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How to model problems with singular solutions?

Two main approaches

1 Enrich the approximation space with singular functions
2 Resolve the singularity within the approximation space

no matter how it is achieved: similar mathematics
also leads to new methods

This talk is about the second approach.

Daan Huybrechs The resolution of singularities by rational functions



First approach: approximation in enriched spaces

Basis + extra functions

E.g. polynomials + singular functions

Still a basis? Redundancy → ill-conditioning

well understood by now from approximation point of view

B. Adcock, DH. Frames and numerical approximation, SIREV,
2019 [1]

possible: stable algorithms
oversampling + regularization → rectangular systems

possible: fast algorithms
the AZ algorithm and variants
Ax = b where A has block structure
like (generalized) Schur complement for rectangular systems
A. Herremans, DH. The AZ algorithm for enriched
approximation spaces, IMAJNA, 2024 [2]

BUT: need to know the exact singularity. Ok in 2D, not in 3D.
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Example: 2D Poisson problem on rectangle

Example from: The AZ algorithm for enriched approximation spaces [2]

applied to “Enriched Spectral-Galerkin method” by J. Shen
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Figure 9: Accuracy of the solution to the 2D Poisson equation in a rectangular domain. Stars:
standard Galerkin method without enrichment (i.e. K = 0), squares: Galerkin method combined with
smoothness constraints (ESG-II) using K = 1 and MK = 2, dots: Galerkin method combined with
collocation using K = 1 and MK = 25. The results for the standard Galerkin method and ESG-II also
follow from [6, Fig. 4].
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A model problem for hp-refinement

Approximation on [0, 1] with singularity at 0

0 1

full analysis by Babuska et al, Melenk, Schwab, Devore and
Scherer, . . . Model problem f (x) ∼ xα

early conclusion: (root-)exponential convergence e−c
√
n

(wrt n=ndofs) when using geometric refinement

nodes at ηk for 0 < η < k

optimal: η = (
√

2− 1)2 ≈ 0.17 irrespective of α

optimal: p varies with k

higher p further away from singularity, p ∼ kmax − k
e−d
√
n possible with p uniformly large but fixed (d = c√

2
)
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Numerical illustration

Approximation of
√
x by piecewise polynomials

left: plot of log error versus n

right: plot of log error versus
√

n

BLUE: optimal η. BLACK: η = 0.3. RED: optimal η, fixed p
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A brief history of the approximation of |x |

Approximations of |x | on [−1, 1] and
√
x on [0, 1] are equivalent.

Historical developments

1908, de la Vallée-Poussin finds polynomial approximation to
|x | with error O(1/n) and asks: is this the best one can do?

1912, Bernstein: yes. Mémoire Académie Royale de Belgique.

1964, Newman: rational approximation with e−c
√
n accuracy

1994, Stahl: study of best rational approximation to |x |
2018: AAA algorithm for best rational approximants

A. Herremans, DH, L. N. Trefethen, Resolution of singularities by rational

functions, SINUM, 2023 [3]
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Rational approximation to
√
x

Clustering of poles towards 0 (from the left)

0 1

geometric clustering of poles: pj = −e−σj/
√
n

optimal: tapered exponential clustering: pj = −e−σ(
√
n−
√
j)

stable implementation?

use partial fractions with polynomial part:

√
x ≈

n1∑
j=1

aj
pj

z − pj
+

n2∑
j=0

bjTj(x)

compute least squares fit w. oversampling
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Numerical illustration

Approximation of
√
x by piecewise polynomials

max-norm error versus
√
n

BLUE: tapered, optimal σ =
√

8π ≈ 8.89. BLACK: tapered,
σ = 0.44. RED: geometric clustering, optimal σ.
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Comparison hp and rational approximations

Convergence rate is e−c
√
n in both cases, but c differs:

hp: c = − log(η)/
√

2 ≈ 1.25

rat: c =
√

2π ≈ 4.44

Best result using n = 73 (rat) versus n = 631 (hp)
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An intermediate observation

Piecewise polynomial approximations are (very) far from
optimal when resolving local features.

sizable difference in 1D

bigger difference in 2D, 3D, . . . ?

