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Conclusions

High-accuracy solution of the Helmholtz BVP requires that coefficientsα remainO(1), which
in turn requires that the MFS charge curve enclose no singularities in the analytic continuation
of the solution. We prove this, with convergence rates, in the disc. We devise a singularity-
adapted charge curve for general analytic domains, and showthis can exceed the efficiency of
layer potential methods. High-impact open questions include,

• Can the above conjectures be proven? What is highest possible convergence rate?

• Can MFS reliably solve scattering problems in 2D and 3D with spectral accuracy?

• If Ω piecewise analytic (corners), how can we best augment with particular solution bases?

Some numerical results

Convergencefor three ways to locate the MFS charge points for a crescent domain, datav ≡ 1.
The only singularity (due toG) lies outsideΓ in each case; indeed|α| does not grow asN → ∞.

a) exterior conformal

b) ext conf equal−arclength

c) adapted curve
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(a) and (b) use a conformal map. The con-
vergence rate in (a) matches a conjecture [2]
t ∼ ρ−N/2, whereρ is conformaldistance to
nearest singularity.

In (c) we adaptΓ to thes-plane singularities
{tσ + iτσ}σ=1,...,nsing

by definings(χ) = t +
iy(t), for t ∈ [0, 2π), where

1

y(t)
=

|Z ′(t)|
Dmax

+

nsing
∑

σ=1

[

γτσ+β
1 − cos(t − tσ)

tσ

]−1

with parametersβ = 0.7, γ = 0.4, andDmax.
Charge points have spacing proportional toy.
This bringsΓ close to∂Ω near singularities.

High-wavenumberefficiency: solution to (1) for po-
lar boundaryr(θ) = 1 + 0.3 cos(5θ), at k=400, data
v(z) = Re(z − 1 − 0.5i)−1

Note:G has 5 nearby singularities

At only N = 3.3 ppw, boundary error normt = 4 ×
10−10, pointwise agreement to 12 digits with spectral
quadrature boundary integral equation (BIE).

For same error:MFS adapted curveBIE method
N,M 1900, 2800 3200
CPU time (α) 55 sec 90 sec

General analytic domains: the Schwarz function

parametrize∂Ω by mapZ(s), s ∈ [0, 2π)

Z−1 exists in some strip:Z(S(z)) = z

Ω has unique Schwarz functionG:

G(z) := Z(S(z)) noteG(z) is reflection ofz in ∂Ω
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Millar [5] (via Bergman-Vekua analytic PDE theory inC
2): singularities in analytic continuation

of u generically located at singularities in continuation ofv (as before) and/orG (anew twist)

Based on numerical observation [2] we have (analogous to little-known results in scattering [3]):

Conjecture 1LetΓ be any Jordan curve enclosingΩ, with dist(Γ, ∂Ω) > 0, on which MFS charge
points are chosen asymptotically densely. Then the coefficient norm|α| that minimizest grows
asymptotically exponentially asN → ∞ if and only if Γ encloses a singularity of the analytic
continuation ofu.

Analysis for the unit disc
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Analytic boundary datav|∂Ω may be analytically continued to
functionv(z) analytic in annulus{z : ρ−1 < |z| < ρ}

ρ is largest such value: distance to nearest singularity

Place charge points equally on circleΓ of radiusR

Theorem 1 (exponential convergence)LetR > 1, N be even, analytic boundary datav, with ρ
defined above. The minimum boundary errort achievable with the MFS in the unit disc satisfies

t ≤











Cρ−N/2, ρ < R2
‘rough data’, error due to lack of indep Fourier modes beyondfrequencyN/2 in MFS basis

C
√

NR−N , ρ = R2

CR−N , ρ > R2
‘smooth data’, error limited by aliasing due to discreteness of MFS charges onΓ

where each timeC means a different constant which may depend onk, R, andv, but notN .

Theorem 2 (growth of coefficient norm)Consider sequences of coefficient vectorsα such that
the error converges as in Theorem 1 asN → ∞. Then,

• if R < ρ, there exists a sequence with|α| remaining bounded asN → ∞

• if R > ρ, there is a constantC such that for every such sequence|α| ≥ C
√

N
(

R
ρ

)N/2

Consequence: givenρ, choose MFS radiusR ∈ (
√

ρ, ρ) for best convergence rate and no growth

Why is coefficient growthbad? Roundoff limits error tot ≈ ǫmach|α| (double precisionǫmach≈ 10−16)

Proofs rely on three key steps:

1. Map from single-layer potential (charge density) onΓ to ∂Ω values isdiagonalin Fourier basis

2. Map’s eigenvalueŝs(m) = iπ
2 H

(1)
m (kR)Jm(k) bounded: cs

|m|R
−|m| ≤ |ŝ(m)| ≤ CsR

−|m|

3. Discrete charges only approximate a smooth density: aliasing (folding) errors in higher Fourier
modes

High k asymptotics: can gett ≈ ǫmach with only 2 degrees of freedom per wavelength (ppw) on
∂Ω

Method of Fundamental Solutions
GivenN charge pointsyj outsideΩ, approximate

ũ = u(N)(x) =
i

4

N
∑

j=1

αjH
(1)
0 (k|x − yj|)

Find coeffsα := {αj}j=1,...,N which minimize errort

This is a linearleast-squares problem

Implementation: quadrature at equally-spaced boundary points{xm}m=1···M gives linear system

Aα = v A is M × N matrix

whereAmj := i
4H

(1)
0 (k|xm − yj|) andv := {v(xm)}j=1,...,M . Usually overdeterminedM > N .

For Laplace BVP (k = 0), MFS exponentially convergent,i.e. t[u(N)] ≤ Cτ−N for someτ > 1:

• Eisenstat 1970’s: some such sequence ofyj and coeffsα exists

• Katsurada 1990’s: holds ifyj chosen via conformal map of domain (exterior, annular, etc)

We now give first analytic results for Helmholtz(k > 0), analogous to Katsurada [4]

Helmholtz BVP

n
s

Ω

Ω ⊂ R
2 simply connected,

analytic boundary∂Ω

∆u + k2u = 0 in Ω (1a)
u = v on ∂Ω (1b)

Unique solution⇔ k2 not a Dirichlet eigenvalue

High frequency (k) → seek boundary formulation

Given approx. soln.̃u, boundary error normt[ũ] := ‖ũ − v‖L2(∂Ω) controls interior error norm:

‖ũ − u‖L2(Ω) ≤ CΩ

d
‖ũ − v‖L2(∂Ω) (Moler-Payne 1968)

whered := minj |k2 − Ej|/Ej is ‘distance’ to nearest Dirichlet eigenvalueEj.

Abstract

The method of fundamental solutions (MFS) has been successfully used for solving wave prob-
lems: Greens function sources are placed outside the domainof interest and their coefficients
adjusted to match desired boundary conditions. For example, in conjuction with the scaling
method, one can use it to compute high-frequency eigenmodeswith unprecedented efficiency
[1], with applications including quantum chaos. However, there is currently little understanding
of how to choose the source locations, and poor choices lead to an unusable method. We analyse
this in analytic domains, proving spectral convergence in the disc, and showing numerically sim-
ilar behavior in non-convex analytic domains [2]. We demonstrate that it is singularities in the
analytic continuation of the solution field that control stability, in particular the coefficient sizes,
in the algorithm. This enables us to develop a method for source location which adapts to the
singularities induced by the so-called Schwarz function ofthe domain. We also show that MFS is
highly competitive with boundary integral methods while possessing the advantage that the field
may be accurately evaluated up to the boundary.
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