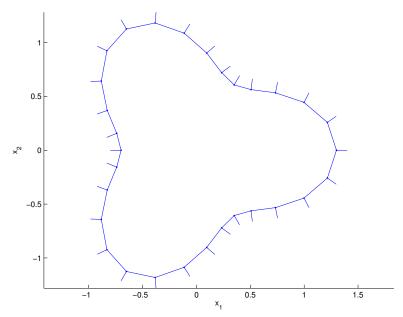
1. (a) Code inside: param.m

(b) Code: param.m

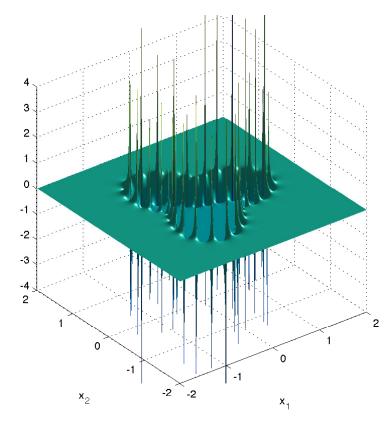
(c) Code: boundplot.m Also used: laplacefs.m



 $R(s) = 1 + 0.3\cos(3s), M = 30$ nodes. Normal vectors shown as lines tangent to curve at nodes.

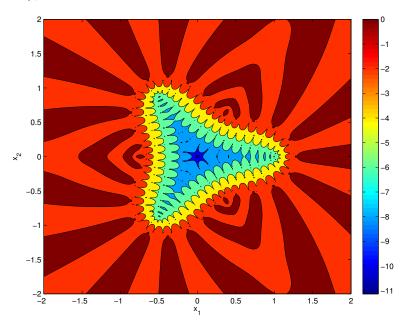
2. Code: gausslaw.m

(a) $u = D\tau$, $\tau = -1$, periodic trapezoidal quadrature with 30 nodes on boundary.



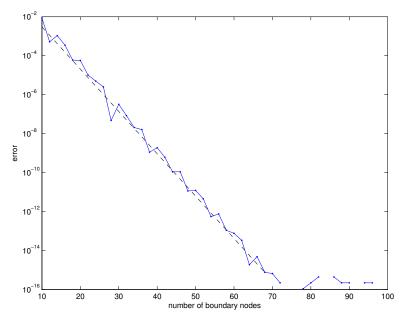
note how $u \approx 0$ outside boundary and $u \approx \tau$ inside boundary.

(b) Plot of $\log_{10} |u+1|$. Shows absolute error inside the domain, where $u \approx -1$, and ≈ 1 outside boundary, where $u \approx 0$.



Error seems to exponentially decrease towards the interior of the domain.

(c) Error at a x = (0.2, 0.1) vs. the number of boundary nodes used.



Note semilogy plot. Dashed line is $y = 0.45e^{-0.5n}$

Convergence is exponential (rate is $e^{-0.5n}$). Error bottoms out at about 75 nodes.

- 3. Proof of bound on the "far" part in the double-layer jump relation. Fix $y, z \in \partial \Omega$, and let $x = x(h) = z + hn_z$ be a point off the surface for $h \neq 0$. We make a geometric assumption $2h \leq |z y|$.
 - (a) Let $r_z = y z, r_x = y x$. Since $2h \le |z y|$, we have $\frac{1}{2}r_z \le r_x \le \frac{3}{2}r_z$, where the extreme cases occur when n_z is parallel or antiparallel to r_z . We know that

$$\frac{\partial \Phi(x,y)}{\partial n_y} = -\frac{1}{2\pi} \frac{n_y \cdot (y-x)}{|y-x|^2}$$

Thus,

$$\left| \frac{d}{dh} \left(\frac{\partial \Phi(x, y)}{\partial n_y} - \frac{\partial \Phi(z, y)}{\partial n_y} \right) \right| = \left| \frac{1}{2\pi} \frac{d}{dh} \left(\frac{n_y \cdot r_z}{r_z^2} - \frac{n_y \cdot r_x}{r_x^2} \right) \right|$$

$$\leq \frac{1}{2\pi} \frac{d}{dh} \left(\left| \frac{n_y \cdot r_z}{r_z^2} \right| + \left| \frac{n_y \cdot r_x}{r_x^2} \right| \right)$$

$$\leq \frac{1}{2\pi} \frac{d}{dh} \left(\left| \frac{n_y \cdot r_z}{r_z^2} \right| + \left| 4 \frac{n_y \cdot r_x}{r_z^2} \right| \right)$$

