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Overview of Nystrom (and not-so-Nystrom) high-order
surface quadratures for fast solvers
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Setting: solving linear BVPs
Lu=0 in Q, Q C RY, interior or exterior domain in d = 2,3 dims
u="f,ordu/On=f, or mix on boundary I' :== 0Q (& decay conds)
L = 2"9-order elliptic diff. op. whose fundamental soln G known
L usually constant-coeff.  but need not be! (B-Nelson-Mahoney '15)
Apps: electrostatics, waves (EM/acoustic), fluids & vesicles, t-step heat

u scalar: Laplace, Helmholtz (& mod.), biharmonic (& mod.)
u vector: Stokes, Maxwell, Beltrami
i 1y

data f: e.g. cancels incident field, or effect of volume potential
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e Convert to IE: e.g. “indirect”, interior Dirichlet Lap. 2D, unknown “density” 7 on I’
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jump relation: U (X) = I|mh_>0+ U(X — hnX) = ((D — %)T)(X) = f(X) xel

(Also 3 “direct” formulation: adjoint BIE, physical unknown, RHS more painful)




Setting: solving linear BVPs

Lu=0 in Q, Q C RY, interior or exterior domain in d = 2,3 dims
u="f,ordu/On=f, or mix on boundary I' :== 0Q (& decay conds)

L = 2"9-order elliptic diff. op. whose fundamental soln G known
L usually constant-coeff.  but need not be! (B-Nelson-Mahoney '15)

Apps: electrostatics, waves (EM/acoustic), fluids & vesicles, t-step heat
u scalar: Laplace, Helmholtz (& mod.), biharmonic (& mod.)
u vector: Stokes, Maxwell, Beltrami
. i L
data f: e.g. cancels incident field, or effect of volume potential

e Convert to IE: e.g. “indirect”, interior Dirichlet Lap. 2D, unknown “density” 7 on I’
u(x) = (D7)(x) := [ 250 (y)ds,  Glxv) = los(i/n)/2n r=x v
jump relation: U (X) = I|mh_>0+ U(X — hnX) = ((D — %)T)(X) = f(X) xel

(Also 3 “direct” formulation: adjoint BIE, physical unknown, RHS more painful)

Fredholm 2nd—kind BIE on I (/ + K)T = f| + task: approx. this by lin. sys.

K(x, y) is as smooth as I, plus weak (i.e. integrable) singularity at x = y:

If I smooth:  logr or r2logrin d = 2; rlind=3




Two routes to represent density 7

(G) global spectral accuracy, convergence via degree p — oo, err ~c P, N~ pd_1

obstacles simple, smooth
some adaptivity poss. (Kress corners)
(sinh-bunching, B et al. '16)

underlying basis: Fourier / sph. harm.

peri. trap. rule sph. harms. macro Cheby. patches
(Rahimian et al)  (Bruno, Turc et al.)




Two routes to represent density 7

(G) global spectral accuracy, convergence via degree p — oo, err ~c P, N~ pd_1

obstacles simple, smooth
some adaptivity poss. (Kress corners)
(sinh-bunching, B et al. '16)

underlying basis: Fourier / sph. harm.

peri. trap. rule sph. harms. macro Cheby. patches
(Rahimian et al)  (Bruno, Turc et al.)

(L) local fixed panel order p, conv. via h — 0, err O(hP). N ~ ht—d
adaptivity and/or CAD geoms.

can split any panel indep. of others
h — 0 with a CAD mesh? we wish

recent tri nodes:

A
Vioreanu—Rokhlin
G-L panels G-L quads 4th-ord tri's
(B et al. '19) (O'Neil '17)
Well-cond p?=1 x p9=1 matrices map values at nodes <> basis coeffs




Two religions of discretizing the IE (I + K)7 = f

e Nystrdm, impose IE at nodes {x;}¥ ;: 7+ (K7)(x))=Ff i=1....N

N (d — 1)-dim singular ints, using 7 interp from {7;} := {7(x;)} -




Two religions of discretizing the IE (/1 + K)7 = f

e Nystrdm, impose IE at nodes {x;}¥ ;: 7+ (K7)(x))=Ff i=1....N
N (d — 1)-dim singular ints, using 7 interp from {7;} := {7(x;)} -

e Galerkin, project into basis 7 = SN | @m@m:
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n
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Two religions of discretizing the IE (/1 + K)7 = f
e Nystrdm, impose IE at nodes {x;}¥ ;: 7+ (K7)(x))=Ff i=1....N

