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Abstract

Quantum chaos concerns eigenfunctions of the Laplace operator in a domain
where a billiard ball would bounce chaotically. Such chaotic eigenfunctions
have been conjectured to share statistical properties of their nodal domains
with a simple percolation model, from which many interesting quantities can
be computed analytically. We numerically test conjectures on the number and
size of nodal domains of quantum chaotic eigenfunctions at very high energies,
approaching the semiclassical limit. We use a highly efficient scaling method
to quickly compute eigenfunctions at low resolution and interpolate to higher
resolution. We computed 105 eigenfunctions and counted 109 nodal domains.
Our results agree with the conjectured size nodal domains but disagree with the
conjectured mean and variance of the number of nodal domains.



Chapter 1

Introduction

1.1 Motivation

Nodal domains characterize regions of a vibrational surface (e.g. a drum head)
that move in phase. The boundaries between nodal domains, known as nodal
lines, are the regions which do not vibrate at all (fig. 1.1). Understanding the
characteristics of nodal domains has applications in spectral geometry, math-
ematical physics, mechanical engineering, geophysics, astrophysics, and many
other area dealing with wave behavior [13].

We study nodal domains of eigenfunctions of the Laplace operator on non-
integrable Euclidean domains, or chaotic billiards. These eigenfunctions are
known as quantum chaotic eigenfunctions because they are solutions of the quan-
tum mechanical wave equation, the Schrödinger equation. Quantum chaotic
eigenfunctions are a canonical example of quantum chaos, which lies at the in-
tersection of quantum mechanics and chaos theory. The primary signature of
chaos in classical systems is a nonlinear (exponential) divergence of trajectories
in the phase space of a system. Quantum mechanics however, is entirely linear
and quantum chaos deals with energy eigenfunctions of systems, which are con-
stant in time. Thus chaos in quantum systems is manifest in different ways, one
of the most studied being wavefunctions in chaotic domains. Figure 1.2 shows
a classical orbit and a quantum eigenfunction on the same billiard.

The goal of this project is to numerically test conjectures on the mean and
variance of the number and sizes of nodal domains in quantum chaotic eigen-
functions in the high energy, or semiclassical, limit. These tests are motivated
by questions from number theorist Peter Sarnak, who inspired us to test the
conjecture on the mean number of nodal domains. Obtaining relevant data re-
quires solving new computational challenges due to the computational intensity
of evaluating eigenfunctions at very high energies. We hope these results will
enable further mathematical investigation of eigenfunctions and that the tools
developed herein may be applied to related problems in quantum chaos.
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Figure 1.1: A circular vibrational surface with nodal lines shown in black. Nodal
domains are regions between black lines

1.2 Classical Chaos in Billiards

A billiard is a compact domain Ω ⊂ R
2. By parameterizing the perimeter

of a billiard by s ∈ [0, L), where L is the perimeter length, we can construct
a map P : R (mod L) × R (mod π) → R (mod L) × R (mod π) such that
a trajectory incident on the boundary at parameter s and angle θ from the
tangent to the boundary at s will next intersect the boundary at parameter and
angle of incidence (s′, θ′) = P (s, θ). This map describes the motion of a ball
bouncing in the domain Ω.

Chaos in classical systems is characterized by the Lyapunov exponent λ of a
system, which describes how quickly nearby trajectories diverge. It is computed
as the long time ratio of the divergence of two initially close paths:

λ = lim
n→∞

lim
|ǫ|→0

1

n
ln
|Pn(x0)− Pn(x0 + ǫ)|

|ǫ|
Where x0 = (s0, θ0) and |(s, θ)| = s. From this definition it follows that

|Pn(x0)− Pn(x0 + ǫ)| ≈ eλn|ǫ|

for small ǫ and large n. Thus a tiny change ǫ in initial conditions produces a
change that grows exponentially over time with growth rate λ. Chaotic systems
have a positive Lyapunov exponent and therefore have unpredictable long-term
behavior because arbitrarily small errors in measurements of initial conditions
eventually become large. As these errors grow to the size of the domain, the
position of a particle approaches a uniform distribution over the entire billiard.
The property that small subsets of Ω eventually map to all of Ω is known as
ergodicity (see appendix A for a formal definition).
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Figure 1.2: Above: A classical orbit in a billiard; center: a quantum eigen-
function in the same billiard; below: the largest nodal domain in the center
eigenfunction.
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Figure 1.3: Left: quarter generalized rectangular Sinai billiard; right: quarter
stadium billiard

