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We model the capability of a small (6-optode) time-resolved diffuse optical tomography (DOT)
system to infer baseline absorption and reduced scattering coefficients of the tissues of the human
head (scalp, skull and brain). Our heterogeneous three-dimensional diffusion forward model uses
tissue geometry from segmented MR data. Handling the inverse problem via Bayesian inference,
and introducing a realistic noise model, we predict coefficient errorbars in terms of detected photon
number and assumed model error. We demonstrate the large improvement that an MR-segmented
model can provide: 2–10% error in brain coefficients (for 2 × 106 photons, 5% model error). We
sample from the exact posterior, and show robustness to numerical model error. This opens up the
possibility of simultaneous DOT/MR for quantitative cortically-constrained functional neuroimag-
ing.

I. INTRODUCTION

Diffuse optical tomography (DOT) [1] is arousing
growing interest as a noninvasive tool for neuroimag-
ing, both clinical [2] and functional [3, 4], as well as
other clinical applications such as breast tumor de-
tection [5–8], tracking muscular oxygenation [9] and
arthritic joint imaging [10]. By making use of spec-
troscopy, this modality can couple directly to hemo-
dynamic quantities of interest, measuring both total
hemoglobin concentration and oxygenation. Optical con-
trast can also arise from cell-based mechanisms such
as the redox state of cytochrome-c-oxidase, and in vivo
contrast agents such as fluorescent and voltage-sensitive
dyes [4]. By relying on photon transport through tis-
sue, DOT also accesses spatial information to a depth
of several centimeters. DOT shows great promise for
functional neuroimaging: the advantages of functional
DOT (fDOT) include fast temporal resolution of order
10 ms, and moderate spatial resolution of order 1–2
cm, placing it in these two categories somewhere be-
tween both magneto-encephalography (MEG) and elec-
troencephalography (EEG), and functional magnetic res-
onance imaging (fMRI). In addition to sensitivity to ab-
sorbing chromophores, DOT can be sensitive to cellular
scattering changes during neuronal activation [4, 11, 12].
DOT is noninvasive and non-ionising. The apparatus
is relatively inexpensive, is compatible with (and com-
plementary to) other modalities allowing simultaneous
imaging [13, 14], is portable, is capable of continuous
monitoring, and does not require an immobile subject.

The key challenge of DOT is that of extracting spa-
tial maps of the optical properties (absorption coeffi-
cient µa, and reduced scattering coefficient µ′s) within
a highly-scattering tissue volume, by coupling multiple
light sources and multiple detectors to the surface of
the skin. The available signals comprise light intensi-
ties at each detector due to each source. For each of
these source-detector pairs, it is possible to measure a
DC intensity (continous-wave systems), or intensity am-

plitude and phase (RF-modulated systems), or obtain
the intensity distribution as a function of time-of-flight
(time-domain systems). Because tissue dimensions of in-
terest are much larger than the photon mean free path,
the path taken by photons from source to detector is
diffusive rather than straight; this is what limits the
spatial resolution of DOT. Recovery of µa(r) and µ′s(r)
from measured signals requires solving an inverse prob-
lem, non-linear in the optical parameters, and known
to be ill-posed [15, 16]. Usually µa(r) is measured at
several wavelengths within the near-infrared low-tissue-
absorption window of 650–900 nm. From this, the known
spectral absorption curves [17] of the chromophores HbR
and HbO2 allows spatial maps of [HbR] and [HbO2] (and
therefore of total hemoglobin concentration) to be con-
structed.

Our goal in this paper is to explore the limits to ac-
curacy in measuring baseline optical properties of the
human head using time-domain apparatus, when high-
resolution anatomical information from MR is used to
constrain the optical model. Absolute cerebral oxime-
try and blood volume measurement, which require base-
line (absolute) quantification of cortical µa are important
for study of stroke [18], head trauma, migraine, neona-
tal ischemia [19] and brain development [20]. Baseline
properties are important for another reason. For func-
tional DOT it is common to use a perturbation model
where signal changes are taken to be a linear function
of optical parameter changes. This allows rapid imag-
ing via matrix inverse methods [15, 21–23]. However,
one cannot [24] compute the required sensitivity func-
tions without knowing both baseline (absolute) µa and
µ′s. We envisage using simultaneous MR and DOT to
perform accurate baseline measurements, followed by
cortically-constrained fDOT imaging and simultaneous
BOLD (blood oxygenation level dependent) fMRI [3, 14].

In our model the scalp, skull, brain, and cerebro-spinal
fluid (CSF) are assigned separate optical properties, as-
sumed uniform within each tissue type, and their three-
dimensional (3D) geometry is taken from automatically-
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segmented MR images. This greatly reduces N the
number of unknowns (we will use N = 6, compared
to N ∼ 102–104 common in pixel- or voxel-based rep-
resentations), making the inverse problem much more
tractable. This idea of MR-constrained reconstruction is
not new to DOT [25], certainly in two dimensions [26, 27],
nor to other medical inverse problems [28, 29]. Note that
our approach differs from the class of segmentation meth-
ods where tissue boundaries are themselves parameter-
ized by unknowns [30, 31].

Time-resolved intensity measurement is popular for ex-
tracting baseline properties in simple homogeneous [32–
34] and layered [35–38] slab tissue models, in both trans-
mission and reflection geometries. Time-of-flight in-
formation resolves otherwise indistinguishable effects of
absorption and scattering changes [15]. For example,
Kienle [39] uses a 2-layer analytic diffusion model to fit
for optical coefficients of in vivo arm muscle, with the su-
perficial fat layer thickness constrained by another imag-
ing modality (in this case ultrasound). For the adult head
in vivo measurements have usually also been analysed
with simple analytical diffusion models, even though the
internal geometry may be poorly represented as a slab or
layered slab.

To overcome these limitations, we use a numerical for-
ward model which can handle arbitrary 3D tissue ge-
ometries and optode locations, in the diffusion approx-
imation. We use this to perform ‘model-based’ fitting
via nonlinear optimization [15, 40, 41]. We use the
Bayesian paradigm for inference, giving us the full pos-
terior probability density function (PDF) of the param-
eters (which in turn could be used to get the full PDF
of baseline [HbR] and [HbO2]). Bayesian inference has
been used with success in related medical inverse prob-
lems [29, 42–44]. However, fully-Bayesian [41, 45, 46] or
Bayes-influenced [47] applications in DOT are less com-
mon. In contrast to most previous work we use the pos-
terior PDF to study expected errors (i.e. errorbars) and
the detailed distribution in the parameters, rather than
presenting a single ‘best’ solution. We also introduce a
novel realistic noise model which captures our belief in
signal reliability at both small and large numbers of de-
tected photons. This accounts for photon detection noise
and forward modeling errors; the latter have been ignored
in the Bayesian DOT literature thus far.

