Soliton Solutions of the Nonlinear Schrödinger Equation with Application to Bose-Einstein Condensation

David Valdman

In this paper I discuss the behavior of bright soliton solutions to the NLS equation and their interactions. I go on to discuss dark solitons and their formation within an attractive potential and apply them to Bose-Einstein Condensation.

I. INTRODUCTION


The effects of many-particle systems, in which inter-particle interactions cannot be ignored, prompted my research of the nonlinear Schrödinger (NLS) equation. The linear Schrödinger equation is given by,
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iΨt(x,t) - Ψxx(x,t) + V(x)Ψ(x,t) = 0, t > 0.

However, when dealing with a system containing many particles, their interactions yield nonlinear effects and the governing equation must be reconsidered. The NLS equation better suits such systems. The inter-particle effects are then responsible for an additional cubic term in (1). The NLS equation is given by,

[image: image19.png]



iΨt(x,t) - Ψxx(x,t) + (V(x) + β|Ψ(x,t)|2)Ψ(x,t) = 0, t > 0.

Where β є
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and relates to the strength of the nonlinearity and V(x) represents the potential energy. The sign of β relates to the type of interaction between the particles considered. For β > 0, the inter-particle forces are repulsive. For β < 0, the inter-particle forces are attractive. Solutions to (2) can be found exactly by the inverse scattering method [1]. There are two different families of solutions of (2) depending on the sign of β. For β < 0, the solution of (2) is given by a "bright soliton," (Fig. 1(a)) corresponding to a local maximum of the density distribution |Ψ|2. The general form of the bright soliton is,
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Ψ(x,t)bright = a sech[a (x - vt - x0)] · exp[-i​(vx + 1/2(a2 - v2)t - t0)].

Where a is the amplitude, v is the speed of the soliton (both parameters are independent of each other), and x0 and t0 are shifts in x and t, respectively.

For β < 0, the solution of (2) is given by a "dark soliton" (Fig. 1(b)), corresponding to a local minimum in the density distribution [2]. The form of a dark soliton is,

[image: image21.jpg]25

Density

Two Overlapping Solitons

200

Position

Time

150




Ψ(x,t)dark = a tanh[a (x - vt - x0)] · exp[-i​(vx + 1/2(a2 - v2)t - t0)],

where the variables are the same as in (3a).
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Figure 1. Bright (a) and dark (b) soliton density distributions |Ψ|2, with a = 2, t = x0 = t0 = 0.
Both families of solutions are solitary waves, or solitons. Solitons are one-dimensional waves that propagate within a nonlinear medium without spreading. This remarkable feature is due to the balancing of the wave's natural tendency to disperse (due to the relationship between its speed and wave number) with the opposing nonlinearity of the system (Fig. 2).
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Figure 2. (a) Dispersive solution of the linear Schrödinger equation (1). (b) Non-dispersive bright soliton solution for the NLS equation (2)

II. INTERACTING BRIGHT SOLITONS.


Besides maintaining their shape in time, solitons also have the unique ability of maintaining their shape after collisions with other solitons. At the point of collision, the two solitons interfere with each other as can be seen in Fig. 3, causing a fringe pattern in their density distribution. However, they continue to pass through one another, and emerge from the interaction with all the same properties they began with (as if there were no interaction), save for a small position displacement (see Fig. 4).
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Figure 3. (a) 3-D plot of solitons-soliton collision. (b) Space-time plot of (a)
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Another phenomenon occurs when two solitons are initially overlapping. Even with no velocity, the stationary solitons will attract each other because they act on the other as a positive potential. Noticing the V(x) + β|Ψ(x,t)|2  term in (2), the first soliton can feel the second (and vice versa) as if its density distribution was simply an additional potential. The two solitons will then slowly attract one another and form a single soliton of twice the amplitude of the originals. Since (2) is nonlinear, the sum of two solutions is not necessarily a solution itself. As a result, some interesting things happen for a two-soliton solution (see Fig. 5(a)). After the solitons merge into one, the produced soliton caves in from its sides and radiates two wings from its ends (see Fig. 5(b)). These wings also happen to be solitons. Then the reverse occurs and the solitons revert to their original single-soliton shape. The process continues oscillating with period π/2 [3].

III. INTRODUCTION TO BOSE-EINSTEIN CONDENSATION


Bose-Einstein Condensation (BEC) is a quantum physical phenomenon that occurs in some substances at very low temperatures (~1˚ K). It applies to any collection of bosonic particles. These are quantum particles with integer spin, such as a deuteron (a bound proton and neutron), or a Helium atom in its ground state. Only bosons may be in close proximity with one another. Fermions (half-integer spin particles), on the other hand, repel each other as they get nearer. It is crucial for BEC that particles within the system considered are able to approach each other, or condense, causing their wavefunctions to overlap. Hence only bosons can be considered.


