BAYES' THEOREM & BAYESIAN INFERENCE

An early example of algorithms that track authenticity is email spam filters, motivated by the huge spam problem starting in the '90s. In 2010, close to 90% of emails were spam, with annual cost to society of $20 billion (see References).

A filter tries to keep emails you want (eg, friends, ‘legitimate’ unsolicited emails) from those you don’t (eg, bulk ads). Clearly this is subjective — do you consider your friend’s bulk marketing email to be spam?

Let’s build a simple spam filter algorithm.

Given an incoming email: S is the event "this email is spam". The other possibility is "not $S". The Bayesian approach tracks a probability of, or “numerical belief in,” S. This probability will change in the light of new input, just as your opinion of an email crystallizes as you read through it.

All probabilities lie between 0 and 1:

\[0 \rightarrow \text{certainly not spam} \rightarrow \text{pretty certain it's spam} \rightarrow 1 \rightarrow \text{certainly is spam}. \]

We’ll use $p(S)$ to mean prior probability of being spam, ie before examining the email. Given the above statistics, $p(S) = 0.9 = 90\%$ is a good estimate of this prior.
Now, let U be the event "this email contains the word 'urgent'".
We need to know how common 'urgent' is in spam & in non-spam.
To estimate this, say we collect 1000 random emails and find (say) the following:
\[
\begin{array}{c|cc}
& \text{not S} & S \\
\hline
\text{all emails} & 100 & 900 \\
\text{containing 'urgent'} & 10 & 360 \\
\end{array}
\]
From this "training data" we estimate \(p(U|S) = \frac{360}{900} = 0.4 \), i.e. 40% of spam contains 'urgent'.
\(\text{called conditional probability of U occurring given S.} \)
The other data we need is the probability of U without knowing anything about S.
We can also read this from our table: \(p(U) = \frac{10 + 360}{1000} = 0.37 \)
Now, say the incoming email contains 'urgent', the algorithm computes \(p(S|U) \) via Bayes' theorem:
\[
p(S|U) = \frac{p(U|S) \cdot p(S)}{p(U)} = \frac{0.4 \cdot 0.9}{0.37} \approx 0.973, \text{ i.e. 97.3}\% chance of being spam.}
If instead it doesn't contain 'urgent', again Bayes gives the posterior:
\[
p(S | \text{not } U) = \frac{p(\text{not } U | S) \cdot p(S)}{p(\text{not } U)} = \frac{0.6 \cdot 0.9}{0.63} \approx 0.857 \text{ high, but less than our prior.}
\]
The algorithm must pick a threshold; if posterior > 0.95 (say) it goes to spam.
So far, this is not a great filter: you miss every email with 'urgent' in it!
Its "false positive rate" is \(\frac{10}{100} = 0.1 = 10\% \), way too dangerous.
But we can do much better: Bayes lets you update the posterior given new data:
Let V be "the email contains 'viagra'" ← this hardly ever occurs in non-spam!
A wrong but useful model is to assume \(p(U \text{ and V} | \ldots) = p(U | \ldots) \cdot p(V | \ldots) \).
\(\text{this is called independence of U & V.} \)
Bayes then gives, for an email with both 'urgent' & 'viagra',
\[
p(S | V \text{ and } U) = \frac{P(V \text{ and } U | S)}{P(V \text{ and } U)} p(S) = \frac{P(V | S) \cdot P(U | S)}{P(V) \cdot P(U)} p(S)
\]
"update" to the posterior given our old posterior, the new input V.

By continuing this way with a pool of many words common in spam, one gets quite a reliable Bayesian spam filter.

Notes:

- there can be many unintended consequences! Legitimate emails can end up in spam, but also spammers change tactics by misspelling words (Viagra) or including random text ("Bayesian poisoning") — it's an arms race, with evolving viral warfare.

- real filters are fancier, updating the posterior using phrases, URLs, blacklisted senders, presence of CAPS, etc...

- Here's the derivation of Bayes' theorem; it is nothing more than the rules of probability. We equate the two ways of factoring the joint probability,

\[
p(U \text{ and } S) = p(U | S) p(S)
\]

\[
p(U \text{ and } S) = p(S | U) p(U)
\]

equating these two, and rearranging gives Bayes' theorem, as stated on previous page.

This shows the two orderings of events to get to "U and S".