The paper is organized as follows. In Section II we out-
line the application of Bayesian inference to our problem,
and introduce the general form of the likelihood function.
In Section III we present the head system, and the for-
ward and noise models used for inference and simulation
of noisy experimental signals. In Section IV we give re-
sults showing the accuracy of inference achievable using a
homogeneous head model and a segmented head model.
We present achievable errorbars as a function of total
collected photons and assumed model errors. We inves-
tigate in detail the posterior distribution in the optical
parameters, using a PDF sampling method, and validate
our choice of posterior approximation. We also demon-

strate robustness to forward model errors. We conclude
and suggest future directions in Section V. Two appen-
dices contain methodological details which would other-
wise impede the flow of the main text.
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FIG. 1: Illustration of Bayesian inference of unknown param-
eters x given the measured signal vector y. The complete
model comprises a forward model f(x) (dotted line) and an
inference noise model, giving the joint PDF p(y,x) which can
written as a prior p(x) multiplied by a likelihood p(y|x). The
inference noise model describes all measurement and model
errors; here we use independent Gaussian noise with signal-
dependent width σ(f).

II. INFERENCE FRAMEWORK

The Bayesian approach treats an inverse problem as
an inference problem: our lack of knowledge about model
parameters is represented by a PDF over those param-
eters. A model represented by H (for “hypothesis”)
contains unknown parameters given by the vector x ≡
{x1 · · ·xN}, and includes a prior PDF on those parame-
ters p(x|H). We consider how this PDF is modified by
the arrival of the experimental data (measured signal)
vector y ≡ {y1 · · · yM}, to give a posterior PDF

p(x|y,H) ∝ p(y|x,H) p(x|H), (1)

where p(y|x,H) is the likelihood defined by model H,
and the constant of proportionality depends only on y.
The posterior encodes everything we now know about x.
When we are not distinguishing between different mod-
els, we will drop the conditionality on H in our notation.

The relevant advantages of this framework include: 1)
Explicit formulation of all assumptions. Assumptions
are present in all approaches to inverse problems but
are not always expressed. 2) The ill-posed nature of the
inverse problem, implying uncertainty in some parame-
ter directions, is embraced and handled probabilistically.
This contrasts with traditional approaches where this is
viewed as ‘unstability’, and therefore removed by ad hoc
regularization methods. 3) The posterior PDF contains
all confidence intervals and error correlations of param-
eters. In the case of hemoglobin concentration param-
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eters, their posterior could be used to infer neural ac-
tivation (via fitting models of neural-hemodynamic cou-
pling [48]), with more reliability than ‘best-fit’ parameter
values alone. 4) Probabilistic prior information, for in-
stance from another imaging method, can be consistently
made use of, allowing optimal use of multimodal imag-
ing information. 5) The Bayesian method is optimal in
the sense of giving unbiased minimum-variance estima-
tors when the likelihood and prior are correct. 6) Com-
plex models (with many additional, or hidden, parame-
ters, such as amplitude calibrations [49]) can be handled
without the danger of overfitting that can occur using
simple cost-function minimization. 7) Competing mod-
els Hi can be ranked by their ability to explain the data,
even if they have very different structure and numbers
of parameters. Offsetting these advantages is the main
obstacle to use of Bayesian methods: they can be very
computationally intensive compared to more ad hoc ap-
proaches. For an introduction see the informal tutorial
by MacKay [50], or other more detailed reviews [51–55].

We take a forward model f(x) which encapsulates our
physical model of the DOT system: given an optical pa-
rameter vector x it returns the expected signal vector
f ≡ {f1 · · · fM}. We also need a noise model, giving the
probability that a signal y could be generated by adding
noise to the noise-free signal f . We use an independent
Gaussian noise model, giving the likelihood function

p(y|x) ∝ e−L(y;x), (2)

with the negative log likelihood

L(y;x) =
1

2

M
∑

m=1

lnσ2
m +

1

2

M
∑

m=1

(fm(x)− ym)2

σ2
m

. (3)

Each noise standard deviation σm ≡ σ(fm(x)) is given
by the same function applied to the corresponding sig-
nal level fm(x). The form of σ(f) will be discussed
in Section IIID. The second term is analogous to a
χ2 cost function. The constant of proportionality and
the log term arise from the normalization requirement
∫

dMy p(y|x) = 1. Our inference procedure is shown
schematically in Fig. 1.

For this work we have used a constant prior p(x) within
certain biologically-motivated bounds on each parameter
xn ∈ [xn,min, xn,max], and zero outside (in other words, a
standard min-max prior). This reflects a lack of prefer-
ence over x within these bounds, and zero belief in values
outside the bounds. Therefore the posterior is

p(x|y) ∝

{

e−L(y;x) xn ∈ [xn,min, xn,max] ∀n,
0 otherwise,

(4)

where we will not need to know the constant of propor-
tionality. It would be simple to encode more specific prior
beliefs than this simple constraint.

For N more that 2 or 3 the high dimensionality, and
the fact that each evaluation of f(x) requires a time-
consuming solution of a PDE, make it impossible in gen-
eral to characterize the posterior over all x. However,

for differentiable f(x), there will always be a sufficiently
small choice of σ(f) that the bulk of the posterior prob-
ability mass will be close to the maximum a-posteriori
(MAP) value xMAP, and will be well approximated by a
multivariate Gaussian with covariance matrix ΣMAP and
mean xMAP [52]. The inference task is then to locate xMAP

and measure ΣMAP, from which confidence intervals on
each xn can be computed. In all but Section IVD we use
this approach; details are presented in Appendix A.

We note that this search for xMAP is analogous to
model-based approaches where an objective function
(cost function) L(y;x), in our case differing from the
weighted least squares form only by an additional log
term, is minimized by an iterative approach [15, 56]. In-
deed much of the machinery is in common. However the
interpretation is different: those who use model-based
approaches are generally interested in the single ‘best’
solution [41, 57, 58], rather than properties of the full
posterior PDF. (Often this restriction is a practical one
due to large N).