1.3 Quantum Chaos in Billiards

A quantum wave-particle in a billiard Ω obeys the Schrödinger equation

Eu(r) = − ~
2

2m
∆u(r) + V (r)u(r)

Where ∆ = ∇2 = ∂2

∂x2 +
∂2

∂y2 is the Laplacian differential operator in two dimen-

sions. Setting ~ = 2m = 1 and V (r) = 0 for r ∈ Ω while enforcing Dirichlet
boundary conditions u(r) = 0 for r ∈ Γ = ∂Ω simplifies this to the Helmholtz
equation

{

(∆ + k2)u(r) = 0 if r ∈ Ω

u(r) = 0 if r ∈ Γ
(1.1)

where k2 = E is the corresponding eigenvalue for eigenfunction u(r) and E is
kinetic energy of the quantum wave-particle.

We focus our investigation on two billard shapes: the generalized rectangular
Sinai billiard and the Stadium billiard (fig. 1.3). In both cases we desymmetrize
the billard shapes by considering only a quarter of the full shape. This restricts
our basis set to functions that are odd as functions of x and y, i.e., f(−x, y) =
f(x,−y) = −f(x, y).

The Sinai billiard is constructed from circular arcs that meet at (1, 1) and is
parameterized by two angles, θ1 and θ2, the angles from horizontal and vertical,
respectively, of the arcs at (1, 1). The Sinai billiard is said to demonstrate “hard
chaos” because there are no stable or neutrally stable orbits. We use values of
θ1 = 0.4 and θ2 = 0.7.

The stadium billiard is constructed from a rectangular region and a quarter
circle and is parameterized by the the horizontal length of the billiard α. We
use a value of α = 2 here. The stadium billiard contains neutrally stable orbits,
specifically those with vertical momentum in the rectangular region. Neutrally
stable orbits have zero Lyapunov exponent but any perturbation will cause them
to have positive Lyapunov exponenet. The existence of such orbits implies
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Figure 1.4: A bouncing ball mode in the stadium billiard with k = 500.3881

that the stadium does not demonstrate hard chaos but because these orbits
occupy a measure zero subset of phase space, the stadium still has chaotic
properties. These classical orbits are manifest in quantum eigenfunctions as
so-called “bouncing-ball” modes (fig. 1.4).

1.4 Percolation Model

Bogomolny and Schmit [5] have argued that nodal domains of random functions
(which are considered an accurate proxy for eigenfunctions of chaotic systems
[11]) can be modeled by nodal domains of a percolation model. Their percola-
tion model is formed by creating a checkerboard of positive and negative regions
with a grid size given by the average spacing of zeros of random functions along
a particular axis. This checkerboard pattern can be realized as an eigenfunction
ū(x, y) = sin( kx√

2
)sin( ky√

2
) of a square billiard Ω = [0, 1]2. A random eigen-

function can be modelled as this mean eigenfunction ū(x, y) plus another term
representing deviation from the mean u(x, y) = ū(x, y)+δu(x, y). The deviation
term δu(x, y) is modelled by perturbing each nodal line crossing by connecting
two diagonal regions (fig. 1.5). The decision of which nodal domains to connect
is made randomly with equal probability for either possibility.

Bogomolny and Schmit apply results from graph theory and statistical physics
to compute the distribution of nodal domains in this percolation model. These
results comprise the conjectures we seek to test numerically.

Conjecture 1 (Mean of Nodal Domain Count). The number of nodal domains

ν(E) in a quantum chaotic eigenfunction with energy E is normally distributed
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Figure 1.5: Left: checkerboard pattern; right: perturbed checkerboard pattern

with mean
ν̄(E)

N̄(E)
=

3
√
3− 5

π
≈ 0.0624 (1.2)

Conjecture 2 (Variance of Nodal Domain Count). The number of nodal do-

mains ν(E) in a quantum chaotic eigenfunction with energy E is normally dis-

tributed with variance

σ2(ν(E))

N̄(E)
=

18

π2
+

4
√
3

π
− 25

2π
≈ 0.0502 (1.3)

In both conjectures, N̄(E) is the mean number of eigenvalues less than E
which has asymptotic behavior given by Weyl’s law [7]

N̄(E) ∼ |Ω|E
4π

(1.4)

Bogolmony and Schmit also obtain a prediction for the distribution of areas
of nodal domains.

Conjecture 3 (Area of Nodal Domains). The area s of nodal domains in a

quantum chaotic eigenfunction follows the distribution

f(s) ∝ s−τ (1.5)

where τ = 187
91 is the Fisher exponent.