N (d — 1)-dim singular ints, using 7 interp from {7;} := {7(x;)} -

e Galerkin, project into basis 7 = SN | @m@m:

Z[(‘Pmaﬂon)‘i‘(@maKﬂon)]an = ((,Dm,f) m=1,...,N

n
N2 2(d — 1)-dim ints, of which > N singular -

(G) global 3D: smoothly deformed sphere, cost O(p°)  (Graham-Sloan '02)
Stokes: vesicles, red blood cells (Rahimian, Veerapaneni, Biros,...)
smooth bodies, Helmholtz, Maxwell (Ganesh, Hawkins,...)

(L) tri/quad panels: many 4D quadrature rules (Sauter-Schwab, Ch. 5)
software, p = 0,1 & Maxwell RWG: BEM++ (Betcke, Smigaj et al '15)
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Two religions of discretizing the IE  (/ + K)7 =

e Nystrdm, impose IE at nodes {x;}¥ ;: 7+ (K7)(x))=Ff i=1....N
N (d — 1)-dim singular ints, using 7 interp from {7;} := {7(x;)} -

e Galerkin, project into basis 7 = SN | @m@m:

Z[(‘vaﬁon)‘i‘(@maKS@n)]an = (om,f) m=1,...,N

n
N2 2(d — 1)-dim ints, of which > N singular -

(G) global 3D: smoothly deformed sphere, cost O(p°)  (Graham-Sloan '02)
Stokes: vesicles, red blood cells (Rahimian, Veerapaneni, Biros,...)
smooth bodies, Helmholtz, Maxwell (Ganesh, Hawkins,...)

(L) tri/quad panels: many 4D quadrature rules (Sauter-Schwab, Ch. 5)
software, p = 0,1 & Maxwell RWG: BEM++ (Betcke, Smigaj et al '15)

Which use? At same order, accuracy basically same (Kress '99, etc)
Galerkin: nastier numerical integrals, slower set-up (Canino '98)

Galerkin more mature convergence theory, industrial codes
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Thus, the rest of this review is about Nystrom. ..




Quadrature task & categories
Recall Nystrom: Ti + (KT)(X,') =f, surface nodes i = 1,..., N
Task: given vector T := {73}JN:1 eval. (K7)(x;) at all N targets x;

e equiv. to filling matrix els. in linear system: 7+ AT =f

TUTE
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Recall Nystrom: 7, + (K7)(x;) = f;, surface nodes i = 1,..., N
Task: given vector T := {73}JN:1 eval. (K7)(x;) at all N targets x;
e equiv. to filling matrix els. in linear system: 7+ AT =f

Def: “native” (“smooth™”) rule for nodes is weights w; s.t.

/g(x)dsx ~ E w;g(x;j) holds to order > p, for g € C(I)
r ‘
Jj=1

Require: 7 must be resolved (interp.) by nodes to desired acc. ¢, e.g. refined at corners

Q™ FLATIRON




Recall Nystrom: Ti + (KT)(X,') =f, surface nodes i = 1,..., N
Task: given vector T := {TJ}JN:l eval. (K7)(x;) at all N targets x;
e equiv. to filling matrix els. in linear system: 7+ AT =f

Def: “native” (“smooth”) rule for nodes is weights w; s.t.

/g(x)dsx ~ Z w;g(x;j) holds to order > p, for g € C(I)
r ;
Jj=1

Require: 7 must be resolved (interp.) by nodes to desired acc. ¢, e.g. refined at corners

Apart from (G) vs (L) for density 7 rep, other axes to categorize. . .

FMM /FDS-compatible?  only O(N) els. differ from | native Aj = K (x;, x;)w;

Precomputation (store A; good for rigid body) vs on-the-fly? (moving geoms.)

