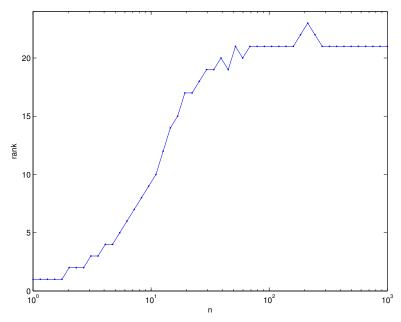
1. Code: srctargint.m

b Numerical rank of interaction matrix, given by kernel $\frac{1}{2\pi} \log \frac{1}{||x-y||}$



Numerical rank of interaction matrix, with 50 logarithmically spaced n values between 1 and 1000.

For n=1 to 15, matrix is full rank. After that, the rank still increases with n, but more gradually. When $n\approx 100$. The numerical rank appears to maximize at 21, with some random matrices generating slightly larger ranks.

c Rank for n=100 with tolerance of 10^{-10} is 17. Leaving out constants of order 1, the number of multipole coefficients P needed depends on $(R/b)^n$, where R is the radius of the circle that contains all the sources, and b is the radius of the circle that excludes all the targets, and n is the number of coefficients. In this case $R=\sqrt{2}/2$, and b=3/2 so $R/b\approx 0.47$. Thus, to have a total error of 10^{-10} , we need ≈ 31 p coefficients, which is about 50% greater than the rank of the matrix. However, we know that the rank of the matrix is a lower bound on the number of p coefficients needed, so it is expected for n to be larger than the rank, however, it is on the same order of magnitude.

2. Code: multipole.m

 l^2 norm of the real part of the vector potentials is 9.721396404×10^4 .

Setting up timers on the multipole method and 6 points done by the brute-force matrix multiplication method, we find that the multipole method takes ≈ 7.14 seconds to complete, whereas the brute-force method would take an estimated 5.5×10^4 seconds (≈ 15 hours) to complete. Using this estimation, the multipole method is about 13000 times faster than the brute-force method.