When the posterior is significant over a region where
f(x) is no longer linearizable, the Gaussian approxima-
tion becomes bad. In this case we use Markov chain
Monte Carlo (MCMC) sampling [55] to generate a set
of uncorrelated samples from the exact posterior, pro-
viding a (noisy) cloud-like impression of the full PDF.
We demonstrate this more general but computationally-
intensive method in Section IVD.
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FIG. 2: Simulated optode arrangement and placement on the
head (the face, pointing downwards, is mostly hidden). 3D
MR-segmented head geometry is exposed by a sagittal slice.
The tissue type color coding on this slice, is, from lightest to
darkest: scalp, skull, CSF, brain.
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III. FORWARD AND NOISE MODEL

A. The head system

We start with a human head segmentation geometry
obtained at a 1 mm by 1 mm by 1.5 mm voxel reso-
lution from a MR structural image using the technique
of Dale, Fischl and Sereno [59]. This data consists of
an assignment of each voxel to one of the five categories:
scalp, skull, CSF, brain, or ‘not tissue’ (air). (We did not
distinguish between grey and white matter; grey matter
will dominate the optical properties because of the rapid
decay of sensitivity with depth). For the subject data
used the scalp and skull thicknesses were typical, being
5–7 mm and 7–8 mm respectively, in the relevant region
of the head. Fig 2 shows our head geometry. Unless
otherwise stated, we will use as our ‘standard’ optical
properties for the four tissue types the values given in
Table I. These are believed to be typical, falling within
the quite wide variation of published values [33, 60, 61].

The CSF falls into a special category. It is presumed to
be about 102 times less scattering and less absorbing than
other tissue types, and occupies a much smaller volume.
Its structure is convoluted and uneven, varying from a
thin layer of about 1–2 mm thickness hugging the dura,
to folds and pockets of several mm in thickness and size,
following the folds of the brain surface [62]. Once the
CSF geometry is held fixed, realistic biological variation
in either CSF µa or µ′s causes negligible changes in the
photon tranport, and hence detected signals. For µa,
this is because the values and volume are too small to
cause any significant absorption of light compared to that
caused by surrounding tissues.

For µ′s, the reason is subtely different: the extremely
long reduced scattering length of 1/µ′s ≈ 100 mm is much
longer (by a factor of order 5) than maximal line-of-sight
distances within the CSF void region. This is mainly due
to the folded and irregular geometry, and is most likely
enhanced by surface roughness [63] and the presence of
vasculature in the CSF below the MR resolution. Thus
typical free transport distances in the CSF are dominated
by the length-scale of the irregular folds and vessels. We
believe that photons in the CSF pass into other highly-
scattering tissue types long before the particular value of
µ′s becomes relevant.

Therefore we will not try to infer CSF properties in

tissue µa (mm−1) µ′s (mm−1)

scalp 0.0149 0.8

skull 0.01 1.0

CSF 0.0004 0.01

brain 0.0178 1.25

TABLE I: Standard set of optical properties of human head
tissue types used in this study. The tissue type ‘brain’ in-
cludes grey and white matter but is optically dominated by
grey matter.

our segmented model, and our unknowns will consist of
µa and µ′s for the remaining 3 tissues. We will compare
two models:

• Hhom: the interior of the head is assumed homo-
geneous, with N = 2 unknown parame-
ters µa,hom and µ′s,hom describing a single
tissue type

• Hseg: the interior of the head is seg-
mented as described above, with
N = 6 unknown parameters
µa,scalp, µ′s,scalp, µa,skull, µ′s,skull, µa,brain

and µ′s,brain. Note that the CSF is present
in this model but has fixed parameters.

The unknown (or fitting) parameters were given bounds
[xn,min, xn,max] of [0.004, 0.04] mm−1 for all absorption,
and [0.4, 4.0] mm−1 for all reduced scattering coefficents.

B. Optodes and detection model

We have chosen to model a 2-source (Ns = 2) and
4-detector (Nd = 4) fiber-coupled time-resolved system
contacting a small region of the scalp at the top of the
head. The arrangement, shown in Fig 2, was chosen to
cover a range of source-detector distances 10–36 mm. We
assume the system counts photons, and bins these counts
according to their arrival time, building up a histogram of
the temporal point spread function (TPSF). We assume
no convolution of the TPSF due to the measurement sys-
tem (i.e. instrument response function), but this would
be easy to include in the forward model.

For simplicity, we assume optode locations are known
accurately, and that the system has been calibrated to
provide absolute measurements of amplitude and of time-
of-flight. (We do not model the variable attenuation
which is often used [7, 64] to prevent detector saturation
at small optode separations).

One TPSF is available for each of the Ns × Nd = 8
source-detector pairs. We represent each TPSF by 18
numbers, giving the photons collected in each of the 100
ps wide time-gates in the time-of-flight range 0.2–2.0 ns.
We found that for time-of-flights below 0.2 ns, diffusion
forward model errors were too large to be useful [65].
Beyond 2.0 ns the signals generally fall below the one-
photon level. An example simulated signal vector y is
shown in Fig. 3. Note that our signals are presented in
units of detected photons.

C. Diffusion forward model

Photon transport in scattering media at macroscopic
scales, where interference effects can be ignored, is de-
scribed by the transport equation [15, 66]. In media
where µa ¿ µ′s, and length-scales of interest are much
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FIG. 3: Signals and noise models. a) shows typical signal ex-
pectation vector f ≡ {fm} for m = 1 · · ·M , corresponding to
Np = 1.1× 106 detected photons, with errorbars representing
the noise standard deviation σ used for inference. The 8 time-
courses correspond to the interval 0.2–2.0 ns, and are labelled
according to source and detector number. The one-photon
level is shown dashed; the level for cross-over to fractional-
error dominated noise at 1/ε2 is shown dotted, for ε = 0.05.
b) shows (solid line) the inference noise σ(f) given in Eq. 6,
and (dash-dotted) the simulated experimental noise σsim(f)
given in Eq. 7, plotted horizontally in order to share the same
vertical scale as a). c) shows a simulated noisy signal vector
y, generated by adding Gaussian noise of size σsim(f) to the
expectation f , on same horizontal axis as a). d) shows the
residual βm (in standard deviation units, see Eq. A3) which
would result from the y and f shown, on same horizontal axis
as a).

larger than 1/µ′s, transport can be well described [15] by
the diffusion approximation (DA),

1

v

∂

∂t
φ = ∇ · (κ∇φ)− µaφ+ q, (5)

where φ(r, t) is the fluence, q(r, t) is the source term, κ(r)
is the local diffusion constant, µ(r) is the local absorp-
tion, and v(r) is the local speed of light in the medium.
We will use the good approximation [67, 68] κ = 1/(3µ′s),
and assume v(r) = c everywhere corresponding to unity
refractive index. Our segmented map of µ′s is given by
assigning µ′s(r) = µ′s,tissue(r) where ‘tissue(r)’ represents
the tissue type of the voxel within which r falls. Note
that the resulting discontinuities in optical properties can
cause discontinuities in ∇φ, but not in the value of φ it-
self (this would not be the case had we allowed refractive
index changes). For tissue-air boundary conditions we
have found the Dirichlet (φ = 0) approximation to be
sufficiently close to the more accurate Robin boundary
condition [15], because κ is much smaller than the thick-
nesses of interest.

