Math 126 — 12W
March 9, 2012

Adaptive Collocation for Boundary Integrals in Two
Dimensions using Smooth Reparameterization

Vipul Kakkad
Math 126: Numerical Analysis for PDEs and Waves
Boundary Integral Equations

The boundary integral method is a fairly ubiquitous method of solving certain PDEs, whose
solutions can be expressed in the form of linear combinations of fundamental solutions centered at
different points. Notable examples include solving Boundary Value Problems for the Laplace
equation, A2 u = 0, and also the Helmholtz equation, (A? + k?)u = 0, on domains in R" usually for n
=2 or 3 (we will focus on the n = 2 case here).

The boundary is usually parameterized by a function z : [0,27] — 04, that traverses the boundary
once, and the integral

I= | f(x)dx
)

where f is the function that we are trying to integrate, and x € R?. And z is a continuous function
that has a positive (and non-zero) ‘speed’ |z'(s)| at every point s € [0,27], and z(0) = z(2m)
(requiring that z is 21 periodic, and smooth)

These equations involve numerically solving an integral equation created using Green’s
representation functions, along the boundary 9.2 of the domain 2 c R, using the Nystrom method,
that uses discretized collocation of 4.2.

Angular equispaced M = 100 points

Al <. —=e— sampling points
——= normal vectors
«,
-+
1 *
0.5 “ by,
b
. “YK/ 0.5}
L d
-
r -
—
IS

Angular equispaced M = 30 points

—e— sampling points
—= normal vectors

T

-0.51
; -0.51
4
a-q
-~

P

.
0.5

F1: Above, we have quadrature points for different two different shapes, with normal vectors scaled by
curvature on the left, and unit tangent vectors on the right.

Math 126 — 12W
March 9, 2012

As reviewed in class, it is provable that the most efficient quadrature scheme for such an integral is
the ‘Periodic Quadrature’ scheme, that uses evenly spaced points that are given by z(%), where N

is the number of nodes being used in the scheme, and j € [1,2,3, ... N], all equally weighted by %ﬂ

After using the periodic quadrature rule, our integral is now:

2T N
21
= Of Fas)) I7()lds = W}z £(265)) |2(5,)|

2mj
where sj = Uy
N

Re-parameterizing the Boundary Curve

While the continuous integral may be independent of how we choose to parameterize the curve
representing the boundary (our choice of the function z), the approximation given by the periodic
quadrature is clearly highly dependent on the collocation of points we use. The speed at which this

parameterization travels through the boundary curve determines where the images z(%) will lie.

This is the degree of freedom (or rather infinitely many degrees of freedom) that we intend to
exploit to give us a better approximation to the correct boundary integral than using the naive
approach of using periodic quadrature on the existing parameterization.

Angular equispaced M = 50 points

/'/—- -\ { —e— sampling points

P,

1= '/

\

0.5

F2: Observe the clumping of data points in areas of the curve close to the ‘origin’ (which is arbitrary
for a given parameterization of a curve). These nodes are the ‘evenly spaced’ periodic quadrature
nodes for a radial parameterization of this curve

Math 126 — 12W
March 9, 2012

A correct solution of this problem would be an approach that doesn’t depend on the initial
parameterization z, in which the curve is specified initially, and should depend only on the ‘trace’ of
the function z in R? (the set of all points that lie in the image ([0, 2])).

To modify the only the speed of traversal of the function z without changing its trace, we can send
our parameter s through a reparameterization curve¢ : [0, 2] — [0, 27], such that the composition
of the two functions z(¢ ([0, 27])) is the same as that of z([0, 27]).

This places a few restrictions on our re-speeding function ¢:

a) ¢(0)=0

b) ¢(2m) = 2m

c) ¢'(0) = ¢'(2m)

d) ¢'(s) >0foralls € [0,27]

These restrictions ensure that this re-speeding does not make z o ¢ pass through the same point
more than once, and that it is a smooth function (and by monotonicity, also ensure that ¢ is an
invertible function). Therefore, z o ¢ fulfills the same requirements of a parameterization as z.