Solely Nystrom (on-surf.) task, vs also bonus off-surf. target evals.?

Needs only on-surf. geom, vs also needs off-surf. pts?

Ease of switching to new kernels? eg. toroidal ...



METHOD CATEGORY A: On-surface

Here we access kernel K(x;,y), only for y € T underlying PDE not exploited
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METHOD CATEGORY A: On-surface

Here we access kernel K(x;,y), only for y € T underlying PDE not exploited

A.(G) : global density
A.(G).i: spectral : O(N?): all els. differ from native A; = K(x;, x;)w;

2D: product quadratures, exact for fregs. up to =N /2 (Kress '01)
split  K(t,s) = v(t,s)log(4sin? %\t —s|) + ¢(t,s), for some ¢, € C>=([0,2m)?)
Need formulae for P, ¢ Lap, Helm. etc known ... but algebra for new kernels
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METHOD CATEGORY A: On-surface

Here we access kernel K(x;,y), only for y € T underlying PDE not exploited

A.(G) : global density
A.(G).i: spectral : O(N?): all els. differ from native A; = K(x;, x;)w;
2D: product quadratures, exact for fregs. up to =N /2 (Kress '01)
split  K(t,s) = v(t,s)log(4sin? %\t —s|) + ¢(t,s), for some ¢, € C>=([0,2m)?)
Need formulae for ”(ﬂ, (b Lap, Helm. etc known ... but algebra for new kernels

Related: spectral close off-surf. eval, u = Re (Cauchy int. in barycentric form)

(loakimidis '91; DLP Helsing '08, SLP B—Veerapaneni-Wu '14)

Helm+Lap: MPSpack (B '09), Stokes+Lap (FMM'ed Kress!): pybie2d (Stein '18)
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METHOD CATEGORY A: On-surface

Here we access kernel K(x;,y), only for y € T underlying PDE not exploited
A.(G) : global density
A.(G).i: spectral : O(N?): all els. differ from native A; = K(x;, x;)w;
2D: product quadratures, exact for fregs. up to =N /2 (Kress '01)
split  K(t,s) = v(t,s)log(4sin? %\t —s|) + ¢(t,s), for some ¥, ¢ € C>°([0, 27)?)
Need formulae for ”(ﬂ, ¢ Lap, Helm. etc known ... but algebra for new kernels

Related: spectral close off-surf. eval, u = Re (Cauchy int. in barycentric form)

(loakimidis '91; DLP Helsing '08, SLP B—Veerapaneni-Wu '14)

Helm+Lap: MPSpack (B '09), Stokes+Lap (FMM'ed Kress!): pybie2d (Stein '18)

3D: diffeo. of sphere: O(N2 log N) recall N = p?> (Gimbutas—Veerapaneni '14)

grid vals <+ sph harms fast
(azimuthal 1D FFT)

eval sph harms at p* rot grid pts
errle-12 ' ' (elevational 1D NUFFT) ]~ FLATIRON
N




A.(G) on-surf. global [cont.]

A.(G).ii: order p near-diag. correction : O(p?~1N) els. differ from native
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A.(G) on-surf. global [cont.]

A.(G).ii: order p near-diag. correction : O(p?~1N) els. differ from native

“Auxiliary node" idea: custom quadr. scheme {Yz(i)7 Wéi)} for each target i

aux nodes

2§
% err O(hP) for integrand f(t)log|s — ti| + g(t)
gt via = 2p off-grid aux. nodes (Alpert '99)
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A.(G) on-surf. global [cont.]

