Solving Helmholtz problems with a basis of fundamental Sohs:

the role of singularities in the analytic continuation
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Abstract

The method of fundamental solutions (MFS) has been suadgssgsed for solving wave prob-
lems: Greens function sources are placed outside the doohamterest and their coefficients
adjusted to match desired boundary conditions. For exampleonjuction with the scaling
method, one can use it to compute high-frequency eigenmedilsunprecedented efficiency
[1], with applications including quantum chaos. Howevikert is currently little understanding
of how to choose the source locations, and poor choices ¢ean tinusable method. We analyse
this in analytic domains, proving spectral convergencéendisc, and showing numerically sim-
llar behavior in non-convex analytic domains [2]. We dents that it is singularities in the
analytic continuation of the solution field that controllslidy, in particular the coefficient sizes,
In the algorithm. This enables us to develop a method forcslacation which adapts to the
singularities induced by the so-called Schwarz functiothefdomain. We also show that MFS is
highly competitive with boundary integral methods whilespessing the advantage that the field
may be accurately evaluated up to the boundary.

Helmholtz BVP

Au+ku=0 in Q (1a)
u=v on of) (1b)
Unique solution< k2 not a Dirichlet eigenvalue

() c R? simply connected,
analytic boundary))

High frequency k) — seek boundary formulation

Given approx. solnu, boundary error normu| := [|a — v||72(9¢) controls interior error norm:

Co

| — w720y < |2 — V|| 12090 (Moler-Payne 1968)
(£2) d (092)

whered := min; k2 — L]/ E; is ‘distance’ to nearest Dirichlet eigenvaliig.

Method of Fundamental Solutions

Given N charge pointy; outsidef, approximate

. N
i = uM(x) = %Z o HY (kx — )
j=1

Find coeffsa := {a;};—1 . which minimize errort

This Is a lineateast-squares problem

Implementation: quadrature at equally-spaced boundantp<, },,,—1... 17 gives linear system
Aa =v Alis M x N matrix

whereA,, ; = % (gl)(k]xm —Y;l)andv := {v(Xm)}j—1 . p. Usually overdetermined/ > N.

For Laplace BVP K = 0), MFS exponentially convergerite. ¢[uY)] < ¢+ for somer > 1:

e Eisenstat 1970’s: some such sequenceg; @nd coeffsx exists
e Katsurada 1990’s: holds ¥f; chosen via conformal map of domain (exterior, annular, etc)

We now give first analytic results for Helmholt > 0), analogous to Katsurada [4]
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Analysis for the unit disc

Identify R? with complex plane

e X
singularity

R y§,1 Analytic boundary data|;, may be analytically continued to
" functionu(z) analytic in annulugz : p~! < |z| < p}
+ Yn4

p Is largest such value: distance to nearest singularity

Place charge points equally on cirdlef radiusRR

Theorem 1 (exponential convergencd)et R > 1, N be even, analytic boundary datawith p
defined above. The minimum boundary errachievable with the MFS in the unit disc satisfies

Cp~ N2, p<R?
t < { OVNRN, p=R?
CR™N,  p>R?

‘rough data’, error due to lack of indep Fourier modes beydretjuencyN/2 in MFS basis

‘smooth data’, error limited by aliasing due to discreteses MFS charges oh

where each timé€’ means a different constant which may depend,oR, andwv, but not/V.