Arclength equispaced M = 40 points Angular equispaced M = 40 points

sl sl
06 e PN 0.6 P
0.4 / ‘ \ 0.4 —///
0z ‘ o2lf
0: _ ;, 0‘;. _
02k f 02|,
0.4l \ // 0.4 \
06l TN e 06/ -
\x"f—f, £ g o e \\I: ,"";,
0.8/ 08l
AL 1
1 0.5 0 05 1 15 15 1 0.5 0 05 1 5

F3: Different parameterizations of the same curve yielding different ‘equispaced points’

This modifies our integral to now be

21 2T

= [1@ 1ol = [1 (2(66)) 12 (6| #'(5) as

0 0

Using the periodic quadrature scheme, this can now be approximated by

N
'wﬁZ (2(965) 12/ (o)l #'Cs))

which (if we choose our ¢ function carefully) should be a better approximation to the correct
integral I than our previous approximation.

Math 126 — 12W
March 9, 2012

The Natural Parameterization

As discussed above, a correct solution to this problem would depend only on the shape of the curve
that we are looking to integrate over, and be completely independent of the initial parameterization
of the boundary that we are given. The first step in achieving this objective is to move to a
parameterization that we are guaranteed to be only dependent on the shape - the ‘natural
parameterization’, which traverses the boundary at a unit speed (measured in the metric of the
target space R?)

This function can be defined by first finding the length function y(s) which defines the arc-length
measured along the curve measured between a fixed point z(sy) and z(s), which is given by:

9(s) = f 12/(s)| ds
0

(sg is arbitrary, and we can just set it to 0)

Since |z'(s)| > 0 for all s € [0,27], we know that §(s) is a monotonically increasing function.

Let L = §(2m), and the function y(s) = ZTn $(s). We have now ensured that y(27) = 2m, and this

function fulfills all the criteria listed for a re-speeding, which means that it’s inverse, which we will
call ¢4 also fulfills all of these requirements.

The interpretation of the function z,,,; = z © ¢4 iS NOW: 2,4+ (s) = point on the curve such that

the arc-length from z(0) till this point is the fraction % of the total length L. Therefore, this new

o L
parameterization z,,, has a constant value of |z},,;| = py

Using periodic quadrature on this parameterization involves using points that are evenly spaced
along the curve, with distances measured along the curve, and therefore, the natural
parameterization z,,; of a curve is a function only of the trace of the curve.

Arclength equispaced M = 40 points

— e

/- /] —«— sampling points

Angular equispaced M = 40 points

“s| —e— sampling points

-

B e

N\

0.8
0.6
0.4

0.21

0.2

-0.41

/’ 0.6
//- 0.8
-1
.

F3b

Math 126 — 12W
March 9, 2012

Implementation of the Natural Parameterization

In practice, the integral to find y(s) is too difficult to perform analytically, and it is more practical to
solve for y by just using a numerical solution to the ODE

d
d—i = 12'(s)|

This will yield, to reasonable accuracy a set of discrete points s;, and the values y(s;). At this point,
we can implement an interpolation scheme to be able to evaluate y(s) for any point s.

Given that the number of points will be rather large, it doesn’t make sense to high-order
polynomials for Lagrange interpolation, or, in fact, any global interpolation scheme.

We opt for a local scheme, which means using piecewise polynomials in the form of clamped or
natural cubic splines, or piecewise Hermitian cubic polynomials.