A.(G).ii: order p near-diag. correction :

O(p9~1N) els. differ from native

‘Auxiliary node” idea: custom quadr. scheme {ye('.)7 ng")} for each target i

aux nodes

2 D : for target

e deelg
2
}/./&
¥,

target Xx;

smooth
POU

3D:

err O(hP) for integrand f(t)log|s — t;| + g(t)

via & 2p off-grid aux. nodes

macro Cheby patch

(Alpert '99)

polar idea:

1/r cancelled by metric rdrd®

note lim,_o rK(x;, y(r, 0)) varies with 6!
partition of unity, polar aux grid
(Bruno—Kunyansky '01)

(Malhotra '19)
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A.(G) on-surf. global [cont.]
A.(G).ii: order p near-diag. correction : O(p?~1N) els. differ from native

‘Auxiliary node” idea: custom quadr. scheme {ye('.)7 Wéi)} for each target i

aux nodes

oD: fmrgi
/:7;77&.: err O(hP) for integrand f(t)log|s — t;| + g(t)
arget ¥, i via & 2p off-grid aux. nodes (Alpert '99)
smog)lh p0|ar |dea
POU
3D macro Cheby patch 1/r cancelled by metric rdrd®

note lim,_o rK(x;, y(r, 0)) varies with 6!

partition of unity, polar aux grid

(Bruno—Kunyansky '01)
(Malhotra '19)

support of POU

How get 7 at aux nodes? local p-order Lagrange interp. q_ TN
rE

Thus: (near-diag blk of A) & (kernel eval at aux nodes) x (interp matrix) \




A.(L) on-surf. for local panel density

nej self

Common idea in d = 2,3 for pth order scheme:
nei e special rules for near (self+nei) panels
e native rule Aj = K(x;, x;)w; for far FMM-compat.




A.(L) on-surf. for local panel density

Common idea in d = 2,3 for pth order scheme:
e special rules for near (self+nei) panels

ptwise soln err

10'10 L

10'12 L

e native rule Aj = K(x;, xj)w; for far

rd

\ 3rd ord ]

60

100 200 300 500'

N

refined here\

FMM-compat.

Bizarre, little-known h — 0 convergence! :

Here test soln err, Helm CFIE
freq k = 2, std level-restricted splits
Why bottom out at 1st-order?




A.(L) on-surf. for local panel density

nej self

Common idea in d = 2,3 for pth order scheme:
e special rules for near (self+nei) panels
e native rule Aj = K(x;, xj)w; for far FMM-compat.

Bizarre, little-known h — 0 convergence!

Here test soln err, Helm CFIE

refined here freq k = 2, std level-restricted splits
-6 ¢
10 . Why bottom out at 1st-order?
Ist
5 100 “nearest far panel” (NFP) controls native err:
§ 5 + 1 Gauss I}egefldxf‘f:ll'tlle‘
— tz Ez — err ior log — S
g G-L €p ~ P p, > =t 105 on [-1,1]
a qo 10t Lem T T N
R X . target |5
/" nearest far source panel  panel &
! | | P -10
\ -l 1 nei T\self }3—) 10
10712 ¢ *._ Bernstein p—ellip§e/'
R =2 10°15 |
. ¥, %% scheme formally O(hP+€,h) 2 4 6 81012
60 100 200 300 500

P
N Thus my rule of thumb: pick p &~ # digits you seek




With that caveat ...on-surf. panel schemes: two types
A.(L).i: analytic

. complex Cauc integra , ¢ formulae avail. elsing—Ojala ’
2D lex Cauchy int | o, formul [ Hel Ojala '08
€as. monomial rep. 7(z) = _qCnz", z € prefer 7(s): a inteberg
Id ial P cnz" C f f Klinteb
2-term recurrence for [*, %dy, then e.g. DLP (D7)(x) = Re;k [ :(Ty;dy
Bonus: great for close off-surf. eval. code: demo*.m (Helsing)

3D: singularity subtraction? in infancy, hard (Helsing note arXiv:1301.7276)




With that caveat ...on-surf. panel schemes: two types
A.(L).i: analytic

2D: complex Cauchy integral «, formulae avail. (Helsing—Ojala '08)
Ideas: monomial rep. 7(z) = Zﬁ;ol cz", zeC (prefer 7(s): af Klinteberg)
2-term recurrence for jil %dy, then e.g. DLP (D7)(x) = Re;k [ ;(Ty;dy
Bonus: great for close off-surf. eval. code: demo*.m (Helsing)

3D: singularity subtraction? in infancy, hard (Helsing note arXiv:1301.7276)

A(L)II aux-node based analytic split not needed
2D: good aux nodes by “gen. Gauss. quadr.” (Rokhlin, Xiao, Gimbutas, ...)

