1. Code: srctargint.m

b Numerical rank of interaction matrix, given by kernel \(\frac{1}{2\pi} \log \frac{1}{||x-y||} \)

Numerical rank of interaction matrix, with 50 logarithmically spaced \(n \) values between 1 and 1000.

For \(n = 1 \) to 15, matrix is full rank. After that, the rank still increases with \(n \), but more gradually. When \(n \approx 100 \). The numerical rank appears to maximize at 21, with some random matrices generating slightly larger ranks.

c Rank for \(n = 100 \) with tolerance of \(10^{-10} \) is 17. Leaving out constants of order 1, the number of multipole coefficients \(P \) needed depends on \((R/b)^n\), where \(R \) is the radius of the circle that contains all the sources, and \(b \) is the radius of the circle that excludes all the targets, and \(n \) is the number of coefficients. In this case \(R = \sqrt{2}/2 \), and \(b = 3/2 \) so \(R/b \approx 0.47 \). Thus, to have a total error of \(10^{-10} \), we need \(\approx 31 \) \(p \) coefficients, which is about 50% greater than the rank of the matrix. However, we know that the rank of the matrix is a lower bound on the number of \(p \) coefficients needed, so it is expected for \(n \) to be larger than the rank, however, it is on the same order of magnitude.

2. Code: multipole.m

\(l^2 \) norm of the real part of the vector potentials is \(9.721396404 \times 10^4 \).

Setting up timers on the multipole method and 6 points done by the brute-force matrix multiplication method, we find that the multipole method takes \(\approx 7.14 \) seconds to complete, whereas the brute-force method would take an estimated \(5.5 \times 10^4 \) seconds (\(\approx 15 \) hours) to complete. Using this estimation, the multipole method is about 13000 times faster than the brute-force method.