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Setting: solving linear BVPs

Lu = 0 in Ω, Ω ⊂ Rd , interior or exterior domain in d = 2, 3 dims

u = f , or ∂u/∂n = f , or mix on boundary Γ := ∂Ω (& decay conds)

L = 2nd -order elliptic diff. op. whose fundamental soln G known
L usually constant-coeff. but need not be! (B–Nelson–Mahoney ’15)

Apps: electrostatics, waves (EM/acoustic), fluids & vesicles, t-step heat
u scalar: Laplace, Helmholtz (& mod.), biharmonic (& mod.)

u vector: Stokes, Maxwell, Beltrami

data f : e.g. cancels incident field, or effect of volume potential

x
n

x
Ω

Γ

• Convert to IE: e.g. “indirect”, interior Dirichlet Lap. 2D, unknown “density” τ on Γ

u(x) = (Dτ)(x) :=
∫

Γ
∂G(x ,y)
∂ny

τ(y)dsy G(x , y) = log(1/r)/2π, r = ‖x − y‖

jump relation: u−(x) := limh→0+ u(x − hnx) =
(
(D − 1

2 )τ
)
(x) = f (x) x ∈ Γ

(Also ∃ “direct” formulation: adjoint BIE, physical unknown, RHS more painful)

Fredholm 2nd -kind BIE on Γ: (I + K )τ = f ← task: approx. this by lin. sys.

K (x , y) is as smooth as Γ, plus weak (i.e. integrable) singularity at x = y :
If Γ smooth: log r or r2 log r in d = 2; r−1 in d = 3
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Two routes to represent density τ

(G) global spectral accuracy, convergence via degree p →∞, err ∼ c−p , N ∼ pd−1

obstacles simple, smooth
some adaptivity poss. (Kress corners)

(sinh-bunching, B et al. ’16)

underlying basis: Fourier / sph. harm.

peri. trap. rule sph. harms. macro Cheby. patches

(Rahimian et al) (Bruno, Turc et al.)

(L) local fixed panel order p, conv. via h→ 0, err O(hp). N ∼ h1−d

adaptivity and/or CAD geoms.
can split any panel indep. of others

h→ 0 with a CAD mesh? we wish

recent tri nodes:

Vioreanu–Rokhlin

G–L panels G–L quads 4th-ord tri’s

(B et al. ’19) (O’Neil ’17)

Well-cond pd−1 × pd−1 matrices map values at nodes ↔ basis coeffs
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Two religions of discretizing the IE (I + K )τ = f

• Nyström, impose IE at nodes {xi}Ni=1: τi + (Kτ)(xi ) = fi i = 1, . . . ,N

N (d − 1)-dim singular ints, using τ interp from {τj} := {τ(xj )}
↗

• Galerkin, project into basis τ =
∑N

m=1 αmϕm:∑
n

[
(ϕm, ϕn) + (ϕm,Kϕn)

]
αn = (ϕm, f ) m = 1, . . . ,N

N2 2(d − 1)-dim ints, of which ≥ N singular
↗

(G) global 3D: smoothly deformed sphere, cost O(p5) (Graham–Sloan ’02)

Stokes: vesicles, red blood cells (Rahimian, Veerapaneni, Biros,. . . )

smooth bodies, Helmholtz, Maxwell (Ganesh, Hawkins,. . . )

(L) tri/quad panels: many 4D quadrature rules (Sauter–Schwab, Ch. 5)

software, p = 0, 1 & Maxwell RWG: BEM++ (Betcke, Smigaj et al ’15)

Which use? At same order, accuracy basically same (Kress ’99, etc)

Galerkin: nastier numerical integrals, slower set-up (Canino ’98)

Galerkin more mature convergence theory, industrial codes

Thus, the rest of this review is about Nyström. . .
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Quadrature task & categories

Recall Nyström: τi + (Kτ)(xi ) = fi , surface nodes i = 1, . . . ,N

Task: given vector τ := {τj}Nj=1, eval. (Kτ)(xi ) at all N targets xi

• equiv. to filling matrix els. in linear system: τ + Aτ = f

Def: “native” (“smooth”) rule for nodes is weights wj s.t.∫
Γ
g(x)dsx ≈

∑
j=1

wjg(xj) holds to order ≥ p, for g ∈ C∞(Γ)

Require: τ must be resolved (interp.) by nodes to desired acc. ε, e.g. refined at corners

Apart from (G) vs (L) for density τ rep, other axes to categorize. . .