1.4.1 Implementation

The percolation model was implemented in code by creating a checkerboard
pattern with each square being two pixels by two pixel that was then perturbed
at each nodal line crossing by changing the sign of a pixel to either connect the
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Figure 1.6: Left: checkerboard pattern implementation; right: perturbed
checkerboard pattern implementation

top right square to the bottom left square or the top left square to the bottom
right square (fig. 1.6). The number of squares m in one direction on a unit grid
is determined by k to be [5].

m =
k√
2π

Making each square two pixels by two pixels uses a grid of size (2m)2 =
2k2

π2 . This construction allows us to numerically validate the conjectures of the
percolation model via the nodal domain counting algorithm described in 2.4.

1.5 Random Plane Waves

A random superposition of plane waves,

urand(r; k) = ℜ
[

lim
N→∞

1√
N

N
∑

n=1

ωn exp {ikn̂n · r}
]

(1.6)

where ωn ∼ N (0, 1) are complex and independent and identicially distributed
and n̂n = (cos 2πn

N
, sin 2πn

N
) are evenly spaced vectors around the unit circle, is

considered an accurate model for a quantum chaotic eigenfunctions [11]. This
random superposition of plane waves (hereafter “random plane wave”) is built
from plane waves with constant wavenumber k with random phase and ampli-
tude, oriented in all directions.

Numerically, random plane waves can be computed quickly using a nonuni-
form fast Fourier transform on vectors of length k with random phase. When
testing new methods or obtaining general statistics, we often use random plane
waves in place of actual eigenfunctions to save computation time.
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Chapter 2

Methods

2.1 Computation of Eigenfunctions via Scaling

Method

2.1.1 Theory

Vergini and Saraceno [12] developed a method of computing high energy eigen-
functions of chaotic billiards using a scaling method. The method simultane-
ously finds all eigenfunctions ui(r) with wavenumber in a given window [k −
∆k, k + ∆k] by scaling each eigenfunction. The scaled eigenfunctions χi(k, r)
are computed as

χi(k, r) = ui

(

k

ki
r

)

This scaling causes all eigenfunctions to fall approximately in a linear subspace
of a single basis set {ξl}Bl=1,

χi(k, r) =
B
∑

l=1

h
(i)
l ξl(k, r) + ǫi(r)

where ǫi(r) ≪ 1 for sufficiently large B, the number of basis functions used.

Values of B of approximately 1.5k|Γ|
π

have been shown to produce ǫ < 10−4 [4].
This single basis set provides a significant efficiency gain over prior methods
because many eigenfunctions can be found by solving a single linear system and
evaluating a single basis set on the domain.

The choice of basis functions ξl(k, r) depend on the billiard shape being
used. For the quarter generalized rectangular Sinai billiard the basis set consists
of fundamental solutions, or irregular Bessel functions, (which satisfy (∆ +
k2)ξl(k, r) = 0) placed along Γ+, the set of points ouside Ω whose nearest
distance to Γ is D where kD is taken to be 7 so that D is approximately
one wavelength. For the quarter stadium, the basis set is plane waves with
orientations evently spaced around the circle.

8



The numerical implementation of the scaling method is based on solving
a generalized eigenvalue problem from which one can reconstruct eigenvalues
and eigenfunctions of the original Dirchlet boundary value problem. The basic
approach is to construct B by B matrices F and G where

Fij = 〈ξi, ξj〉
and

Gij = (〈ξi, x · ∇ξj〉+ 〈x · ∇ξi, ξj〉) /k
By solving the generalized eigenvalue problem

Fh = µGh

one obtains approximations of the eigenvalues of the original problem with

k̂i = k − 2/µi

and approximate eigenfunctions by “undilating” the generalized eigenvectors

ûi(r) =

B
∑

l=1

hlξl(k̂, r) (2.1)

The scaling method runs in O(B3) = O(k3) time [3] and approximates eigen-
values and eigenfunctions with error O(∆k3) [4, p. 32].

2.1.2 Eigenfunction evaluation

The scaling method only computes coefficients of basis functions, which must
be evaluated in order to obtain eigenfunction values at arbitrary r ∈ Ω. One
method is to evaluate û(r) as in (2.1), but this requires evaluating the basis

functions ξl(k̂, r) for each approximate eigenvalue k̂. For efficiency, we instead
evaluate only ξl(k, r), which produces a dilated eigenfunction that can be trans-
formed back to û by dilating the coordinate system. Thus we can evaluate all
eigenfunctions in the energy window with NB basis function evaulations and
nNB coefficient multiplications, where n is the number of eigenfunctions in the
energy window, N is the number of evaluation points, and B is the number of
basis functions. Basis evaluation are much more expensive than multiplications;
table 2.1 summarizes the ratios of these costs.