We use a Finite-Difference Time-Domain (FDTD) [69]
method to compute the evolution of Eq. 5, from which
the signal expectation vector f(x) is extracted using the
detector locations. Details are given in Appendix B. The
method represents the smooth function φ(r, t) as discrete
values on a cubical lattice of nodes, at a sequence of time
steps. We resample the segmentation voxel map to the
required lattice resolution; in this work either 2 mm or 1
mm. For a 2 mm voxel size, with 3.3× 104 nodes in the
required head volume, our current FDTD method takes
about 8 seconds per source (on a 1GHz CPU) to simulate
2 ns of propagation time. We have not optimized the
forward model, and there exist refinements of FDTD that
can be much faster (see Appendix B). Typical error sizes
at 2 mm can be judged from Fig. 9 (keep in mind that
these signals span close to 6 orders of magnitude).

A note is necessary to explain how we treat the CSF.
In recent years, work has been done which shows the
large fluence errors which can result when the extremely
low µ′s value in void-like regions is fed directly into the
DA [67]. (These errors were measured by comparison
with transport equation solutions). We have chosen a
different tactic, similar to that of Ripoll et al. [63]: by
giving the CSF an effective µ′s for use within the DA, we
have been able to approximate the physics much better
than possible using the true µ′s. As discussed in Sec-
tion IIIA, line-of-sight distances in the CSF are small,
we believe of order l ∼ 10 mm, due to highly irregular
geometry and vasculature. We believe the optimal DA
choice (which may vary subject to subject) is a µ′s of or-
der l−1. Our preliminary results suggest that the fluence
field is not very sensitive to the exact µ′s chosen, when
the full 3D MR head geometry is modelled. In contrast,
most previous comparisons have used idealized 2D CSF
geometries with long lines of sight [60, 67, 70], or 2D
models taken from a single MR slice [67]. In this paper
we fix µ′s,CSF = 0.4 mm−1. The largeness of this choice is
in part influenced by numerical efficiency: the CPU time
for our current FDTD scales inversely with the smallest
µ′s in the system, which is always µ′s,CSF in our case.

D. Noise model for inference

The forward model provides the signal expectation
value vector f(x). Bayesian inverse methods always re-
quire a noise model, which captures our uncertainties
about the difference between the numerically-generated
f(x) and the real-world signals y, given that the param-
eters x were actually correct.

Recall that in Eq. 3 we have assigned Gaussian distri-
butions to each of the components m = 1 · · ·M indepen-
dently, each with mean fm and standard deviation σ(fm).
The Gaussian approximation to the Poisson photon de-
tection statistics [71] would give σ2(f) = f . Remember
that signal units are in (effective) photons per time-gate.
This approximation is good for f À 1, becoming bad
(especially in the tails) as f approaches 1. To handle
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sensibly the case f < 1 we place a lower limit of 1 on
σ. (This limit could be increased to account for additive
electronic noise).

However there is a problem at large signals: if some fm

is say 106, giving σm = 103, then we cannot be expected
to believe that the fractional error σm/fm, and therefore
our trust in our forward model’s closeness to reality, is
0.1% ! Rather we choose a fraction ε which is a lower
limit on our fractional error, and takes account of

1. modeling of physics of photon migration in a given
tissue geometry (e.g. transport corrections to the
DA),

2. deviations from the assumption of uniform optical
properties within a given tissue type,

3. incorrect tissue-type assignments from automatic
MR segmentation,

4. the accuracy with which absolute amplitude (and
time-offset) calibration can be carried out, includ-
ing effects of optode-skin coupling variations due to
e.g. skin pigmentation.

We typically choose ε = 0.05–0.2, corresponding to 5%–
20% model and calibration error.

Combining the above, the noise level σ(f) is piecewise
power-law:

σ(f) =











1, f ≤ 1,

f1/2, 1 < f ≤ 1/ε2,

εf, f > 1/ε2.

(6)

This is shown by the solid line in in Fig 3b. Typically
the peaks in f are fractional-error dominated, while the
tails are Poisson-statistics dominated.

E. Simulating experimental signals

In this proof-of-concept study, we generate simulated
experimental signals using numerical forward models of
the same type as used for the inference (inverse) problem.
Given a true optical parameter vector x(0) we generate a
noise-free signal expectation vector f(x(0)), to which we
apply a simulated noise model.

Our simulated noise is identical to our inference noise
(as described in the previous Section), except it only in-
cludes the detection noise component. We do not ex-
plicitly add noise to simulate model error; rather in Sec-
tion IVE we will investigate the effects of model error by
changing the forward model used to calculate f(x(0)).

This gives the simulated noise level,

σsim(f) =

{

1, f ≤ 1,

f1/2, f > 1.
(7)

This is shown by the dash-dotted line in Fig 3b. Note
that the difference between simulated and inference noise

models manifests itself in Fig 3d as a residual βm (see
Eq. A3) which has a variance¿ 1 for the m values where
fm À 1/ε2.

The recipe for simulating experimental signals is,

ym = max
[

fm(x0) + nm, 0
]

, m = 1 · · ·M, (8)

where each nm is independently sampled from a univari-
ate Gaussian distribution with zero mean and variance
σ2

sim(fm(x0)). The maximum value operation removes
unphysical negative signals.
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FIG. 4: Tracking of inferred optical parameters of a homoge-
neous head model, using noisy signals derived from the same
model. a) and b) show the effect that changing the true ab-

sorption µ
(0)
a,hom has on inferred µa,hom and µ′s,hom respectively.

The range of total detected photons Np is from 3.4 × 106 at

the smallest µ
(0)
a,hom to 3.6 × 105 at the largest. c) and d)

show the same, except changing the true reduced scattering

µ
′(0)
s,hom, over which Np varies from 1.8× 106 to 3.5× 105. The

errorbars show ±1σ about the MAP (‘best-guess’) value, for
the (marginal) posterior distribution of inferred values, com-
puted using the methods of Appendix A. For comparison, the
thin lines show the true values. The fractional model-error is
ε = 0.05.