Using piecewise Hermitian cubic polynomials, or ‘pchip’s as Matlab calls them, we can actually
guarantee that the interpolant will be monotonic for data points that are monotonically increasing
(Fritsch, F. N. and R. E. Carlson, "Monotone Piecewise Cubic Interpolation,” SIAM J. Numerical
Analysis, Vol. 17, 1980, pp.238-246)

Arclength equispaced M = 50 points
1.5 — 7~

~ Ay
Vd — e« sampling points « Points
}'/ s Interpolant
1l . r
.
5L
" .
0.5)- \ | -
O
N AN al.
°F
S ‘ T
N
05 / f .
! r 2|
f ’
1L /
t b L
/ 1
) /
1.5Lc r\\\ o . c c c c 0 c c c c c c ¢
-1.5 -1 -0.5 0 0.5 1 1.5 2 0 1 2 3 4 5 6 7

F4: The ¢,,4:(s) for the shape to it’s left. We clearly see the 3 identical speed-ups and slow-downs
right after them to represent the 3 leaves of the shape formed.

The pchip() function in matlab stores this as a ‘PP structure’, from which it is easy to evaluate the
polynomial, and also quite easy to derive another PP structure for the derivative of the function,
which is very useful when performing out integration and having to evaluate ¢,4;'(s) at our
collocated points.

Math 126 — 12W
March 9, 2012

Improving on the Natural Parameterization

The natural parameterization allows us to However, in most situations, the natural
parameterization is not the parameterization that will yield the best approximation to our
boundary integral. Intuitively speaking, the parameterization should slow down around the areas
that have sharp turns, or approach other areas of the boundary very close, where our discrete
approximations are likely to be more inaccurate.

In order to get any new parameterization that we want, we will now work with z,,; instead of z,
which effectively makes our solution unaffected by the initial parameterization.

Two possible approaches we could have are:

a) Generate a set of points s;, and the values of ¢ (s;), and from there, perform piecewise
interpolation to obtain ¢ in the same way as we did for ¢,,,; in the previous section.

b) Somehow analytically derive a function ¢ that can be provided to the program directly to
evaluate. (We will also have to provide the program an analytical derivative for this ¢).

It is not clear whether or not an ‘optimal’ solution strategy for picking this parameterization is
possible, so I tried a few different strategies that simulate the desired effect. They are listed below
with some preliminary observations.

1) The first possible way to do this is, as suggested above, slow the curve down whenever
there is a higher curvature. Since the curvature x(s) can assume both positive and negative
values, but stays bounded for smooth shapes, we can use, in some form, the values of e0x(s),

where a € R is some constant determined empirically by trial and error.

Another possible approach would be to evaluate k at a number of points evenly spaced in
the natural parameterization, and then take a cumulative sum of those points. This
cumulative sum can then be used as the discrete points s;, and the values of ¢ (s;).

This approach was tried, without much success. It also has the problem of only taking into
account the curvature, without seeing where our solution encounters problems with a
different section of the boundary approaching too close to the section of the boundary in
question. This issue is addressed in the approaches below.

2) The second approach is to try to apply an analogous approach to the Faraday Cage
derivation of the Chebyshev nodes for the case of a linear interval.

The Faraday Cage derivation is done by placing equal charges at random spots on the
interval, and allowing them to redistribute themselves according to the forces acting on
them until they equilibriate their positions to gain a full cancellation of field whenever there
they are positions.

Math 126 — 12W
March 9, 2012

It can be shown that when limited to the interval [—1, 1], these charges end up at the
positions cos (ZNﬂ) forj € [1,2,3,... N], where N is the number of charges. These same nodes

are also used as the standard nodes for the Clenshaw - Curtis quadrature scheme.

The analogous derivation in this case would be to limit the charges to d(2, and allow them to
equilibrate their positions. Only forces tangential to the curve itself would act on the
charges, because the charges are restricted to move within d12.

Once the charges have settled (we know at what values of the parameter s they settle), we
can use these values as ¢(s;), and create a ¢ that makes the new parameterization z o ¢
have these locations as its periodic quadrature nodes.

This technique tends to also not work as well, because the charges tend to go as far away
from the interior of the shape as possible, and attributes of the shape are not captured as
intended.

