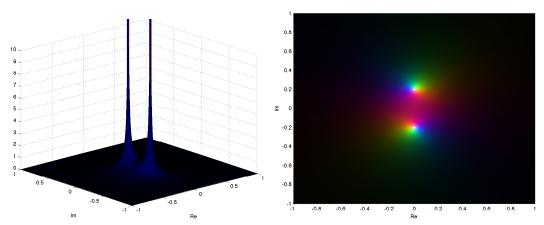
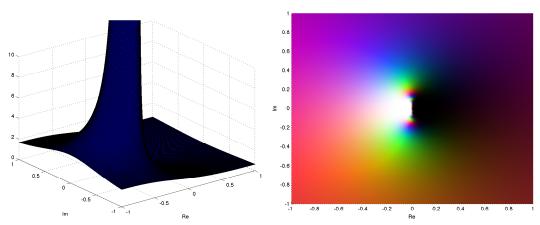
1. Code: complex_vis.m

(a) $f(z) = e^{-1/z}$ singularities are at $z = \pm \frac{1}{5}i$. Both poles are simple.



left: Plot of $f(z) = (1 + 25z^2)^{-1}$, where z-axis is |f(z)|, right: black is vanishing, white is $|f(z)| = \infty$, colors correspond to contribution of real and imaginary components to |f(z)|. Red is positive real, green is negative imaginary, blue is positive imaginary.

(b) $f(z)=e^{-1/z}$ singularity at z=0. Pole is of infinite order, as expanding f(z) as $e^{-1/z}=1+(\frac{-1}{z})+\frac{1}{2!}(\frac{-1}{z})^2+\dots$ has an infinite number of terms with $(\frac{1}{z})^n, n=0,1,2,\dots$



left: Plot of $f(z) = e^{-1/z}$, where z-axis is |f(z)|, right: black is vanishing, white is $|f(z)| = \infty$, colors correspond to contribution of real and imaginary components to |f(z)|. Red is positive real, green is negative imaginary, blue is positive imaginary.

2. Prove that, given a set of distinct points $\{x_j\}_{j=0,\dots n}$ in [a,b] there exists a unique set of weights $\{w_j\}_{j=0,\dots,n}$ such that Newton-Cotes quadrature integrates exactly over [a,b] all polynomials up to degree n.

Consider a degree-n polynomial $p(x) = a_0 + a_1x + ... + a_nx^n$. We can consider this polynomial as a linear combination of the monomials $1, x, x^2, ..., x^n$, which are all linearly independent.

To integrate each monomial exactly over [a, b] using Newton-Cotes quadrature, we have

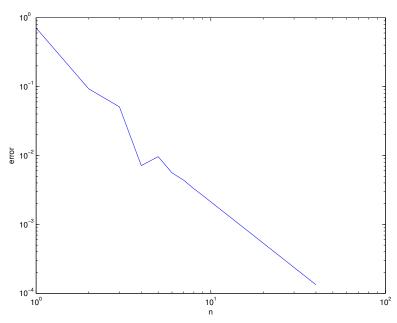
$$\sum_{i=0}^{n} w_i f(x_i) = \int_a^b f(x) dx$$

$$\sum_{i=0}^{n} w_i a_k x_i^k = \frac{1}{k+1} a_k (b^{k+1} - a^{k+1})$$

$$\sum_{i=0}^{n} w_i x_i^k = \frac{1}{k+1} (b^{k+1} - a^{k+1})$$

Since there are n+1 distinct x_i , we can create a $k+1 \times n+1$ matrix to solve for the exact weights w_i which will work for all polynomials up to degree k-1 (since the a_k cancelled out above). We can go up to k=n for an $n+1 \times n+1$ matrix which will be invertible, as the x_i are unique leading the matrix to be full rank. Thus, we can solve the system $\mathbf{A}\mathbf{w} = \mathbf{b}$ exactly, where \mathbf{A} has x_i^k in the kth row and ith column, \mathbf{w} is the column vector of w_i s, and \mathbf{b} is the column vector where the ith entry is the integral of the ith monomial over [a, b]. Thus there exists a unique set of weights given a set of distinct points $\{x_j\}_{j=0,\dots n}$ in [a, b] that will integrate all polynomials up to degree n exactly. If we try to find a set of weights for degree greater than n, the matrix will no longer be full-rank, and we will not be able to integrate exactly.