IV. RESULTS AND DISCUSSION

A. Homogeneous vs segmented head models

We are interested in finding out what improvement
is possible in fitting baseline optical parameters when
anatomical segmentation information becomes available.
Therefore in this section we compare the models Hhom
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FIG. 5: Same as Fig. 4, except now the noisy signals have
been generated using the segmented forward model, sweeping
over a range of brain parameters. (The scalp and skull are
fixed at the standard parameters in Table I). The inference
is still performed using the homogeneous model. The dashed
line shows true parameters volume-averaged over a depth of
17 mm. (We chose a constant effective thickness of 4 mm for
the brain’s volume contribution, a typical time-independent
fluence decay length in a semi-infinite brain). Np spans 2.4×

106 to 2.1 × 106 over the range of µ
(0)
a,brain, and 2.1 × 106 to

2.2×106 over the range of µ
′(0)
s,brain. The fractional model-error

is still ε = 0.05.

and Hseg in their ability to infer these parameters, using
simulated data also generated from Hhom or Hseg. We
choose a total detected photon number (which includes
both sources),

Np ≡

M
∑

m=1

ym, (9)

at approximately 2 × 106, typical for photon counting
DOT systems. As we vary the head optical properties,
we have decided to hold the collection time constant,
rather than fix Np. Note that some advantage, in terms
of smaller Np values, could be gained if variable detector
attentuation [64] were used.

See figure captions for the Np range for each experi-
ment. In this Section we fix ε = 0.05, and use a 2 mm
forward model lattice. Recall that all simulated signals
include realistic detection noise.
Homogeneous-homogeneous fit: Using signals

from Hhom, we fit using Hhom, and sweep the true optical
parameters. The results are presented in Fig. 4. This
shows that if the head were indeed homogeneous, then
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FIG. 6: Tracking of inferred brain optical parameters in a seg-
mented model, using noisy signals also derived from the seg-
mented model. (The scalp and skull are fixed at the standard
parameters in Table I, and inferred scalp and skull parameters
are not shown). Np and ε are the same as for Fig. 5.

very accurate inference of its baseline optical parameters
would be possible. The errorbars (representing the ex-
pected measurement error of the parameters) are 0.5%
or less. The true values fall within, or just outside, the
errorbars.
Segmented-homogeneous fit: Using signals from

the more realistic Hseg, we fit using Hhom (see Fig. 5).
This shows that the homogeneous model does a very poor
job of measuring the brain’s properties: changes in ab-
sorption are only 20% of the true change, and for scat-
tering only 5%. This is due to detected photons spend-
ing a large fraction of time in the scalp and skull layers.
To take this into account we also compare against lo-
cal volume-averaged properties (dashed lines in Fig. 5);
as expected, the homogeneous model reflects these bet-
ter than the brain’s properties. However there are two
major failures of the homogeneous model: crosstalk and
non-linearity. Neither of these failures can be compen-
sated for by any (linear) volume-averaging correction.
The absorption-scattering crosstalk dominates the fitted
µ′s,hom. (There is of course large crosstalk with scalp
and skull parameters too, which we do not plot). The
tracking is highly non-linear, meaning that even rela-
tive changes in brain parameters could not be quanti-
tatively assessed. Note that Hhom is a more physically
accurate model than the homogeneous semi-infinite slab
model commonly used to fit background properties be-
cause it incorporates the correct head surface shape. The
fact that the true values are hundreds of standard de-
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viations outside the errorbars implies that the inference
noise model grossly under-represents the large true model
errors.
Segmented-segmented fit: We now fit these same

Hseg signals with the Hseg model (see Fig. 6). Mea-
surement errors are 2%–2.5% in µa,brain and 5%–10% in
µ′s,brain, across the complete range of biologically-relevant
true parameter values. The linearity is excellent, and
crosstalk causes a 0.5% change in µa,brain, and a 5%
change in µ′s,brain, across the parameter range. Impor-
tantly, although errorbars are larger than withHhom, true
values always fall within the errorbars. This shows that
we believe reliable measurements of the brain’s baseline
properties can be made when anatomical information is
provided.

Recalling that we are simultaneously fitting for scalp,
skull and brain parameters, we can ask how accurately
the scalp and skull have been characterised. At the stan-
dard values of Table I, expected errors are about 8% for
µa,scalp, 3% for µ′s,scalp, 4% for µa,skull, and 2% for µ′s,skull.

We believe that in this fitting (non-imaging) example,
the total photon number Np will be more important in
determining accuracy than the number of sources and
detectors. Only when N is increased, as in an imaging
application, or when unknown optode calibration param-
eters are included, do we expect that increasing the num-
ber of sources and detectors will significantly improve
accuracy. Note that generally in order to optimize op-
tode location and number, and TPSF parametrization,
it would be important to know which components m of
the signal y are most important in determining errorbar
size for µa,brain and µ′s,brain. Within the Gaussian poste-
rior approximation, all of this information is contained in
the singular value decomposition of J̄ (defined in Eq. A6).
We will present these results in future publications.

B. Systematic deviations

In this subsection we discuss a detail of the inference
procedure. (This can be skipped on first reading).

The reason why there are systematic deviations be-
tween MAP and true parameter values in Figs. 4 and 6
is not immediately intuitive. One might suspect that,
since exactly the same models are used for simulation
as for inference, zero error would result, averaging over
the simulated noise. This effect is worth discussing fur-
ther. In essence the systematic difference comes from the
mismatch between the simulated and the inference noise
models: σsim(f) 6= σ(f) for large f (see Eqs. 7 and 6). If
the inference noise model is ‘correct’ (i.e. reflects the pop-
ulation from which noisy signals are sampled), Bayesian
inference provides unbiased estimators [52] (in this case
xMAP values). We have checked this: if σsim(f) = σ(f)
for all f then the deviations change from systematic to
random. However model error is not random; we prefer
to investigate its effect via particular instances of realistic
model error (Section IVE).
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FIG. 7: Expected percentage marginal error as a function
of noise model Np (total detected photons) and ε (fractional
model-error) for parameters a) µa,brain and b) µ′s,brain. The
standard set of optical properties are used, for inference using
Hseg and simulated noisy signals from the same model. Note
that the contour lines bend quite sharply at the transition
from Poisson-statistics-limited error (lower left) to model-
limited error (upper right).