Theorem 2 (growth of coefficient norm)Consider sequences of coefficient veciersuch that
the error converges as in Theorem 1/8s— oo. Then,

o if R < p, there exists a sequence wjta| remaining bounded a& — oc

N/2
o if R > p, there is a constant’ such that for every such sequeriog > Cv/'N (%) /

Consequence: given choose MFS radiug < (,/p, p) for best convergence rate and no growth
(double precisionpacn~ 10719)

Why is coefficient growttbad? Roundoff limits error t@¢ ~ ¢,..|«|

Proofs rely on three key steps:

1. Map from single-layer potential (charge density)lai 0f) values isdiagonalin Fourier basis
2. Map’s eigenvalueg(m) = I %>(kR)Jm(k) bounded: & R~I™I < |5(m)| < CxRI™

m|

3. Discrete charges only approximate a smooth densitysiaigfolding) errors in higher Fourier
modes

High £ asymptotics: can gét~ ¢,,., with only 2 degrees of freedom per wavelength (ppw) on
oS

General analytic domains: the Schwarz function

parametrize&)) by mapZ(s), s € |0, 27) s 2 1z

Z~lexists insome stripZ(S(2)) =2 . . ‘
. . $HTh - S(2)

(2 has unigue Schwarz functidan: | ' 21T

preimages of singularities

G(Z) = Z(S(Z)) noteG(z) is reflection ofz in 99 2

singularities in G

Millar [5] (via Bergman-Vekua analytic PDE theory@?): singularities in analytic continuation
of u generically located at singularities in continuatiorvdbs before) and/aZ (anew twis)

Based on numerical observation [2] we have (analogoustl@-khown results in scattering [3]):

Conjecture 1LetI" be any Jordan curve enclosifiy with distT", 92) > 0, on which MFS charge
points are chosen asymptotically densely. Then the cefticorm|a| that minimizeg grows
asymptotically exponentially a8 — oo if and only ifI" encloses a singularity of the analytic
continuation ofu.
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Some numerical results

Convergencefor three ways to locate the MFS charge points for a cresaamiath, datay = 1.
The only singularity (due t6) lies outsidd’ in each case; indeed| does not grow ad/ — oo.

(a) and (b) use a conformal map. The con-

a) exterior conformal

o B M | vergence rate In (a) matches a conjecture [2]
¢ + \ c _ . .
@ T |t~ N/2 wherep is conformaldistance to
-2 * \ 1 . .
[ 00 e T nearest singularity.
singularity in G (hence u) *** T
4| O * + N

10 r *

In (c) we adaptl’ to the s-plane singularities
b) ext conf equal-arclength

107 | 0 -~ 1 Ate + iToto=1,... .ng, DY definings(y) = ¢ +
@ - e, iy(t), fort € |0, 2m), where

1071 ++\ ***
Ty
¢ B Nsin —
o 107} R ‘Zl(t)‘JngJ +51 — cos(t — tg) !
Cc .a.apt? curve & _ 7‘
o ’ 4\+\+\ y(t) D — e o
_ 107%F ] =1
..'\ 107} { with parameters; = 0.7,y = 0.4, and D,,,.

Charge points have spacing proportionalto
This bringsl’ close toof) near singularities.

e 4 o ° . 1 1 1 1 1 1 1
large distance away ib 100 200 300 400 500 600 700
no nearby singularities N

High-wavenumber efficiency: solution to (1) for po-
lar boundaryr(6) = 1 + 0.3 cos(50), at k=400, data
v(z) =Re(z — 1 — 0.5~ |

Note: G has 5 nearby singularities

At only N = 3.3 ppw, boundary error normh= 4 x
10~1Y, pointwise agreement to 12 digits with spectr
guadrature boundary integral equation (BIE).

For same errorMFS adapted curvé3lIE method
N, M 1900, 2800 3200

CPU time x) 55 sec 90 sec
Conclusions

High-accuracy solution of the Helmholtz BVP requires thagfficientsa remainO(1), which

In turn requires that the MFS charge curve enclose no singatin the analytic continuation
of the solution. We prove this, with convergence rates, endisc. We devise a singularity-
adapted charge curve for general analytic domains, and #ifnievean exceed the efficiency of
layer potential methods. High-impact open questions oheju

e Can the above conjectures be proven? What is highest ppssibVergence rate?
e Can MFS reliably solve scattering problems in 2D and 3D witcsral accuracy?
e If () piecewise analytic (corners), how can we best augment \aitticoilar solution bases?
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