When any system of particles is cooled, their kinetic energy decreases resulting in more particles descending to the system’s ground state. In the quantum picture, the particles’ associated wave functions also spread. Surprisingly, however, there exists a critical temperature (Tcrit) at which the rate particles descend to the ground state increases dramatically. This results in a significant overlapping of their wave functions. This overlap can become so strong at low enough temperatures that the particles loses their individuality causing the entire system to act cohesively as one (see Fig. 6). Upon condensing, the system is referred to as a Bose-Einstein condensate. This process was theoretically predicted in 1924 by the Indian physicist Satyendra Nath Bose, but only physically realized in 1995 by groups at JILA and MIT [4].
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In order to cool a system to observe condensation it is typical to trap the condensate within a potential. Fig. 7 compares how a typical assortment of atoms at temperature greater that Tcrit trapped in a parabolic potential compares to an assortment of atoms at temperature less than Tcrit in the same potential. By analogy these pictures could also represent electron energy levels of an atom at high and low temperature respectively.
IV. THE NLS EQUATION AND BOSE EINSTEIN CONDENSATION

A quantum particle in isolation is governed by (1). Since BEC describes a system of many quantum particles interacting with each other and the system itself, the governing equation for a condensate needs to incorporate the nonlinear interactions of its constituents. Therefore the NLS equation (2) needs to be applied. Since bosons attract one another the sign of β in (2) is positive. This means that the condensate can be considered having a density distribution (Fig 6(d)) of a bright soliton.

However, within the condensate, dark solitons, corresponding to absences of atoms, can propogate. Associated with the dark solitons is a negative nonlinear strength β, implying absences of atoms within the condensate repel each other. These dark solitons are artificially introduced into the condensate by means of phase imprinting [6]. Physically the procedure involves applying a homogenuous potential generated by the dipole potential of a far detuned lase bear to one-half of the condensate wave function. The potential is pulsed for a short time creating a local phase factor, Ψ(x,t) ( Ψ(x,t)e-iΔφ, in the condensate [6] see Fig. 8.
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My results agree with Fig. 8. I applied a phase factor by scaling my bright soliton (condensate) by a factor of tanh(2x). This created a stationary dark soliton resting in the center of a stationary bright soliton. In physical terms, I created a stationary absence of atoms within a Bose-Einstein condensate (see Fig 9). 
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V. NUMERICAL METHODS


The finite differences method used to numerically evaluate (2) is a linearized Crank-Nicolson (C-N) scheme, which can be found in [7]. The procedure amounts to time-stepping a lattice of x-values according to,
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where,
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with h being the spatial step, τ being the time step and q being the nonlinearity strength, β.


Separating (4a) we find that,


(Inxn + iτK)Ujn+1 = (Inxn - iτK)Ujn  - 3/2 iqτ( |Ujn|2Ujn - ½ |Ujn-1|2Ujn-1).

where Inxn = n x n Identity Matrix and K is an n x n matrix with,
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    ai =  h-2 – (Vi)/2,     b = ½(h-2).


The accuracy of this method is of O(τ2 + h2) and is unconditionally stable. The second order convergence can be seen by the parabolic shape of the convergence plot (Fig. 10) below.
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Figure 4. Since the peak of the solitons moves at constant velocity, comparing where the peak is at time t = 40 to where it is initially, a small position displacement can be seen in this space-time plot corresponding to a displacement jump during collision.








Figure 6. (a) Classical system of particles. (b) Quantum system of particles for T >> Tcrit. (c) Quantum system of particles for T ~ Tcrit (d) Idealized condensate, T = 0. Figures courtesy of [5].           





Figure 7. (a) System of atoms trapped in potential with T>>Tcrit. (b) System of atoms trapped in potential with T <Tcrit. Figures courtesy of [5].





Figure 5. (a) Two initially overlapping solitons interacting in time. (b) Soliton wings.
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Figure 8. Density distribution (a) and phase distribution (b) of a dark soliton state with Δφ ~ π. The density minimum has a width l0. The scheme for the generation of dark solitons by phase imprinting is shown in (c), where half the condensate is imprinted with a phase and le is the width of the potential edge. Picture taken from [6].





Figure 9. Density distribution of a phase imprinted condensate in time.





Figure 10. Convergence plot of C-N scheme.
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