

Integration of singular functions over deformable surfaces

Corrected quadratures, regularized quadratures, and rational approximation quadratures

Joar Bagge*¹, Bowei Wu², George Biros¹, Per-Gunnar Martinsson¹, Anna-Karin Tornberg³, Pritpal Matharu³

¹The University of Texas at Austin, Oden Institute; ²University of Massachusetts, Lowell; ³KTH Royal Institute of Technology, Stockholm, Sweden

SIAM CSE25, March 3-7, 2025

* Email: joar.bagge@austin.utexas.edu

Background and motivation

Deformable capsules in Stokes flow

Overview of the quadrature methods

Regularized quadrature Corrected trapezoidal quadrature Interpolatory quadrature

Rational approximation quadrature

Background and motivation

Deformable capsules in Stokes flow

Overview of the quadrature methods

Regularized quadrature Corrected trapezoidal quadrature Interpolatory quadrature

Rational approximation quadrature

Deformable capsules in Stokes flow – Introduction

- Simulation of a **capsule** flowing through a **fluid-filled pipe** (diameter 11.3 µm) at around 1.93 mm/s.
 - A capsule is an elastic membrane filled with fluid, and can be used to model e.g. red blood cells. [Agarwal & Biros, Phys Rev Fluids, 2022]
 - The flow can be modeled as Stokes flow (due to low Reynolds number).
 - Question: How does membrane stiffness influence the capsule dynamics (e.g. shape stability, lateral drift, ...)?

Deformable capsules in Stokes flow – Formulation

The capsule membrane follows the local flow field

$$\mathbf{u}(\mathbf{x}) = \underbrace{\mathbf{u}_{\infty}(\mathbf{x})}_{\text{Background}} + \underbrace{\mathbf{u}_{\text{Wall}}(\mathbf{x})}_{\text{Wall}} + \underbrace{\mathbf{S}[\mathbf{f}](\mathbf{x})}_{\text{Capsule contribution}}$$

where the Stokes single layer potential is given by

$$\mathbf{S}[\mathbf{f}](\mathbf{x}) = \int_{\mathbf{y}} \mathbf{G}(\mathbf{x} - \mathbf{y}) \mathbf{f}(\mathbf{y}) \, \mathrm{dS}(\mathbf{y})$$

and the stokeslet by

$$G(r) = \frac{1}{8\pi} \left(\frac{I}{\|r\|} + \frac{r \otimes r}{\|r\|^3} \right)$$

 The interfacial force f is computed from the local surface deformation gradient [Skalak et al., Biophys J, 1973]

Deformable capsules in Stokes flow – Discretization

 The capsule is represented using a partition of unity with 6 overlapping patches

- Each patch P_i is associated with a partition of unity function $\psi_i(\mathbf{x})$
- A smooth integral on γ is computed as follows:

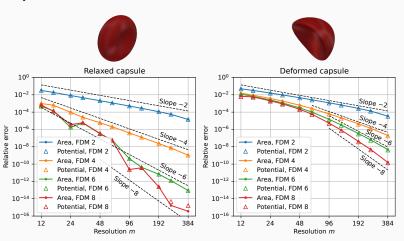
$$\int_{\gamma} g(\boldsymbol{x}) \, \mathrm{d} S = \sum_{i=1}^6 \int_{P_i} \psi_i(\boldsymbol{x}) g(\boldsymbol{x}) \, \mathrm{d} S \approx \sum_{i=1}^6 \sum_j \psi_i(\boldsymbol{x}_{ij}) g(\boldsymbol{x}_{ij}) W_{ij},$$

where $W_{ij} = J_{\gamma}(\mathbf{x}_{ij})w_{ij}$, J_{γ} is a Jacobian determinant and w_{ij} quadrature weights.

• We use the **trapezoidal rule** on each patch P_i and compute J_{γ} using standard finite differences (FD). Use $m \times m$ subintervals per patch.

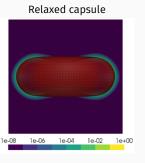
Deformable capsules in Stokes flow – Smooth integration

 Computing surface area and faraway offsurface Stokes potential follows the selected FDM order.



Deformable capsules in Stokes flow – Singular integration

 The stokeslet is nearly singular close to the surface, and singular on the surface. Quadrature error:



Deformed capsule

$$\mathbf{\mathcal{S}}[\mathbf{f}](\mathbf{x}) = \int_{\mathbf{y}} \mathbf{G}(\mathbf{x} - \mathbf{y}) \mathbf{f}(\mathbf{y}) \, \mathrm{dS}(\mathbf{y}), \qquad \mathbf{G}(\mathbf{r}) = \frac{1}{8\pi} \left(\frac{\mathbf{I}}{\|\mathbf{r}\|} + \frac{\mathbf{r} \otimes \mathbf{r}}{\|\mathbf{r}\|^3} \right)$$

- Mathematically, the integral is well-defined even for $\mathbf{x} \in \mathbf{y}$.
- We will focus on the on-surface (singular) case.