As noted above, errors in eigenfunctions produced by the scaling method
scale like O(∆k3) and are independent of E so we use a constant ∆k. We
estimate errors by calculating the tension

t =

(∫

Γ

u(r)2dr

)
1

2

∆E is chosen such that t . 10−4. Using Weyl’s law 1.4 we can obtain an
estimate of the number of eigenfunctions in an energy window to be

n ≈ |Ω|
4π

((E +∆E)− (E −∆E)) =
|Ω|
2π

∆E
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Billiard Ratio kc

Sinai 75 3860
Stadium 31 550

Table 2.1: Ratios of basis function evaluation time to coefficient multiplication
time for various billiards. Column kc contains the value of k for which n is equal
to the given ratio with ∆k = 0.1 and coefficient multiplications take as long as
evaluating basis functions

We choose ∆k to be as large as possible while keeping errors small in order to
maximize n, allowing more eigenfunctions to be computed from each evaluation
of basis functions. We use ∆k = 0.1 for the quarter generalized rectangular
Sinai billiard and ∆k = 0.05 for the quarter stadium billiard.

For both billiards considered here B ∼ k. Thus, in practice N ≫ n and
N ≫ B so it is primarily N (which scales like α−2) that determines the
time to compute eigenfunctions. Maximum values of N and B were N =
|Ω|(kmax/α)

2 = 5.25e6 and B = 1.5kmax|Γ|/π = 2333.

2.2 Interpolation

Because sampling eigenfunctions is expensive (requiring O(k3) basis function
evaluations), we are limited by the total number of pixels N , which scales like
h−2 where h is the distance between adjacent sample points, or the width (and
height) of a pixel. As a consequence, we must work with relatively coarsely sam-
pled eigenfunctions, causing us to encounter scenarios where the connectivity of
nodal domains may be ambiguous (fig. 2.1).

We prevent miscounting by interpolating the computed eigenfunction using
the functions

Jn(kr) sin(nθ)

and
Jn(kr) cos(nθ)

where Jn is a regular Bessel function. These functions form a complete basis
for solutions of (1.1) (see appendix B). We fix a value M to be the order of the
highest order Bessel function, restricting our basis to the finite set

ζj(r, θ) =











Jj(kr) if j = 0

Jj(kr) sin(jθ) if 1 ≤ j ≤M

Jj−M (kr) cos((j −M)θ) if M + 1 ≤ j ≤ 2M

(2.2)

We construct a surrogate function

ũ(r) =
2M
∑

i=0

ciζi(r)
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Figure 2.1: An ambiguous nodal domain connection due to coarse sampling.
Left: A random plane wave sampled at 10 points per wavelength; right: the
same random plane wave sampled at 200 points per wavelength. The ambiguous
region at low resolution is highlighted

as a local approximation to the eigenfunction u(r) by fitting the coefficients
ci ∈ R to minimize the error ‖u− ũ‖2. This function can then be sampled at a
higher resolution within the region in question. We define the sampling ratio of
this surrogate function to the original eigenfunction to be ρ.

2.2.1 Triggering Interpolation

A region is interpolated if and only if, when counting nodal domains, we en-
counter a point whose sign matches that of a point diagonally adjacent to it,
but differs from the signs of the two points adjacent to both it and its diagonal
neighbor (fig. 2.2). In such a case we fill a vector v with the eigenfunction
values at the stencil points surrounding the four points comprising the ambigu-
ity. We then compute w = Pv where P is the interpolation matrix described
above. This vector w contains estimated eigenfunction values with a spacing
of h

ρ
between the four points comprising the ambigious region. We can use

these values to determine the connectivity of the nodal domains by traversing
pixel-by-pixel from the top-left pixel, in the same manner as above, until we
either reach the bottom-right pixel or finish exploring the nodal domain. In
the former case the nodal domain containing the top-left pixel connects to the
nodal domain containing the bottom-right pixel and in the latter case the nodal
domain containing the top-right pixel connects to the nodal domain containing
the bottom-left pixel.