- 3. Numerical integration of $(1+4x^2)^{-1}$ on [-1,1] (exact answer is $\arctan(2)$). Code: quad.m
 - (a) Trapezoid rule

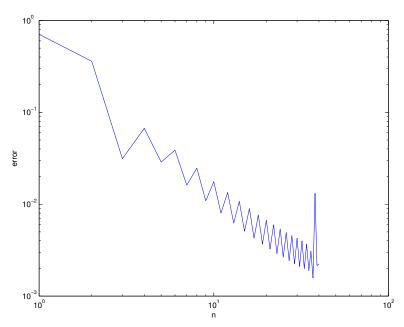


Error of numerical integration by trapezoid rule as function of n+1 points on a log-log graph.

Using Thm. 9.4 from Kress, we know that the error using the trapezoid rule is bounded by $\frac{2}{3}||f''(x)||_{\infty}$ Thus for an arbitrary n, we have the error bounded by $n\frac{2/n^3}{3}||f''(x)||_{\infty} = \frac{2}{3n^2}||f''(x)||_{\infty}$. $||f''(x)||_{\infty} = 8$ (using wolframalpha), so the error is bounded by $16/3n^2$.

Using the graph, we find that the error is proportional to $\approx n^{-8/3}$, which is within the bounds of the theorem

(b) Newton-Cotes

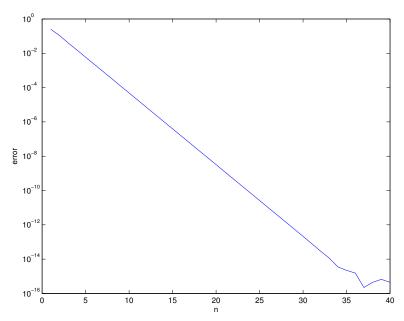


Error of numerical integration by Newton-Cotes method as function of n+1 points on a log-log graph.

Minimum achievable error is just above 10^{-3} . As seen on the graph, error starts to blow up just before n=40 because the Vandermonde matrix used to solve for weights becomes badly scaled.

4. Gaussian Quadrature on [-1,1] Code: gaussquad.m

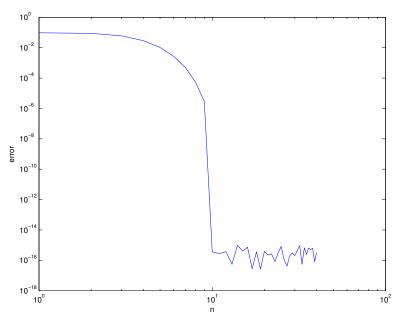
(a) $(1+4x^2)^{-1}$ (answer: $\arctan(2)$)



Error of numerical integration by gaussian quadrature as function of n+1 points on a semilog graph.

Convergence is exponential. For $E = Ce^{-\alpha n}$, $\alpha \approx 1.04$. Since function is analytic within a region about [-1,1] on the real line, we get exponential convergence, which is good.

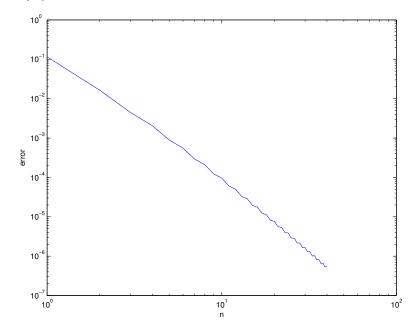
(b) x^{20} (answer: 2/21)



Error of numerical integration by gaussian quadrature as function of n+1 points on a log-log graph.

Convergence looks super-algebraic. By Kress Thm. 9.20, the convergence is proportional to $f^{(2n+2)}$ for some point on the interval which is just 0 for $n \ge 10$, as seen on the graph (the error goes to 10^{-16} because of machine imprecision).

(c) $|x|^3$ (answer: 1/4)



Error of numerical integration by gaussian quadrature as function of n+1 points on a log-log graph.

Convergence is algebraic, of order ≈ -3.33 . Although the function is not continuous differentiable, it is fairly well behaved (no singularities), so we get algebraic convergence (instead of exponential).

5. Base case: Using $q_{-1} = 0$, $q_0 = 1$, use $q_{j+1}(x) = xq_j(x) - \alpha_{j+1}q_j(x) - \beta_{j+1}q_{j-1}(x)$ where $\alpha_{j+1} := (q_j, xq_j)/(q_j, q_j)$ and $\beta_{j+1} := (q_j, q_j)/(q_{j-1}, q_{j-1})$, except $\beta_1 = 0$. Constructing q_1 , we have

$$q_1 = x - \frac{\int_{-1}^1 x dx}{\int_{-1}^1 1 dx} - 0$$
$$= x - 0$$
$$= x$$

Taking the inner product $(q_1, q_0) = \int_{-1}^{1} x dx = 0$, we see that the set $\{q_0, q_1\}$ is mutually orthogonal.