Background and motivationDeformable capsules in Stokes flow

Overview of the quadrature methods

Regularized quadrature Corrected trapezoidal quadrature Interpolatory quadrature

Rational approximation quadrature

Regularized quadrature

• Replace the stokeslet G(r) by the regularized stokeslet

$$\mathbf{G}_{\delta}(\mathbf{r}) = \frac{1}{8\pi} \left(\frac{\mathbf{I}}{\|\mathbf{r}\|} \mathbf{s}_{1}^{\#} \left(\frac{\|\mathbf{r}\|}{\delta} \right) + \frac{\mathbf{r} \otimes \mathbf{r}}{\|\mathbf{r}\|^{3}} \mathbf{s}_{2}^{\#} \left(\frac{\|\mathbf{r}\|}{\delta} \right) \right), \qquad \delta > 0.$$

where

$$s_1^\#(t) = \text{erf}(t) - \frac{2}{3}t(2t^2 - 5)\frac{e^{-t^2}}{\sqrt{\pi}}, \qquad s_2^\#(t) = \text{erf}(t) - \frac{2}{3}t(4t^4 - 14t^2 + 3)\frac{e^{-t^2}}{\sqrt{\pi}},$$

[Tlupova & Beale, J Comput Phys, 2019]

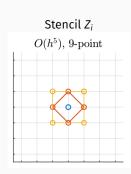
- G_δ is smooth; integrate using regular quadrature (trapezoidal)
- The parameter δ is selected to balance the **regularization error** $(\sim \delta^5)$ and **quadrature error** $(\sim h e^{-c_0(\delta/h)^2})$.
 - We let δ depend on the source (**y**) and set $\delta \sim h$, where h is a measure of the local mesh spacing.
- Note: this scheme is a **local modification** since $s_k^\#(t) \to 1$ quickly as $t \to \infty$. For instance, for $t \ge 5$, both $s_k^\#(t) < 10^{-7}$.

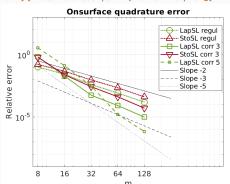
Corrected trapezoidal quadrature

• Locally correct the weights of the (punctured) trapezoidal rule:

$$\sum_{j\neq i} \mathbf{G}(\mathbf{x}_i - \mathbf{y}_j) \mathbf{f}(\mathbf{y}_j) W_j + \sum_{j\in \mathcal{I}_i} \mathbf{C}(\mathbf{f}(\mathbf{y}_j))$$

[Wu & Martinsson, Numer Math, 2021] [Wu & Martinsson, SIAM J Numer Anal, 2023]





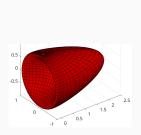
• The corrected quadrature seems better when *m* is large enough.

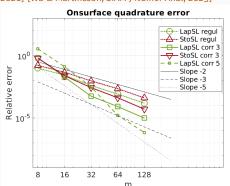
Corrected trapezoidal quadrature

• Locally correct the weights of the (punctured) trapezoidal rule:

$$\sum_{j\neq i} \mathbf{G}(\mathbf{x}_i - \mathbf{y}_j) \mathbf{f}(\mathbf{y}_j) W_j + \sum_{j\in \mathcal{I}_i} \mathbf{C}(\mathbf{f}(\mathbf{y}_j))$$

[Wu & Martinsson, Numer Math, 2021] [Wu & Martinsson, SIAM J Numer Anal, 2023]

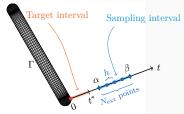




• The corrected quadrature seems better when *m* is large enough.

Interpolatory (approximation-based) quadrature

• Sample the field, S[f](x) in N points along a line: $S[f](x_n) = g(t_n)$



- Construct an approximant $\hat{\boldsymbol{g}}(t) \approx \boldsymbol{g}(t)$, and evaluate $\hat{\boldsymbol{g}}(t)$ in the region of interest.
- Note: $\hat{\boldsymbol{g}}(t)$ could be any kind of approximant, as long as it is fast to construct and evaluate, since the above needs to be done many times.
 - Polynomial approximation tried and tested [Ying et al., J Comput Phys, 2006]
 - Rational approximation could be an alternative?

Background and motivationDeformable capsules in Stokes flow

Overview of the quadrature methods Regularized quadrature

Corrected trapezoidal quadrature Interpolatory quadrature

Rational approximation quadrature

Why rational approximation?