• FMM/FDS-compatible? only O(N) els. differ from native Aij = K(xi , xj )wj

• Precomputation (store A; good for rigid body) vs on-the-fly? (moving geoms.)

• Solely Nyström (on-surf.) task, vs also bonus off-surf. target evals.?

• Needs only on-surf. geom, vs also needs off-surf. pts?

• Ease of switching to new kernels? e.g. toroidal . . .
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METHOD CATEGORY A: On-surface
Here we access kernel K (xi , y), only for y ∈ Γ underlying PDE not exploited

A.(G) : global density
A.(G).i: spectral : O(N2): all els. differ from native Aij = K (xi , xj)wj

2D: product quadratures, exact for freqs. up to ±N/2 (Kress ’91)

split K(t, s) = ψ(t, s) log
(
4 sin2 1

2 |t − s|
)

+ φ(t, s), for some ψ, φ ∈ C∞([0, 2π)2)

Need formulae for ψ, φ Lap, Helm. etc known . . . but algebra for new kernels

Related: spectral close off-surf. eval, u = Re (Cauchy int. in barycentric form)

(Ioakimidis ’91; DLP Helsing ’08, SLP B–Veerapaneni–Wu ’14)

Helm+Lap: MPSpack (B ’09), Stokes+Lap (FMM’ed Kress!): pybie2d (Stein ’18)

3D: diffeo. of sphere: O(N2 logN) recall N = p2 (Gimbutas–Veerapaneni ’14)

grid vals ↔ sph harms fast

(azimuthal 1D FFT)

eval sph harms at p4 rot grid pts

(elevational 1D NUFFT)
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A.(G) on-surf. global [cont.]

A.(G).ii: order p near-diag. correction : O(pd−1N) els. differ from native

“Auxiliary node” idea: custom quadr. scheme {y (i)
` ,w

(i)
` } for each target i

2D:
aux nodes
for target

target x i

y
l
(i) err O(hp) for integrand f (t) log |s − ti |+ g(t)

via ≈ 2p off-grid aux. nodes (Alpert ’99)

3D:

x
i

smooth

POU

polar idea:

1/r cancelled by metric rdrdθ
note limr→0 rK(xi , y(r , θ)) varies with θ!

partition of unity, polar aux grid
(Bruno–Kunyansky ’01)

(Malhotra ’19)

How get τ at aux nodes? local p-order Lagrange interp.
Thus: (near-diag blk of A) ≈ (kernel eval at aux nodes) × (interp matrix)
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A.(L) on-surf. for local panel density

composite
Gaussian
panels

self

nei

nei

"far"

"near"

target xi

Common idea in d = 2, 3 for pth order scheme:
• special rules for near (self+nei) panels
• native rule Aij = K (xi , xj)wj for far FMM-compat.

Bizarre, little-known h→ 0 convergence! :
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refined here

Here test soln err, Helm CFIE
freq k = 2, std level-restricted splits

Why bottom out at 1st-order?

“nearest far panel” (NFP) controls native err:

G–L εp ∼ ρ−2p, ρ+ρ−1

2 = t

nearest far source panel
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Thus my rule of thumb: pick p ≈ # digits you seek
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With that caveat . . . on-surf. panel schemes: two types

A.(L).i: analytic
2D: complex Cauchy integral ψ, φ formulae avail. (Helsing–Ojala ’08)

Ideas: monomial rep. τ(z) =
∑p−1

n=0 cnzn, z ∈ C (prefer τ(s): af Klinteberg)

2-term recurrence for
∫ 1
−1

yn

x−y
dy , then e.g. DLP (Dτ)(x) = Re 1

2πi

∫
Γ

τ(y)
x−y

dy

Bonus: great for close off-surf. eval. code: demo*.m (Helsing)

3D: singularity subtraction? in infancy, hard (Helsing note arXiv:1301.7276)

A.(L).ii: aux-node based analytic split not needed

2D: good aux nodes by “gen. Gauss. quadr.” (Rokhlin, Xiao, Gimbutas, . . . )

3D: high-p tri’s (Bremer–Gimbutas ’13)

xi

target

custom gen Gauss quad in θ

(Vioreanu nodes)

nei: adaptive splitting

self: radial aux nodes

reach 10−12, even v. high aspect ratio

∃ Fortran (Gimbutas, Rachh in prep.)