To check the validity of only interpolating at these configurations, we counted
nodal domains of 104 eigenfunctions that were interpolated everywhere to α =
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Figure 2.2: Configurations that will result in interpolation

Figure 2.3: The four stencil shapes considered for interpolation

.023 and found that mean nodal domains counts agreed within 1%.

2.2.2 Parameter Selection

Each two pixel by two pixel square defines a region in which interpolation pro-
duces upsampled eigenfunction values. The surrogate function however, uses
more than just four pixels to fit the coefficients ci. The selection of how many
and which surrounding values to use is termed a stencil. Only stencil shapes
that are symmetric about the four central points were considered. The four
shapes considered are shown in figure 2.3. The most important consideration in
choosing a stencil was the accuracy of the interpolation. The size of the stencil
affects the computational cost of interpolation but this difference is trivial.

The accuracy of interpolation also depends on M and α = kh, which must
be considered simultaneously with the choice of stencil. Figure 2.4 shows a
comparison of the infinity norm of the interpolation error over various values of
M and α for each of the stencils shown above.
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Figure 2.4: Comparison of interpolation error norms over M and α for each
stencil.
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Based on these data, we chose to use the 24-point stencil with M = 9 and
α ∈ [0.5, 0.7] for interpolation. For this choice of parameters we expect errors
in interpolated eigenfunction values of order 10−6. We use an upsampling ratio
of ρ = 30, which we have found to be sufficient to resolve ambiguities in nearly
all cases.

2.2.3 Numerical Implementation

We construct a matrix to transform values on a stencil to interpolated values in
the center of the stencil, performing the process described above with a single
matrix multiplication. We construct the interpolation matrix as

P = HL+

Where L is an S by 2M + 1 matrix (where S is the number of stencil points)
which contains evaluations of Bessel functions at stencil points, H is a (ρ+ 1)2

by 2M + 1 contains evaluations of Bessel functions at high resolution and +

denotes the pseudoinverse. Specifically,

Lij =











Jj(ri) for j = 0 and 0 ≤ i < T

Jj(ri) sin (jθi) for 1 ≤ j ≤M and 0 ≤ i < T

Jj−M (ri) cos ((j −M)θi) for M + 1 ≤ j ≤ 2M + 1 and 0 ≤ i < T

and

Hij =











Jj(r̃i) for j = 0 and 0 ≤ i < γ

Jj(r̃i) sin (jθ̃i) for 1 ≤ j ≤M and 0 ≤ i < γ

Jj−M (r̃i) cos ((j −M)θ̃i) for M + 1 ≤ j ≤ 2M + 1 and 0 ≤ i < γ

where T is the number of points in the stencil, γ = (ρ + 1)2 and (ri, θi) and
(r̃i, θ̃i) are points in the stencil and inner square, respectively, expressed in polar
coordinates.

P acts on a vector of eigenfunction values in a stencil and produces interpo-
lated values in the center square of the stencil (fig. 2.5).

The pseudoinverse L+ is computed using a singular value decomposition as
follows,

L+ = V Σ+U∗

where L = U∗ΣV is a singular value decomposition of L and Σ is a diagonal
matrix of singular values with

Σ+
ii =

{

Σ−1
ii if Σii > ǫ

Σii otherwise

where ǫ = γǫdoubleΣ11 where ǫdouble = 1.11e−16 is the difference between one
and the smallest IEEE double precision floating point number greater than one.
Singular values less than ǫ are considered to be zero within working precision.
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P

Figure 2.5: Visualization of the action of P as a mapping. P maps eigenfunction
values on a coarse grid to eigenfunction values on a fine grid.

2.3 Analysis

2.3.1 Probability of ambiguous region

Here we derive an upper bound on the probability of a trouble region using
random plane waves 1.6. Applying the Jacobi-Anger expansion [2]

exp(ikr cos θ) =
∑

l∈Z

il exp {ilθ}Jl(kr)

and the fact that n̂n · r = r cos
(

θ − 2πn
N

)

produces

u(r) = ℜ
[

∑

l∈Z

ilω̃l exp {ilθ}Jl(kr)
]

(2.3)

where r = (r, θ) in polar coordinates and ω̃l are given by

ω̃l = lim
N→∞

1√
N

N
∑

n=1

ωni
l exp

{

−il2πn
N

}

Fixing N , we can express the transformation which takes −→ω to
−→̃
ω (as vectors)

as a matrix −→̃
ω (N) = A(N)−→ω (N)

where entries of A(N) are given by

amn =
1√
N

im exp

{

−im2πn

N

}

=
1√
N

exp

{

−im
(

2πn

N
− π

2

)}
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Figure 2.6: Four evaluation points in coordinate system

The operator A is simply a discrete Fourier transform and therefore acts on
ωn ∼ N (0, 1) i.i.d. to produce ω̃n ∼ N (0, 1) i.i.d.