The inverse of this parameterization was also tried (using y(s) as ¢ instead of inverting as
in the natural parameterization, to ‘invert the density’, but this was also ultimately not very
successful.

3) The 314, most successful technique that was implemented was to first take N evenly spaced
nodes on the natural parameterization, and then calculate the sum of the inverse squared
distances to all other nodes for each given node.

This has the advantage of capturing not only the corners and sharp turns in a shape, but
also captures whenever there is a section of the boundary elsewhere approaching close to
the node in question.

The cumulative sum of this function, along with the nodes s;, is used as set of data values to
derive the interpolant ¢. The results of this are shown in the figures.

Some Implemented Results:

Something to be noted in some of the cases below: In figures parameterized by a constant added to
a pure Fourier mode, the curvature is higher when nearing the origin, and therefore, the polar
periodic quadrature (the naive method mentioned earlier) performs exceptionally well. The 3rd
successful strategy and the polar parameterization actually have very similar effects, in fact.

The natural parameterization is seen to clearly perform much worse than the others.

For example,

5L 151

Math 126 — 12W
March 9, 2012

this with shape:

log error) varying in the space
Numerical Sol” g4 (€rror) varying p:

-1.’5 1’ -0.’5 6 0.’5 1’ 1.’5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2
X Iog(errorav g) =-3.5926

Shown above is the numerical solution and errors for polar periodic.

Accuracy is

log, y(error) varying in the space

2 1
15[J 0
" 1 -1
0.5 J 2
O 7 -3
0.51. 4
-4
-1k 4
-5
1.5} 4
-6
2 . c c . . c c
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
Iog(erroravg) =-2.096

heavily diminished for natural parameterization, and almost matches polar if we use adaptive (which is

the name used for option 3 described above)

Iogm(error) varying in the space

2 © © © © © © ©

151 g 0
-1

1k i
-2
0.51 E 3
oL i -4
-5

0.5 p
-6

L |
-7
1.5 g -8
2 : : : -9

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

log(error.

avg) = 35201

For example,

Math 126 — 12W
March 9, 2012

this with shape:

Iogw(error) varying in the space

Numerical Sol" 2

0.5}

45 4 05 0 05 1 15 2 45 4 05 0 05 1 15 2
X Iog(erroravg) =-5.7744

Shown above is the numerical solution and errors for polar periodic.

log, (error) varying in the space

2 0
0.5
15
B
1 1.5
2
0.5
25
0 3
0.5 35
-4
1 45
1.5 s
5.5
2 c r c N : c :
2 15 1 05 0 05 1 15

Iog(erroravg) =-2.6335

The exact same description as before applies to this set as well: Accuracy is heavily diminished for natural
parameterization, and almost matches polar if we use adaptive

Iogw(error) varying in the space

2 = = = - = = =

2 r : r :
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

log(error, av g) = -4.5346

Math 126 — 12W
March 9, 2012

log, y(error) varying in the space

2 T T T T T T T 0
1.5} 4 A
1k 4
-2
0.5 4
-3
o 4
-4
-0.51 4
AL] 5
-1.51 i 6
2 c c c :

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
Iog(errorav g) = -2.5575

This inverse butterfly shape above, though, is one of the few shapes that I could construct for
which the polar parameterization allowed for more error than the adaptive did.

Iogw(error) varying in the space

2 © © © © © © ©

15[J 0
i 1 -1
0.5 J
2
oL J
-3
0.5 J
-4
Eps J
5
15[J
6
2 : : :

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
Iog(errorav g) =-2.6007

The natural parameterization, though, is clearly nowhere near this good.

Iogw(error) varying in the space

2 - - - - - - - 0
0.5
1.5] i
-1
1 , 1.5
2
0.5 i
25
of 1 3
05l | 3.5
-4
r] 4.5
1.5] | 5
5.5
2 c c . .

-2 -1.5 -1 -0.5 0 0.5 1 15 2
Iog(erroravg) =-1.7424