Mathematically, the systematic deviation can be seen
to arise from the weak x-dependence of σ(f(x)) (giving
σ′ terms in Eq. A2). It would be misleading to attempt
to correct this deviation, since this would be tantamount
to benefitting from more information about the system
than we have formalized in the noise model Eqs. 3 and 6.
The deviation is always of a size consistent with the error-
bars; the correct way to reduce this deviation is by build-
ing more accurate forward models whose smaller known
model-error we can then use for inference.

C. Noise model effect on brain parameter errorbars

It is natural to wonder what the effects of the number
of detected photons Np, and the fractional model-error
ε, are on the measurement accuracy. This allows the ex-
periment designer to know in advance the detection time
needed to reach a certain expected error in brain opti-
cal properties. In Fig. 7 we plot contours of expected
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FIG. 8: Views of the posterior distribution p(x|y,Hseg) with
signals y from the same forward model (2 mm lattice), using
our standard optical parameters in Table I. Only 3.2 × 105

photons have been collected, and ε = 0.1. The three columns
of graphs show the µa–µ

′
s plane, separately for each tissue

type. a), b), c) show true x0 (point), xMAP (cross), and
the marginal PDF as an elliptical contour enclosing 63% of
the probability mass in the Gaussian posterior approxima-
tion. The contour is at e−1 times the peak density. d), e),
f) show for comparison, on the same axes, conditional distri-
butions (slices through the PDF with other components of
x fixed at the xMAP values), at contours of e−1 (shown with
thicker line), e−3, e−10, e−30, e−100, e−300 and e−1000 times the
peak density. g), h), i) show 123 independent samples from
the posterior obtained using Markov chain Monte Carlo. This
displays the true marginal posterior PDF as a ‘density cloud’.

percentage error in the two brain parameters, across the
Np−ε plane. We chose the standard set of optical pa-
rameters, using Hseg for inference on a noisy signal from
the same segmented model. The results show that even
assuming fractional model-error as large as ε = 0.2, ex-
pected errors on brain parameters can be 5% for absorp-
tion and 15%–20% for reduced scattering.

To generate this figure, solving for ΣMAP by locating
xMAP for each point in the plane in this figure would
have been a very costly operation. Instead we observe
that since f(x) is locally linear, its Jacobean J at xMAP

will be similar to that at x(0), when xMAP is close to x(0).
(In our case, it becomes a bad approximation only when
marginal expected errors are greater than roughly 20%,
when nonlinearity of f(x) becomes relevant). Therefore
we can use J measured once at x(0) to approximate ΣMAP

for any noise model parameters, according to Eqs. A6, A5

and A7. This procedure makes investigation of the noise
model a rapid process.

D. Visualization of full posterior distribution

In Section IVA, for inference with Hseg, the errorbars
(marginal expected errors) in the six parameters were of
the same order of magnitude, 2%-10%. However, the
(hyper-)ellipsoid defining the full posterior is actually
very narrow in some directions; these directions happen
not be aligned with the parameter axes. The ratio of the
largest to smallest eigenvalue of ΣMAP is 3×103, implying
that the shortest principal axis is only about 2% of the
longest. The distribution is in fact very ‘pancake-like’.
This phenomenon of both very well- and very poorly-
constrained parameter directions is a feature of ill-posed
inverse problems.

Combined with the nonlinear nature of f(x), this gives
us some motivation to be suspicious of a Gaussian ap-
proximation to the posterior. Fig. 8 shows that even
when our posterior is much wider (5% in µa,brain and 14%
in µ′s,brain), the Gaussian approximations to the marginal
distributions are adequate, and would give adequate con-
fidence intervals on each xn. However, the non-Gaussian
nature has become relevant in the tails of the distribu-
tion (e.g. at large µ′s,brain, Fig. 8i). Samples from the
true posterior have been generated via MCMC, using the
Metropolis method [55], with the stepping distribution
chosen to be uniform within a hyper-ellipsoid of shape
given by the Hessian matrix (Eq. A5). By optimizing
the hyper-ellipsoid size, one independent sample could
be extracted from the Markov chain roughly every 40
forward model evaluations. The total ‘cloud’ took 20
hours of CPU time to generate. Faster MCMC methods
exist [55].

Note that in Fig. 8 the conditional distributions (i.e.
slices though the posterior—these are much easier to gen-
erate than true marginal distributions), do a very poor
job of telling us the width of the marginal distributions.
This results from the pancake-like nature of the PDF.

E. Robustness to forward model error

If we run our forward model at a higher lattice resolu-
tion, we can generate simulated signals y that are more
accurate, given the DA physics and the tissue segmen-
tation model. In this way we can see how the inference
procedure (based on a lower lattice resolution) handles
realistic model error, which is highly correlated. In other
words, we avoid committing the ‘inverse crime’ of using
identical forward and inverse models, of which we were
guilty in Section IVA.

In Fig. 9a we show that changing from 2 mm to 1 mm
lattice voxel size in the forward model causes changes
of roughly 20%. Most are smaller, and some are much
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FIG. 9: a) shows approximate error of the 2 mm lattice
forward-model signal expectation, expressed as a ratio against
its (more accurate) 1 mm lattice equivalent. The standard set
of optical properties are used, for the segmented head model.
b) shows the normalized residual βm which results when the 1
mm lattice signal is compared against the 2 mm lattice signal,
using noise model parameters yp = 10−4 and ε = 0.2.

larger, approaching 50% at early times. This latter early-
time error is due to the non-zero depth below the surface
at which the optode couples to the fluence gradient (see
Appendix B). Smaller late-time error is due to the voxel-
lated (rough) surface representation local to each optode.

We will perform inference using the usual 2 mm lat-
tice model Hseg, using the choice ε = 0.2 in the inference
noise-model, motivated by the 20% observed model error.
We increase the collection time to give roughly 1.2× 107

photons. We find (Fig. 9b) that the variance of the re-
sulting normalised residuals βm (see Eq. A3) is close to
1, indicating a rough match of the noise model to true
forward model errors.

Fig. 10 shows the results of sweeping the true brain op-
tical parameters. The accuracy of measurement of µa,brain

is about 4%, and for µ′s,brain it is 10%–20%. The linearity
is good, and maximum crosstalk is 6% (only significantly
affecting µ′s,brain). The systematic errors are certainly
larger than those achieved in the more artificial situation
shown in Fig. 6, however the errorbar still does a good
job of indicating the size of this error. Therefore model
error is being handled in a robust fashion.

Clearly incorporating the fact that model errors are
large only at early times would be advantageous. We
discuss ideas for model error improvement below.