Expanding the first three terms of 2.3 gives

u(r) = a0J0(kr) + J1(kr)(a1 cos θ + b1 sin θ) + J2(kr)(a2 cos 2θ + b2 sin 2θ) + . . .

where a0 = ℜ [ω̃0], a1,2 = ℜ [ω̃1 − ω̃−1], and b1,2 = ℑ [ω̃1 − ω̃−1]. Note that
a0 ∼ N (0, 1) and a1, b1, a2 ∼ N (0,

√
2).

We now consider four points forming a square of side length α. We define
a coordinate system with origin at the center of the square and axes rotated
such that each corner of the square falls on either the x- or y-axis (figure 2.6).
We label the four points r1 through r4. Evaluating the three term expansion of
u(r) at the four points gives

u(r1) = a0β0 + a1β1 + a2β2

u(r2) = a0β0 + b1β1 − a2β2

u(r3) = a0β0 − a1β1 + a2β2

u(r4) = a0β0 − b1β1 − a2β2

where βi = Ji

(

k α√
2

)

. Interpolation is required if u(r1), u(r3) < 0 and u(r2), u(r4) >

0 (or the reverse case) which gives the system of inequalities

a0β0 + a1β1 + a2β2 < 0

a0β0 + b1β1 − a2β2 > 0

a0β0 − a1β1 + a2β2 < 0

a0β0 − b1β1 − a2β2 > 0
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which is equivalent to

a2 < 0

a0 < a2
β2

β0

a1 < a2
2β2

β1

b1 < 0

Thus the probability of a configuration of four points requiring interpolation is
given by

2

∫ 0

−∞

∫ 0

−∞

∫ a2

β2

β0

−∞

∫ a2

2β2

β1

−∞
f(a0, a1, b1, a2) da1 da0 db1 da2 (2.4)

where the factor of two is inserted to account for the possibility of the inequalities
being reversed and f(a0, a1, b1, a2) is a four dimensional Gaussian distribution

f(a0, a1, a2) =
1

(2π)2|Σ| 12
exp

{

aTΣ−1a
}

where

a =









a0
a1
b1
a2









Σ =









1 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2









applying the linear transformation

x1 =a0

x2 =a0 −
β2

β0
a2

x3 =a1 −
2β2

β1
a2

x4 =b1

produces the integral

2

∫ 0

−∞

∫ 0

−∞

∫ 0

−∞

∫ 0

−∞
fX(x0, x1, x2, x3) dx3 dx2 dx1 dx0 (2.5)

where

fX(x0, x1, x2, x3) =
1

(2π)2|(JΣJT )−1|
1

2

exp
{

xTJΣJTx
}

is the Gaussian distribution f under the linear transformation and J is the
Jacobian of this transformation

J =









1 0 0 0

1 0 0 −β2

β0

0 1 0 2β2

β1

0 0 1 0









18



10
−2

10
−1

10
0

10
1

10
−8

10
−6

10
−4

10
−2

10
0

α

p(
am

bi
gu

ity
)

Figure 2.7: Theoretical probability of an ambiguity when sampling at α by 2.5.
Small values of alpha produce highly correlated variables in the transformed
coordinate system, which produce numerical instabilities in the integration of
the Gaussian.

This integral can be computed numerically; figure 2.7 shows the probability of
such an error occuring at a randomly chosen two pixel by two pixel square.
These results appear to match empirical measures of interpolations per pixel to
within a constant factor of approximately 2.5.

The heuristic we use when deciding where to interpolate misses some very
rare cases where domains connect between sampled points. See [10] for a more
complete characterization of sampling errors when computing nodal domains in
two dimensions.

2.4 Counting Nodal Domains

Eigenfunctions are sampled on a regular grid with dimension ny by nx; each
point in this grid will be referred to as a “pixel.” Nodal domains are counted by
exploring domains pixel-by-pixel, marking each pixel as “counted” in an ny by
nx bit array once it has been seen. The searching algorithm used to explore each
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domain is a hybrid depth- and breadth-first method where for each pixel, the
sign of each uncounted neighboring pixel is compared to the sign of the nodal
domain and if the sign matches, the neighboring pixel is pushed onto a stack.
Exploration then continues by popping a pixel off of the stack.