A rational function is a ratio of two polynomials, $r(t) = \frac{p(t)}{q(t)}$

• Rational approximation on barycentric form (similar to AAA):

$$r(t) = \sum_{m=1}^{M} \frac{\mathbf{w}_m f(\tau_m)}{t - \tau_m} / \sum_{m=1}^{M} \frac{\mathbf{w}_m}{t - \tau_m}$$

[Nakatsukasa et al., SIAM J Sci Comput, 2018]

• Half of the sample points are used as support points $\{\tau_m\}$, the other half is used to determine the weights $\{w_m\}$

Advantages over polynomials:

- Wider class of functions (polynomials ⊂ rationals)
- Some functions may be better approximated by rationals (is the layer potential such a function?)
- Rational interpolation seems more stable than polynomial interpolation as N → ∞ (even for equidistant sample points)

Rational approximation – Error contributions

Two main error contributions:

- Quadrature error when sampling $\boldsymbol{g}(t)$: $\tilde{\boldsymbol{g}}(t) = \boldsymbol{g}(t) + \boldsymbol{\varepsilon}(t)$
- Approximation error: $g(t) \mathcal{R}g(t)$, where \mathcal{R} is the rational approximation operator.

Thus, if \mathcal{R} is linear

$$\mathbf{g} - \mathcal{R}\tilde{\mathbf{g}} = \mathbf{g} - \mathcal{R}\mathbf{g} + \mathcal{R}(\mathbf{g} - \tilde{\mathbf{g}}) = (\mathbf{g} - \mathcal{R}\mathbf{g}) - \mathcal{R}\mathbf{\varepsilon}$$

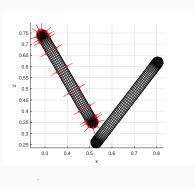
(However, R is not always linear!)

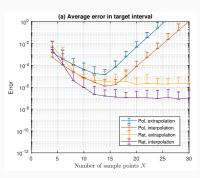
Note:

- The (g Rg) term could potentially be estimated using the Hermite integral formula.
- The $\Re \varepsilon$ term is a bit unfortunate what if rationals are better than polynomials at approximating ε ?

Rational approximation – Observed accuracy

 Computing the average error along 26 lines as the number of sample points N is varied:





- Rational approximation is stable as $N \to \infty$, unlike polynomials.
- (This is a test where ε is very small due to upsampling the grid.)

Background and motivationDeformable capsules in Stokes flow

Overview of the quadrature methods Regularized quadrature Corrected trapezoidal quadrature Interpolatory quadrature

Rational approximation quadrature

Closing remarks and conclusions

- The partition of unity representation should be able to handle local refinement well (not part of this talk).
- · Regularized vs corrected quadrature
 - At low resolutions, regularized was better.
 - As the resolution increases, the corrected quadrature can have a higher order of accuracy.
- Polynomial vs rational approximation in interpolatory quadrature
 - Rational approximation seems better when the sampling error ε is small.
 - They tend to have more similar errors when ε is larger (not shown here).

References

D. Agarwal & G. Biros, Shape dynamics of a red blood cell in Poiseuille flow, *Phys Rev Fluids* **7**:093602, 2022. [link]

D. Agarwal & G. Biros, Numerical simulation of an extensible capsule using regularized Stokes kernels and overset finite differences, *J Comput Phys* **509**:113042, 2024. [link]

R. Skalak, A. Tozeren, R. P. Zarda & S. Chien, Strain energy function of red blood cell membranes, *Biophys J* **13**(3):245–264, 1973. [link]

S. Tlupova & J. T. Beale, Regularized single and double layer integrals in 3D Stokes flow, J Comput Phys **386**:568–584, 2019. [link]

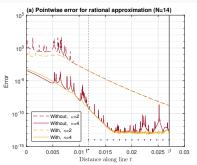
L. Ying, G. Biros & D. Zorin, A high-order 3D boundary integral equation solver for elliptic PDEs in smooth domains, *J Comput Phys* **219**:247–275, 2006. [link]

B. Wu & P.-G. Martinsson, Corrected trapezoidal rules for boundary integral equations in three dimensions, *Numer Math* **149**:1025–1071, 2021. [link]

B. Wu & P.-G. Martinsson, A unified trapezoidal quadrature method for singular and hypersingular boundary integral operators on curved surfaces, SIAM J Numer Anal **61**:2182–2208, 2023. [link]

Handling of spurious poles

- As mentioned, spurious poles can end up in the target interval.
 They are avoided/handled in two ways:
 - 1. A small imaginary perturbation is added to f(t), to make poles on the real axis less likely.
 - 2. A contour integration is used to cancel any poles that still end up in the target interval.



• Fixed parameters: N=14, $\alpha=t^*=0.0118$, $h=\alpha/10$, $\kappa=2,4$.