V. CONCLUSIONS

We have demonstrated that an accurate determination
of the baseline optical properties (both absorption µa
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FIG. 10: Inference using the 2 mm lattice forward model
Hseg, on simulated noisy signals generated from a 1 mm lattice
forward model. The detection time was larger than in Fig. 6,
with Np spanning 1.18 × 107 to 1.35 × 107 over the range of

µ
(0)
a,brain and µ

′(0)
s,brain. The fractional model-error of ε = 0.2

has been chosen to reflect our knowledge of the 2 mm lattice
model errors.

and scattering µ′s) of the human head could be made
using a small time-resolved DOT apparatus using high-
resolution 3D anatomical information from magnetic res-
onance imaging. We use an automatic MR segmentation
into the basic tissue types (scalp, skull, CSF, and brain)
and fit for µa and µ′s of scalp, skull and brain (hold-
ing the CSF fixed), assuming each tissue is optically ho-
mogeneous. We perform simultaneous non-linear model-
based fitting (inference) of the six optical parameters,
and demonstrate the superiority of this approach over
a homogeneous-head model in the biologically-relevant
parameter ranges 0.005mm−1 < µa,brain < 0.025mm−1

and 0.5mm−1 < µ′s,brain < 2.0mm−1. We emphasise
that even the homogeneous-head model is more realistic
than the commonly-used homogeneous semi-infinite slab
model. For our work we use numerically-simulated noisy
measured signals. Our finite-difference forward model
can simulate the time-domain diffusion approximation in
arbitrary 3D head geometries; we use about 3×104 nodes.
We believe that this approximation is adequate given the
convoluted CSF geometry, although this an important
area of active research for us and others in the field. Fit-
ting takes about 10 minutes on a standard 1 GHz CPU.

We employ a realistic but novel Gaussian noise model
incorporating both shot-noise, parametrized by the total
detected photons Np, and model error (including cali-
bration), parametrized by a fraction ε. In the Bayesian
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inference framework, with a flat prior, we find the base-
line measurement accuracy (errorbars) by examining the
marginal width of the posterior distribution, for each pa-
rameter. We note that all previous demonstrations of
Bayesian DOT have either been in 2D or simple cuboid
geometries, and have not considered more than the single
best-fit (MAP) solution. We find that 2 × 106 detected
photons gives 2.5% errorbar in µa,brain and 5%–10% in
µ′s,brain, assuming model errors of 5%. The crosstalk be-
tween surface layers and the cortex, and between µa and
µ′s, present with the homogeneous model, is eliminated.

By using a finer computational lattice, we tested re-
alistic forward model error and find that even with 20%
model error the errorbars can still be adequate: 4% in
µa,brain and 10%–20% in µ′s,brain, for Np ≈ 107. (All
Np values could be reduced experimentally by the use of
per-detector variable attenuation). Robustness is demon-
strated by the fact that errorbars always reflect the
size of the true deviations. We have also demonstrated
the power of Markov chain Monte Carlo for posterior
sampling when the Gaussian MAP approximation is no
longer good.

The Bayesian framework allows, without fuss, use of
improved noise models: we believe it will be important
to encode into such models both measurement properties
of DOT apparatus, and physical and numerical human
head forward model errors. Noise models should also
provide robustness to measurement outliers by replacing
the Gaussian with a heavier-tailed distribution. In fu-
ture work we plan to include unknown optode amplitude
calibration parameters [49]: these can then be marginal-
ized over naturally within the Bayesian framework. (We
note that Oh et al. [45] have recently simulated Bayesian
optode calibration in a 3D cubical geometry, at least in
terms of a single MAP solution, with success). By in-
creasing the number of parameters from 6 to 102 or more,
our Bayesian approach could give errorbars and correla-
tions of voxel parameters in a true ‘imaging’ (tomogra-
phy) context, something we intend to address in future
work. In general the value of the Bayesian paradigm in
neuroimaging lies with its statistical roots in what is be-
coming an increasingly statistical practice. On a lower
level, information from other modalities can optimally
be included as a prior. On a higher level, the full poste-
rior PDF, containing all error correlations, could be fed
to dynamical models of neural activation.

Our study provides realistic expectations for achiev-
able baseline accuracy in human hemodynamic parame-
ters. An experimental implementation could have rapid
clinical benefit in the stroke and neonatal fields. Our
work also expands the possibility of simultaneous DOT
and MR for functional neuroimaging: quantitative op-
tical imaging of hemodynamic changes will require ac-
curate baseline properties, which can best be achieved
through the type of anatomical modeling presented here.
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Appendix A. Finding the Gaussian approximation to
the posterior

Maximizing Eq. 4 is equivalent to minimizing L(y;x)
over x within the given bounds. We rescale the com-
ponents of x to have the same typical size by multi-
plying absorption coefficients by a constant C = 102,
giving for instance in the fully-segmented case x ≡
{Cµa,scalp, µ

′
s,scalp, Cµa,skull, µ

′
s,skull, Cµa,brain, µ

′
s,brain}.

This elementary preconditioning enhances performance
of the inference methods presented below.

Because of the nature of the numerical solution of the
forward model (Appendix B), the dependence of L on x
is not completely smooth nor differentiable. This jitter in
L, although estimated to be on a scale of less than 10−3,
means that care has to be taken in choosing an optimiza-
tion algorithm. We have found Newton’s method [72]
most successful, the ith iteration step being

xi+1 = xi − H−1(xi) · ∇L(xi), (A1)

where the exact gradient of L has components,

(∇L(x))n =
M
∑

m=1

Jmn

σm

[

βm + (1− β2
m)σ′m

]

, (A2)

which follows from Eq. 3. Here the normalized residual
is

βm ≡
fm(x)− ym

σm
, (A3)

and the Jacobean (Frechet) derivative of the forward
model is Jmn ≡ ∂fm/∂xn. The symbol σ′m is an ab-
breviation for dσ/df |fm

, which in our case can be found
in closed form by differentiating Eq. 6. All quantities
are evaluated at x. Since the number of unknowns N is
small, we evaluate J using crude finite differencing along
the axes in x space:

Jmn(x) ≈
1

δx
[fm(x+ δx en)− fm(x)] , (A4)
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where en is the nth unit vector, requiring N + 1 forward
evaluations. With adjoint differentiation it would be pos-
sible to get J with effort roughly equal to one forward
evaluation [40, 41, 57]; this would be worthwhile only if
N were larger.