This hybrid method was chosen because it requires fewer comparisons than a
depth-first search (where a pixel may be popped from the stack up to four times,
once for each neighbor, versus only once in this method) and allows an efficient
stack implementation using a dynamically sized array, whereas a breadth-first
search requires a queue, which cannot be implemented as efficiently as a stack.
A linked-list implementation of a stack or queue was found to add approxi-
mately 15% runtime overhead due to frequent memory allocations. An array
implementation of a queue can be accomplished by treating the array as circular
but this requires additional comparisons when enqueueing and dequeueing as
compared to an array implementation of a stack.

Algorithm 1 Nodal domain counting algorithm

Require: grid is ny by nx matrix containing eigenfunction values on billiard
Require: α = kh, M is highest order Bessel function to interpolate with, ρ is
ratio to interpolate by

Require: counted is ny by nx and counted[i][j] = UNCOUNTED if the point
at i, j is in Ω, else counted[i][j] = COUNTED

function CountNodalDomains(grid, counted, α,M, ρ)
interp← CreateInterpMatrix(α,M, ρ)
i, j, domains← 0
while i, j ← FindNextUnseen(counted, i, j) do

domains← domains+ 1
FindDomain(grid, counted, i, j, domain num, interp)

end while

return domains
end function

function FindNextUnseen(counted, y, x)
for i ∈ y . . . ny do

for j ∈ 1 . . . nx do

if i = y and j ≤ x then

continue
end if

if counted[i][j] = UNCOUNTED then

return i, j
end if

end for

end for

return NULL
end function
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Algorithm 1 Nodal domain counting algorithm (continued)

function FindDomain(grid, counted, i, j, interp)
left, above, right, below ← FALSE,
s.push(j, i)
counted[i][j] = COUNTED
sign← sign(grid[i][j]) ⊲ s is a stack
while x, y ← s.pop() do

if InGrid(x− 1, y) then
if sign(grid[y][x− 1]) = sign then

left← TRUE
if counted[x− 1][y] = UNCOUNTED then

counted[y][x− 1] = COUNTED
s.push(x− 1, y)

end if

end if

end if

. . . ⊲ Same for above, right, and below
if InGrid(x− 1, y − 1) and above and left then

if sign(grid(x− 1, y − 1)) = sign then

if not IsInterpolated(counted, x− 1, y − 1) then
Interpolate(grid, counted, x− 1, y − 1, interp)

end if

if ConnectedAboveLeft(counted, x, y) then s.push(x−1, y−1)
end if

end if

end if

. . . ⊲ Same for below and left, below and right, and above and right
end while

end function

This algorithm has runtime O(N). This is because the method performs a
constant number of comparisons for each pixel in the eigenfunction plus O(N)
total comparisons searching for an unseen pixel after a nodal domain has been
explored. Interpolation occurs O(N) times and each matrix-vector multiply
takes constant time because the number of stencil points S and the upsampling
ratio ρ are constant.

This algorithm requires O(N) space for the array counted which we use to
store for each pixel, whether it is in the domain, has been counted already, and
has been interpolated. In addition, this method uses a dynamically sized array
as a stack whose size is (loosely) bounded above by the number of pixels in the
nodal domain being explored.
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Chapter 3

Results

3.1 Data Collected

We computed approximately 105 eigenfunctions amounting to over 800 GB of
data and counted 1.5 billion nodal domains. This data required approximately
8000 CPU hours, running on a cluster with about 30 cores.

3.1.1 Run time

For both billiards considered here B ∼ k. Thus, in practice N ≫ n and N ≫ B
so it is primarily N (which scales like α−2) that determines the time to compute
eigenfunctions. Computation time is dominated by eigenfunction evaluation,
which is dominated by basis function evaluations (fig. 3.1).

3.1.2 Prior Work

Bogomolny and Schmit [6] have conducted a small numerical study of their
conjectures but investigated only the stadium billiard and collected only a few
hundred eigenfunctions. These eigenfunctions were collected around k = 100
which we have shown is far from the asymptotic regime (fig. 3.2). Keating,
Marklof and Williams [8] have performed a related study on quantum maps, for
which they verified all three conjectures of Bogomolny and Schmit, using a few
thousand eigenstates (which are much less costly to compute for quantum maps
as compared to quantum billiards).

