>> ¢ = [1;2;3]; % "true" solution column vector
>> A = ones(3,3) + le-14xrand(3,3) % system matrix (precisely: ill-cond.)
A= 1.00000000000001 1.00000000000001 1
1.00000000000001 1.00000000000001 1.00000000000001
1 1 1.00000000000001
>> b = Axc; % make data (input to solver)

Now let’s do some solving. ..

>> ct = inv(A)*b; % classic pitfall, may be unstable
>> norm(A*ct-b) / norm(b) % rel resid terrible, proving it’s unstable!
0.046875

q_ FLATIRON

N »]‘>




MATLAB demo: unstable

>> ¢ = [1;2;3];
>> A = ones(3,3) + le-14*rand(3,3)
A= 1.00000000000001
1.00000000000001
1
>> b = Axc;

Now let’s do some solving. ..

>> ct = inv(A)*b;
>> norm(A*ct-b) / norm(b)
0.046875

>> ct = linsolve(A,b);
>> norm(A*ct-b) / norm(b)
8.54650082837135e-17

vs stable linear solve

e

==

==

% "true" solution column vector
% system matrix (precisely: ill-cond.)

.00000000000001 1
.00000000000001

1.00000000000001
1 1.00000000000001
% make data (input to solver)

classic pitfall, may be unstable
rel resid terrible, proving it’s unstable!

use (backward) stable solver
rel resid O(e_mach): must be if stable
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MATLAB demo: unstable vs stable linear solve

>> ¢ = [1;2;3]; % "true" solution column vector
>> A = ones(3,3) + le-14xrand(3,3) % system matrix (precisely: ill-cond.)
A= 1.00000000000001 1.00000000000001 1
1.00000000000001 1.00000000000001 1.00000000000001
1 1 1.00000000000001
>> b = Axc; % make data (input to solver)

Now let’s do some solving. ..

>> ct = inv(A)*b; % classic pitfall, may be unstable
>> norm(A*ct-b) / norm(b) % rel resid terrible, proving it’s unstable!
0.046875
>> ct = linsolve(A,b); % use (backward) stable solver
>> norm(A*ct-b) / norm(b) % rel resid O(e_mach): must be if stable
8.54650082837135e-17
>> norm(ct-c) / norm(c) % rel err in soln? huge, but that’s ok...

0.0426438890711514
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MATLAB demo: unstable

>> ¢ = [1;2;3];
>> A = ones(3,3) + le-14*rand(3,3)
A= 1.00000000000001
1.00000000000001
1
>> b = Axc;

Now let’s do some solving. ..

>> ct = inv(A)*b;
>> norm(A*ct-b) / norm(b)
0.046875

>> ct = linsolve(A,b);
>> norm(A*ct-b) / norm(b)
8.54650082837135e-17

>> norm(ct-c) / norm(c)
0.0426438890711514

vs stable linear solve

e

% "true" solution column vector
% system matrix (precisely: ill-cond.)

.00000000000001 1
.00000000000001

1.00000000000001
1 1.00000000000001
% make data (input to solver)

classic pitfall, may be unstable
rel resid terrible, proving it’s unstable!

use (backward) stable solver
rel resid 0O(e_mach): must be if stable

rel err in soln? huge, but that’s ok...

If time: here's one stable way to store a soln operator. . .

[U,S8,V] = svd(A); W = diag(l./diag(S))*U’;

ct = Vx(W*Db);
norm(A*ct-b) / norm(b)
2.83455365181694e-16

% inv(A)=VW, need two factors
% apply them to any RHS
% rel resid again 0(e_mach)
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If time: conditioning of linear systems

For vector map f(x), condition number is

15F1/11]
rk(x lim sup ———r—r
O = i s 151/l

o Lin. solve task: can show r(b) < r(A) == | Al| [A~}]| = 2%

(A) or oo

l[E=cll

el rel. soln. err.

Now recall:  stable solver (best you can demand) has € = O(k&maa)

if A ill-cond, natural that c floppy in certain directions, since residual small

Consequence for how accurate solution € is? Let e =

o |dea useful in inverse problems: replace £mach by meas. err; reverse above pic!

Idea to sample all ¢ consistent w/ small residual — Bayes Inv. Prob. (Bob, Fri 9:10am)
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Convergence rates (type & prefactor) key to measure and understand
Finite-precision &,.. can be amplified by catastrophic cancellation

Before methods, first understand condition # of your problem

condition number of problem combines with £.,,c to limit accuracy of any method

Stable methods: solve exactly some &,,,.,-perturbation of problem
“(un)stable” vs “ill-conditioned” have precise definitions: learn and use!

check for unstable method and avoid

For linear systems:  “stable” <« finds relative residual O(&ma)



e Numerical Methods. Anne Greenbaum & Tim Chartier. book (2012)
e Numerical Linear Algebra. Trefethen & Bau. book (1997)

Convergence acceleration and all-round fun:
e The SIAM 100-Digit Challenge. book (2004)

Randomized SVD, PCA, and big matrix factorizations:
e Halko, Martinsson & Tropp. SIAM Rev. 53(2) 217-288 (2011)
e Martinsson's slides at http://users.oden.utexas.edu/~pgn

| will host slides at https://users.flatironinstitute.org/~ahb
(also see: 2019 FWAM on interpolation & quadrature; Burns on PDE)

Starting new Sci. Comput. Seminar & Concepts, 9:45am Tues, 3rd fl.
(fortnightly from 10/26, see Indico)

THANK-YOU!


http://users.oden.utexas.edu/~pgm
https://users.flatironinstitute.org/~ahb