It is simple and efficient to use an approximate Hessian
matrix,

H ≈ Happrox ≡ J̄T J̄ , (A5)

where

J̄mn ≡
∂βm

∂xn
=

Jmn

σm
[1− βmσ

′
m] (A6)

is the Jacobean of the normalized residual. This requires
no extra function evaluations to be performed. The stop-
ping criterion for locating xMAP is is |xi+1−xi| < ε where
ε is of order 10−3. The initial value x1 is chosen randomly
in the optical parameter range of interest, and has no ef-
fect on the xMAP found. (Occasionally if xMAP was very
far from x1 then an initial rough Nelder-Mead simplex
optimization [72] was required). Typically 3–8 Newton
iterations are required. Given that a 2 mm lattice eval-
uation of f(x) takes about 16 seconds, this means 5–15
minutes are required to find xMAP and ΣMAP.

Because the derivatives of log terms from Eq. 3 are
small, the above form of the Hessian usually agrees to
within a few percent with a numerically-estimated Hes-
sian, found by finite differencing N(N + 1)/2 samples of
L in x-space. We have experimented with procedures for
this estimation, but the combination of jitter on L, the
fact that L is orders of magnitude more sensitive in some
directions than others (i.e. the Hessian is close to singu-
lar), and the nonlinearity of f(x) and hence L(x), causes
a tendency for large errors and non-positive-definiteness.
Nothing as reliable as the above (guaranteed positive def-
inite) approximate Hessian form has been found. There-
fore, our multivariate Gaussian covariance matrix esti-
mate is

ΣMAP = H−1
approx. (A7)

In order to calculate confidence intervals on single pa-
rameters, and the lower-dimensional marginal Gaussian
distributions shown in Fig. 8a–c, we need the recipe
for marginalizing a multivariate Gaussian onto a sub-
space. We split x into subspaces a and b. By reorder-
ing {xn} this can without loss of generality be written
xT ≡ [aT ,bT ]. Any covariance Σ in x-space can then be
written in block form,

Σ ≡

(

Σaa Σab

ΣT
ab Σbb

)

. (A8)

By analytically integrating over b, the inverse covariance
of the marginal distribution in subspace a can be shown
to be [73]

Σ−1
(a) = Σaa − ΣabΣ

−1
bb ΣT

ab. (A9)

In the case where a has a single dimension a ≡ xn then
Σ(a) ≡ σxn

is a scalar giving the marginal standard de-
viation of parameter xn.

Appendix B. Finite difference method for the
diffusion equation

Here we provide details of the method used to approx-
imate the time-evolution of the 3D parabolic Eq. 5, with
constant v(r) = c. There are many issues, most of which
we discuss only cursorily.

Since q(r, t) is nonzero only at t = 0 this is a initial-
value problem, and we use a FDTD method with a reg-
ular cubical lattice of nodes with spacing ∆x, and a
time-step ∆t. We chose this over finite-element methods
for simplicity and the fact that our segmentation map is
also based on a cuboid lattice. We chose a node-based
representation of fluence φ, and discretized the spatial
derivative at node location ri,j,k in the standard fash-
ion [72, 74, 75],

∂

∂x
κ
∂φ

∂x

∣

∣

∣

∣

ri,j,k

≈ (A10)

κ
i+

1
2

,j,k
(φi+1,j,k−φi,j,k)− κi−

1
2

,j,k
(φi,j,k−φi−1,j,k)

∆x2

with equivalent expressions in the y and z directions,
where i, j, k are integer node labels in x, y, z axes respec-
tively. This is O(∆x2) accurate. The material property
κ is voxel-based: we locally average four voxels to give
edge-based values κ

i±
1
2

,j,k
.

The initial fluence q(r, 0) is discontinuous, compris-
ing a delta-function (or convolved delta-function) near
the source; we found that Crank-Nicolson type O(∆t2)
methods do not handle the non-smooth fluence well, due
to the slow decay of non-physical oscillatory modes ex-
cited by the discontinuity. We note that these meth-
ods (specifically the alternating-direction implicit [ADI]
method) are commonly used [15, 40, 41, 57] for simula-
tion of Eq. 5 without mention of this issue. Instead we
use the explicit Euler O(∆t) method, which is less effi-
cient and requires ∆t < ∆x2/(6κc) at every point in the
lattice for stability [75]. Evolution is perfomed by re-
peated sparse-matrix multiplication. Our computational
effort is proportional to the number of nodes times the
number of time-steps: this scales like 1/(∆x3∆t) which is
proportional to 1/(∆x5µ′s,min) where µ

′
s,min is the small-

est value of µ′s in the system. Changing ∆x from 2 mm
to 1 mm therefore increases the effort by a factor of 32.
Implicit methods would be more efficient; we are devel-
oping an optimal way to combine explicit and Douglas-
Gunn [75] evolution to handle the discontinuous initial-
condition.

We emulated Dirichlet boundary conditions by remov-
ing degrees of freedom φi,j,k for nodes on or outside the
tissue-air boundary. (The issue of FDTD stability with
the more correct Robin boundary conditions is an area
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for research; we found resulting differences to be slight in
our simulations for reasons given in Section III C). We
simulate only a fraction of the human head volume, cor-
responding to about 3× 104 nodes for ∆x = 2 mm. De-
tector signal relative changes were less than 1% compared
against the full head simulation of about 6× 105 nodes.

In order to inject and detect fluence signals we devel-
oped lattice versions of standard optode models which
couple to the fluence normal gradient n̂·∇φ at the tissue-
air boundary [15]. In order to reduce dependence on the
detailed local voxel representation of the head surface,
each optode was coupled to the fluence derivative in the
beam direction, averaged over a beam of 2 mm radius at
the rather large fixed depth of 1.5 voxels below the local
surface along the beam direction. This large depth is re-
sponsible for the large early-time errors in e.g. Fig. 9, but

is necessary to maximize immunity to voxellated surface
roughness. The source opdotes give q(r, 0); the time-
dependent detector signals are then integrated over the
time-gates to give the components of the signal expecta-
tion vector f(x). Notice that this gradient-based source
model is equivalent to more usual point-source models,
but is more immune to voxellated surface roughness. Ex-
ploration of other optode models is an area for future
work.

The procedure was validated against known analytic
semi-infinite slab solutions (< 5% errors beyond 200 ps),
and against a Monte Carlo calculation of a heterogeneous
cuboid containing an absorbing and scattering inclusion
whose nearest approach to the surface was as close as 6
mm (∼ 20% errors). We reserve validation against Monte
Carlo in the full head model for a future publication.
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