⇒ multivariate rational approximations!
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How do rational functions resolve a singularity?

DH, L. N. Trefethen, Sigmoid functions, multiscale resolution of

singularities and hp-mesh refinement, SIREV, 2024 [4]

Answer: the same way hp-methods (and other schemes) do

everything makes sense after a change of variables

s = log x

√
x is singular on [0, 1],

√
es = es/2 is smooth on (−∞, 0)

equispaced scheme in s → exponential clustering in x

in s-space every method for smooth functions works,
including radial basis functions

for bounded singular functions: tapering effect
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What do rational functions look like?

Plot of partial fractions
pj

x−pj in s-space with clustering poles

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Fig. 2 In the s = log(x) variable, the exponentially clustered poles of Figure 1 become sigmoid
functions (2.5) translated to various center points sk. Root-exponential convergence of ratio-
nal approximations becomes a statement about approximation of smooth functions by linear
combinations of translates of a fixed smooth function.

To summarize this section: with the change of variables s = log(x), the approxi-
mation of a smooth function by linear combinations of translates of a logistic function
becomes equivalent to the approximation of a function with a branch point singularity
by rational functions with exponentially clustered poles.

3. Rational Approximation \rightarrow hp-mesh Refinement. Rational approximation
with poles exponentially clustered near singularities seems akin to the resolution of
functions near singularities by piecewise polynomials on exponentially refined meshes.
Such techniques of mesh refinement are well known in the literature of the FEM and
associated approximation theory [9, 19, 20, 26, 34, 35].

Exponential clustering of poles is reflected in the approximately uniform spacing
on the semilogx scale in the right image of Figure 1 or, equivalently, the approximately
uniform spacing of the sigmoid functions (2.5) in Figure 2. However, it is notable that
in both of these images the spacing is only approximately uniform, growing sparser
toward the left. This is the phenomenon of tapered exponential clustering investigated
in [42]. Quantitatively, one finds that the density of poles with respect to the s variable
decreases linearly as s decreases to some value smin . This distribution brings a factor
of 2 improvement in convergence rate as a function of n—because a uniform density
would have the same convergence rate but twice as many poles. (The more local
sparsification in the rightmost few points of Figures 1 and 2 is investigated in [21]
with an appeal to the asymptotic results of Stahl [36].)

Comparison reveals that this tapered exponential clustering corresponds closely
to what is known as hp-mesh refinement (h stands for grid spacing, p for order of
approximation). In particular, the standard hp-mesh refinement formula in one di-
mension has the same linear pattern described above, with polynomial order taking
the role of pole density on the logarithmic scale. A singular function such as

\rightarrow 
x

on [0, 1] is approximated by piecewise polynomials on intervals of lengths decreasing
exponentially toward the singularity, with polynomial representations of linearly de-
creasing degrees . . . , 3, 2, 1, 0. It is the same pattern, and it brings the same factor of
2 speedup for the same reason.

One can explain linear tapering for hp-FEM in various ways in various settings.
In [42] an argument is given based on potential theory. Here is an outline of the
simpler argument that originates with DeVore and Scherer [9, 34] in the study of
piecewise polynomial approximations of x\omega on exponentially graded meshes on [0, 1].
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partial fractions are active in geometrically graded intervals

how to choose spacing parameter σ? Make these functions
look like B-splines and RBF’s do
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The tapering effect

Manifests itself in two ways:

polynomial degree can decrease towards singularity

poles can tend to zero slightly faster than exponentially:
pj = −e−σ(

√
n−
√
j)