3D: high-p tri's (Bremer-Gimbutas '13)
nei: adaptive splitting
(Vioreanu nodes)

self: radial aux nodes
custom gen Gauss quad in 8

reach 10712, even v. high aspect ratio

3 Fortran (Gimbutas, Rachh in prep.)




With that caveat ...on-surf. panel schemes: two types
A.(L).i: analytic

2D: complex Cauchy integral «, formulae avail. (Helsing—Ojala '08)
Ideas: monomial rep. 7(z) = Zﬁ;ol cz", zeC (prefer 7(s): af Klinteberg)
2-term recurrence for jil %dy, then e.g. DLP (D7)(x) = Re;k [ :(Ty;dy
Bonus: great for close off-surf. eval. code: demo*.m (Helsing)

3D: singularity subtraction? in infancy, hard (Helsing note arXiv:1301.7276)

A(L)II aux-node based analytic split not needed
2D: good aux nodes by “gen. Gauss. quadr.” (Rokhlin, Xiao, Gimbutas, ...)

3D: high-p tri's (Bremer-Gimbutas '13)
nei: adaptive splitting
(Vioreanu nodes)

Structured quads easier

radial aux scheme for 3 x 3 near patch:
(O

self: radial aux nodes ; S
custom gen Gauss quad in 8 0

reach 10712, even v. high aspect ratio not versatile yet: torus diffeo’s only

3 Fortran (Gimbutas, Rachh in prep.) (wave eqn: B-Hagstrom—Greengard '19)




Recall native rule, off-surf. eval. u(x) ~ ZJNZI K(x,xj)wjTj  xeQ

log,(error) in u:

-15

(G) global 71—/

How accurate is it? Exponential in N, but rate depends on target x:

(L) panels

Thm: (B '14) For global peri. trap. rule, analytic curve,
rate = Im (preimage of x under complexification of I' param.)

e Similar estimates for panels (af Klinteberg—Tornberg '17)
2D summary: err = O(e_zﬂd/h) d = dist to surf, h = local node spacing
“5h rule”: d > 5h gets you 10~ 14, closer and lose digits linearly



Recall native rule, off-surf. eval. u(x) ~ Zszl K(x,xj)wjTj  xeQ

log,(error) in u:

-15

(G) global 71—/

How accurate is it? Exponential in N, but rate depends on target x:

(L) panels

Thm: (B '14) For global peri. trap. rule, analytic curve,
rate = Im (preimage of x under complexification of I' param.)

e Similar estimates for panels (af Klinteberg—Tornberg '17)
2D summary: err = O(e_zﬂd/h) d = dist to surf, h = local node spacing
“5h rule”: d > 5h gets you 10~ 14, closer and lose digits linearly

Idea: native eval to points near I', then extrapolate back to target on [

(Yes, sounds crazy. Bonus: also does close-eval task!)

Let's call idea CATEGORY B: off-surface methods



Originally scheme for eval at close target x:  (Ying-Biros—Zorin '06; Quaife. .. )

i) pick line (“spine”) through x hitting ' at xp, near

ii) upsample 7 by factor § > 1 in each dim, e.g. § =2-4
iii) eval at few pts dist > 5h/ via upsampled native rule

iv) interpolate to x, from these pts plus known u(xp) = f(xo)



Method B.1: “Hedgehog” quadrature
Originally scheme for eval at close target x:  (Ying-Biros—Zorin '06; Quaife. . .)

i) pick line (“spine”) through x hitting ' at xp, near

ii) upsample 7 by factor § > 1 in each dim, e.g. § =2-4
iii) eval at few pts dist > 5h/ via upsampled native rule

iv) interpolate to x, from these pts plus known u(xp) = f(xo)

Interpolate for close eval: Can also extrapolate for Nystrom surf quadr:

0 0
target
X 5 5
|7 -10 -10
= -15 target x;el” -5
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Method B.1: “Hedgehog” quadrature
Originally scheme for eval at close target x:  (Ying-Biros—Zorin '06; Quaife. . .)