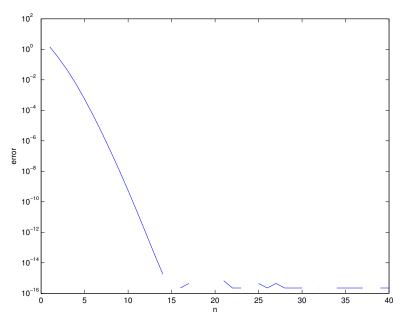
Inductive Case: Let $\{q_0, ..., q_j\}$ be a mutually orthogonal set of polynomials on [-1, 1]. Then suppose $q_{j+1}(x) = xq_j(x) - \alpha_{j+1}q_j(x) - \beta_{j+1}q_{j-1}(x)$ where $\alpha_{j+1} := (q_j, xq_j)/(q_j, q_j)$ and $\beta_{j+1} := (q_j, q_j)/(q_{j-1}, q_{j-1})$. Then taking the inner product of q_i with q_{j+1} , $i \leq j$, we have,

$$(i, j+1) = (i, xj) - \frac{(j, xj)}{(j, j)}(i, j) - \frac{(j, j)}{(j-1, j-1)}(i, j-1)$$

Clearly, when i=j, the third term goes to 0 (by orthogonality), and the first and second terms cancel out, leaving (j,j+1)=0. If i=j-1, then we take the first term as $(j-1,xj)=(j,x(j-1))=(j,j+\alpha_j(j-1)+\beta_j(j-2))=(j,j)$ using orthogonality of the set. Thus, $(j-1,j+1)=(j,j)-\frac{(j,j)}{(j-1,j-1)}(j-1,j-1)=(j,j)-(j,j)=0$. For $i\neq j,j-1$, we can modify the previous relation for (j-1,xj) to have $(i,xj)=(j,(i+1)+\alpha_ii+\beta_i(i-1))=0$ since i< j-1. Thus (i,j+1)=0, and the term q_{j+1} is orthogonal to the set $\{q_0,...,q_j\}$.

By induction we see that the given rules construct a sequence of orthogonal polynomials on [-1,1].

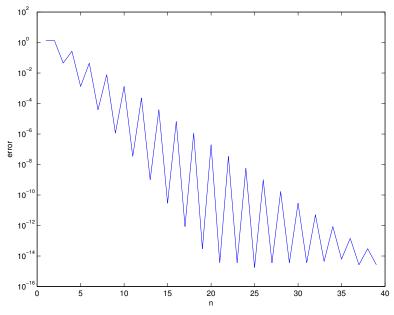
- 6. Error convergence over $[0, 2\pi)$ using periodic trapezoid rule. Code: periodquad.m
 - (a) $(1/2\pi)e^{\cos x}$ exact answer: modified Bessel function $I_0(1)$



Error of numerical integration by periodic trapezoid rule as function of n+1 points on a semilog graph.

Function is C^{∞} so we expect super-algebraic convergence. It is kind of difficult to see if this is happening on the plot, as the convergence is so fast (goes to $O(\epsilon_{mach})$) for n=15

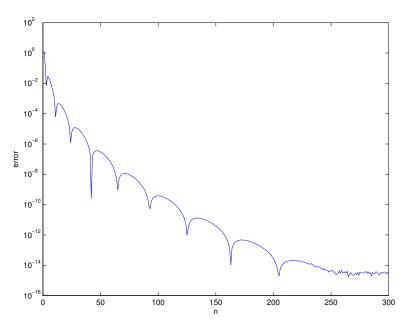
(b) $(1 + \cos^2(x/2))^{-1}$ numerical answer: 4.44288293815837



Error of numerical integration by periodic trapezoid rule as function of n+1 points on a semilog graph.

Convergence is exponential, for $E = Ce^{-\alpha n}$, $\alpha \approx 0.933$. Singularities for the function are at $z = 2(2\pi n \pm \cos^{-1}(i))$, Since the function is analytic within a domain about the real line, the series converges exponentially.

(c) $\exp(-1/|\sin(x/2)|)$ numerical answer: 1.31314591268447



Error of numerical integration by periodic trapezoid rule as function of n+1 points on a semilog graph.

Function is not analytic, nor continuously differentiable, so we don't see exponential or algebraic convergence.