Simple reason

approximation of
√
x on [1/2, 1] is the same as approximation

of
√

2x on [1/4, 1/2]

so approximation of
√
x on [1/4, 1/2] is the same problem

too, but with an accuracy criterion loosened by a factor
√

2

exponentially accurate scheme on each scale: constant factor√
2 yields fixed reduction in degrees of freedom

Tapering is a small optimization
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Tapering: illustration

Gaussian quadrature points for rational quadrature on [0, 1]
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Example: Green’s function of gravity Helmholtz equation

A. Barnett et al, High-order boundary integral equation solution of high

frequency wave scattering from obstacles in an unbounded linearly

stratified medium, JCP, 2015 [5]

Approximation in enriched space

G (x, y) = A(x, y) log(x− y) + B(x, y)

with x, y varying along a 1D curve in 2D
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Left: convergence with and without singular terms. Right: error
Daan Huybrechs The resolution of singularities by rational functions



Multivariate rational approximation

In 1D: poles are points. In 2D: “poles” can be 2D manifolds in 4D
complex coordinate space. But that should not stop us.

For general singularity curve Q(x , y) = 0:

r(x , y) =

Nq∑
j=1

∑
0≤k,`≤Np

ajkl
pjPk(x)P`(y)

Q(x , y)− pj
+

∑
0≤k,`≤Ns

bklPk(x)P`(y),

Generalization of partial fractions representation to 1D:

For a diagonal singularity Q(x , y) = x − y = 0.

pj can be chosen to be complex numbers exponentially
clustering towards zero

N. Boullé, A. Herremans, DH, Multivariate rational approximation of

functions with curves of singularities, SISC, 2024 [6]
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Multivariate rational approximation of Green’s function

20 N. BOULLÉ, A. HERREMANS, AND D. HUYBRECHS
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Fig. 11: Approximation of the Green’s function G(x,y) of the gravity Helmholtz
equation (as defined in [6]). The function is singular on the diagonal and has wavelike
behavior in the tangential and normal directions. The left panel shows the function
for x and y varying along a semi-circle, leading to a bivariate function on the square
[0, 1]2. The right panel shows uniformly high accuracy of the approximation in a dense
grid of points, including points close to but excluding the diagonal.

so-called energy level E = 15 in the definition of the problem. In this experiment we
choose Nq = 25, Np = 5 and Ns = 15, with sampling parameters Mq = 2Nq, Mp =
2Np and Ms = 2Ns. Figure 11 illustrates the approximation of the Green’s function
along with the approximation error on the domain. Here, we obtain a maximum error
of 6 → 10→6 on a 1000 → 1000 uniform grid.

5. Concluding remarks. In this paper, we explored the construction of bi-
variate rational approximations with fixed, well-chosen poles. When a function has
singularities along straight lines, we proposed an e!cient tensor-product scheme that
converges to nearly machine precision accuracy at a root-exponential rate, as shown
by convergence analysis and numerical experiments. The method is based on a least-
squares formulation, which can be solved using e”ective and provably e!cient regu-
larization techniques, and generalizes naturally to piecewise rational approximations
using domain decompositions. We then presented a global approximation scheme for
functions with singularities along curved lines, which is demonstrated in a number of
examples, including the approximation of the Green’s function associated with the
gravity Helmholtz equation, which is singular along the diagonal. An extension to
three-dimensional functions is computationally expensive but straightforward.

Yet, there are several other directions for further research. One open problem is a
more e!cient solver for the large least squares problems arising in the approximation
problems of section 4. A second problem is the compact polynomial representation
of tangentially varying residues in that setting. Finally, arguably the largest open
challenge is the development of a non-linear adaptive approximation scheme to detect
singularities based on function samples, without fixing poles a priori. Hence, it re-
mains to explore methods that can achieve in multiple dimensions what AAA achieves
in the univariate setting.

Code availability. The code needed to reproduce the numerical examples in this
paper is available on GitHub at https://github.com/NBoulle/MultivariateRational.
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