i) pick line (“spine”) through x hitting ' at xp, near

ii) upsample 7 by factor § > 1 in each dim, e.g. § =2-4
iii) eval at few pts dist > 5h/ via upsampled native rule

iv) interpolate to x, from these pts plus known u(xp) = f(xo)

Interpolate for close eval: Can also extrapolate for Nystrom surf quadr:
0 0

target

X b -5 -5

-10

target x;<I” -15

Adv: PDE-indep, dim-indep, 7-rep-indep, FMM'’able. .. but params to adjust

movie: 10* vesicles + quad panels: N = 6 x 10° ‘ (Morse—Lu—Rahimian—Zorin, in prep)

o Note: all category B methods eval (/ + A)7, not AT
™ FLATIRON
— need 2-sided average, explicit /, to avoid GMRES stagnation \\




B.2: QBX (quadrature by expansion)

Finally (!) use the fact: u satisfies the PDE Lu =0

Idea: eval. “local exp.” U(Z) = Re Zg:O a,,(z — Zo)n here 2D Lap. case
center zy € €, pick e.g. 3h from T

each a, given by a surf int (addition thm): use B-upsampled native rule
“Global” all of T', vs "local” just near panels  (Kléckner—B—O’Neil-Greengard, '13; B '14)




B.2: QBX (quadrature by expansion)

Finally (!) use the fact: u satisfies the PDE Lu =0
Idea: eval. “local exp.” U(Z) = Re ZZ:O a,,(z — Zo)n here 2D Lap. case
e center zp € , pick e.g. 3h from I
e each a, given by a surf int (addition thm): use B-upsampled native rule
“Global” all of T', vs "local” just near panels  (Kléckner—B—O’Neil-Greengard, '13; B '14)

(b) Error using QBX.

Recent variants:

AQBX: automated target-wise choice of p, B (af Klinteberg-Tornberg '17)

e QBKIX: PDE-indep, via proxy sources (Rahimian-B~Zorin '17)
e 3D Line QBX: p not p? terms, closer to hedgehog  (Siegel-Tornberg '18)
e GIGAQBX: integrate w/ FMM: pytential (Wala—Klsckner, '17, '18)

Promise: prescribed-tolerance black-box A apply or Aj; fill not yet




Omitted topics

corners and edges either geometric refinement, or make custom quadr, or both
(Chandler—Graham) (Helsing) (Serkh—Rokhlin) (Lintner-Bruno)

various special methods (Slevinsky—Olver '15) (Carvalho—Khatri-Kim, '18)

analysis

transmission BVPs, diel. contrast, D-N junctions

bodies of revolution curves w/ toroidal kernels

line integrals in 3D (Tornberg—Shelley '04; af Klinteberg—B in prep.)

fundamental solutions (MFS) as alternative to SKIE4Nystrom . ..

Q™ FLATIRON
N o




2D: use Alpert/Kress if global, Helsing if panels; speed faster than FMM
corners: RCIP (Helsing), or (Serkh, Hoskins—Rachh) if analysis avail, N/corner ~ 40
Code? partial, not adaptive, not much ready to non-experts to use

3D: diffeos of sphere w/ global good; panels/patches still research phase
current most robust at high acc. is Bremer—Gimbutas



2D: use Alpert/Kress if global, Helsing if panels; speed faster than FMM
corners: RCIP (Helsing), or (Serkh, Hoskins—Rachh) if analysis avail, N/corner ~ 40
Code? partial, not adaptive, not much ready to non-experts to use

3D: diffeos of sphere w/ global good; panels/patches still research phase
current most robust at high acc. is Bremer—Gimbutas

Lots of fun challenges:

3D speed currently 10°-103 targs/sec/core err 107%: > 10x slower than 3D FMM

automatic apply of high-order Nystrom to CAD /industrial meshes

3D corners, cones, and (generic curving) edges, to high order

related: high aspect ratio / skew panels

fair error/speed comparisions on 3D test probs (2D basically benchmarked)
we're starting to address: needs uniform code interface (O'Neil-Rachh-B)

e 2D /3D documented code for non-experts w/ sensible/adaptive params
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