Since $4\frac{1}{r_z^2} \le \frac{1}{r_x^2} \le \frac{4}{9r_z^2}$, and we are assuming that r_x is similar in size to r_z , so the larger coefficient will give the extreme bound. Now, $n_y \cdot r_x = n_y \cdot (r_z + hn_z)$, which is largest

in magnitude relative to $n_y \cdot r_z$ when $n_y \cdot n_z = 1$, so $n_y \cdot r_x \le n_y \cdot r_z + h$. Thus,

$$\begin{split} \left| \frac{d}{dh} \left(\frac{\partial \Phi(x,y)}{\partial n_y} - \frac{\partial \Phi(z,y)}{\partial n_y} \right) \right| &\leq \frac{1}{2\pi} \frac{d}{dh} \left(\frac{|n_y \cdot r_z|}{r_z^2} + 4 \frac{|n_y \cdot r_z| + h}{r_z^2} \right) \\ &\leq \frac{1}{2\pi} \frac{d}{dh} \left(\frac{5|n_y \cdot r_z| + 4h}{r_z^2} \right) \\ &\leq \frac{1}{2\pi} \left(\frac{4}{r_z^2} \right) \\ &\leq \frac{2}{\pi r_z^2} \end{split}$$

Which is just $C/|z-y|^2$, where $C=2/\pi$.

(b) Since z is fixed, let

$$g(h,y) = \left| \frac{\partial \Phi(x,y)}{\partial n_y} - \frac{\partial \Phi(z,y)}{\partial n_y} \right|$$

and $S = y \in \partial\Omega, |y - z| \ge r$. Since $|y - z| \ge r$, and h < r/2, the relation that we found for part (a) holds, and we can even strengthen it since $1/r_z \le 1/r$, by stating $\frac{d}{dh}g(h,y) \le C/r^2$, $C = 2/\pi$. The integral becomes

$$\int_{S} g(h,y)dy \le g(h,y_f) - g(h,y_0) + \frac{1}{2}h\ell(S)\frac{d}{dh}g$$

Where $\ell(S)$ is the length of S, and y_0 and y_f are the respective start and end points for S. Since S is almost closed, $g(h, y_f) \approx g(h, y_0)$, so we have

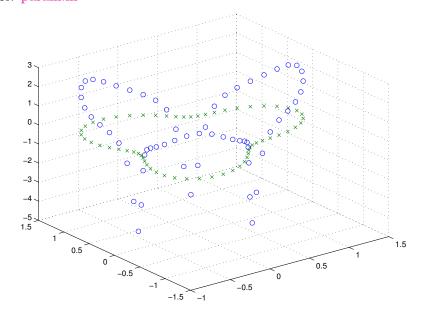
$$\int_{S} g(h, y) dy \le C \frac{h}{r^2}$$

where $C = \ell(S)/\pi$

4. Now to solve BVP $(D - \frac{1}{2})\tau = f$, or $A\tau = -2f$, where A = I - 2D.

$$D\tau = \int_{\partial\Omega} \frac{\partial \Phi(x,y)}{\partial n_y} \tau(y) ds_y$$

(a) Code inside: param.m



Curvature at 60 nodes (blue), 2D surface in green.

(b) Code: bvp.m



Kernel for D using 200 nodes. Note smooth transition over diagonal.

(c) Now we can use $V=D\tau$ inside Ω to find the double layer potential V for some point $x\in\Omega.$

Code: bvp.m

We find that for x = (0.2, 0.1), $u^{(n)}(x) = 1.083140928009776$ using 30 boundary nodes. The error from the known solution, $u = \cos(x_1)e^{x_2}$, is 1.516×10^{-7} .