Structured quads easier
radial aux scheme for 3× 3 near patch:

-2 0 2

u

-3

-2

-1

0

1

2

3

v

(c)

not versatile yet: torus diffeo’s only

(wave eqn: B–Hagstrom–Greengard ’19)
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——— Interlude: close evaluation task ———
Recall native rule, off-surf. eval. u(x) ≈

∑N
j=1 K (x , xj)wjτj x ∈ Ω

5h

h(G) global

10log  (error) in u:

(L) panels

How accurate is it? Exponential in N, but rate depends on target x :

Thm: (B ’14) For global peri. trap. rule, analytic curve,
rate = Im (preimage of x under complexification of Γ param.)

• Similar estimates for panels (af Klinteberg–Tornberg ’17)

2D summary: err ≈ O
(
e−2πd/h

)
d = dist to surf, h = local node spacing

“5h rule”: d ≥ 5h gets you 10−14, closer and lose digits linearly

Idea: native eval to points near Γ, then extrapolate back to target on Γ
(Yes, sounds crazy. Bonus: also does close-eval task!)

Let’s call idea CATEGORY B: off-surface methods
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Method B.1: “Hedgehog” quadrature

Originally scheme for eval at close target x : (Ying–Biros–Zorin ’06; Quaife. . . )

i) pick line (“spine”) through x hitting Γ at x0, near
ii) upsample τ by factor β > 1 in each dim, e.g. β = 2–4
iii) eval at few pts dist ≥ 5h/β via upsampled native rule
iv) interpolate to x , from these pts plus known u(x0) = f (x0)

-15

-10

-5

0

-15

-10

-5

0

target
spinex

x0u=f

Interpolate for close eval:

target xi Γ

Can also extrapolate for Nystrom surf quadr:

:

Adv: PDE-indep, dim-indep, τ -rep-indep, FMM’able. . . but params to adjust

movie: 104 vesicles + quad panels: N = 6× 106 (Morse–Lu–Rahimian–Zorin, in prep)

• Note: all category B methods eval (I + A)τ , not Aτ
→ need 2-sided average, explicit I , to avoid GMRES stagnation
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B.2: QBX (quadrature by expansion)

Finally (!) use the fact: u satisfies the PDE Lu = 0
Idea: eval. “local exp.” u(z) = Re

∑p
n=0 an(z − z0)n here 2D Lap. case

• center z0 ∈ Ω, pick e.g. 3h from Γ
• each an given by a surf int (addition thm): use β-upsampled native rule

“Global” all of Γ, vs ”local” just near panels (Klöckner–B–O’Neil–Greengard, ’13; B ’14)

centers x
fine source mesh for
self and neighboring panels

panel of targets

(q   q,   q=8)

Recent variants:
• AQBX: automated target-wise choice of p, β (af Klinteberg–Tornberg ’17)

• QBKIX: PDE-indep, via proxy sources (Rahimian–B–Zorin ’17)

• 3D Line QBX: p not p2 terms, closer to hedgehog (Siegel–Tornberg ’18)

• GIGAQBX: integrate w/ FMM: pytential (Wala–Klöckner, ’17, ’18)

Promise: prescribed-tolerance black-box A apply or Aij fill not yet
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Omitted topics

• corners and edges either geometric refinement, or make custom quadr, or both

(Chandler–Graham) (Helsing) (Serkh–Rokhlin) (Lintner–Bruno)

• various special methods (Slevinsky–Olver ’15) (Carvalho–Khatri–Kim, ’18)

• analysis
• transmission BVPs, diel. contrast, D-N junctions
• bodies of revolution curves w/ toroidal kernels

• line integrals in 3D (Tornberg–Shelley ’04; af Klinteberg–B in prep.)

• fundamental solutions (MFS) as alternative to SKIE+Nyström . . .



State of the art & community to do list

2D: use Alpert/Kress if global, Helsing if panels; speed faster than FMM
corners: RCIP (Helsing), or (Serkh, Hoskins–Rachh) if analysis avail, N/corner ≈ 40

Code? partial, not adaptive, not much ready to non-experts to use

3D: diffeos of sphere w/ global good; panels/patches still research phase
current most robust at high acc. is Bremer–Gimbutas

Lots of fun challenges:

• 3D speed currently 102–103 targs/sec/core err 10−6: ≥ 10x slower than 3D FMM

• automatic apply of high-order Nyström to CAD/industrial meshes
• 3D corners, cones, and (generic curving) edges, to high order
• related: high aspect ratio / skew panels
• fair error/speed comparisions on 3D test probs (2D basically benchmarked)

we’re starting to address: needs uniform code interface (O’Neil–Rachh–B)

• 2D/3D documented code for non-experts w/ sensible/adaptive params
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