3.2 Mean of number of nodal domains

We find that the scaled mean number of nodal domains for the Sinai billiard
converges to 0.0596 ± 1.724e−5, which is 4.61% below the value of conjecture
1. This result represents a deviation of 167σ and is therefore very statistically
significant.
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Figure 3.1: Comparison of run times at α = 0.5 of solving for basis coefficients,
evaluating eigenfunctions, and counting nodal domains. Evaluating eigenfunc-
tions dominates runtime, taking approximately 97% of computation time.

Nodal counts in the stadium billiard approached scaled mean of 0.0535 ±
3.991e−5, which is 14.36% below the conjectured value and a deviation of 225σ.

We find that the mean for random plane waves also disagrees with the con-
jectured value and in fact converges .0589±1.42e−4, which very nearly matches
the asymptotic mean of the Sinai billiard. This indicates that the percolation
model is not an accurate model of quantum chaos.

The mean number of the nodal domains of the percolation model agrees well
with the conjectured value. These were computed on a unit grid as described
in 1.4.

In all models, we find a relatively slow convergence toward the asymptotic
mean. Bogomolny and Schmit [5] predict a convergence of the form A + B/k,
which we fit to data to predict asymptotic values. We find fitted values of B
between 3 and 5 for the various billiards and models considered, indicating that
it is necesarry to approach k 103 to obtain counts within 5% of the asymptotic
value.

3.3 Variance of number of nodal domains

The variance of number of nodal domains in quantum chaotic eigenfunctions
does not agree with conjecture 2 for either billiard shape (fig. 3.4). The quarter
generalized rectangular Sinai billiard has a variance of scaled nodal domains
counts of 0.107, which is 2.13 times the value of conjecture 2. The quarter
stadium has a variance of scaled nodal domain counts of 2.70, which is over 50
times the conjectured value.
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Figure 3.2: Mean number of nodal domains. Above: Sinai; below: stadium.
The least-squares best fit of the form A+B/k is shown in green.
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Figure 3.3: Mean number of nodal domains. Above: percolation with
k ∈ {100, 106, 112, . . . , 1998}; below: random plane waves with k ∈
{100, 200, . . . , 1100} with 100 repetitions at each k.
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The random plane wave model has a variance of scaled nodal domain counts
of 0.0883, which is again comparable to the Sinai value. The percolation model
has a variance of 0.0501, which agrees well with the predicted value, having a
relative error of 2.40e−3.

3.4 Distribution of number of nodal domains

The number of nodal domains for the Sinai billiard is nearly normal with a
slight left skew (fig. 3.5).

There is a strong left skew in the distribution of nodal domain counts in
the stadium billiard (fig. 3.5). This is due to bouncing ball modes (fig. 1.4),
which have much fewer nodal domains than general chaotic eigenfunctions (fig.
3.6). Bouncing ball modes have a high concentration of probability mass in
the central rectangular region and are largely responsible for the significantly
lowered mean and large variance of nodal domain counts in the quarter stadium
billiard. We can therefore identify bouncing ball modes by low probability mass
in the quarter circle region. Specifically, we use the “wing tip mass”

w =

∫

W

u2(r)dr

where W = {(x, y) ∈ Ω |x ≥ 1.1}.

3.5 Areas of nodal domains

The distribution of area of nodal domains all follow a power law. Nodal domain
areas are scaled by the area of the smallest possible nodal domain smin =
π(j1/k)

2 where j1 ≈ 2.4048 is the first zero of the Bessel function J0. The best
fit exponent for the Sinai billiard is 2.0567 ± 8.5524e−4, which has a relative
error of 8.65e−4 and a difference of 2.079σ from the conjectured value. For the
stadium billiard, the best fit exponent is 2.0578 ± 1.2e−3, a 0.14% error and a
difference of 2.3σ. These deviations of order 2σ are not statistically significant;
thus we accept conjecture 3 for both billiard shapes.
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Figure 3.4: Variance of number of nodal domains. Top: Sinai; middle: stadium;
bottom: percolation
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Figure 3.5: Histogram of scaled nodal domain counts. Above: Sinai billiard
with k ∈ [2000, 2020]; below: stadium billiard with k ∈ [700, 900].
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Figure 3.6: Wing tip masses of eigenfunctions of the stadium billiard with k ∈
[700, 900]. The low wing tip mass regions have low nodal counts and skew the
overall distribution while lowering the mean.
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stadium
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Chapter 4

Conclusion

By combining the scaling method of Vergini and Saraceno [12] with adaptive
interpolation, we have obtained nodal domain data at energies 400 times higher
than previously explored for over 100 times as many eigenfunctions as previ-
ously examined [6]. Comparing this data to the predictions of Bogomolny and
Schmit [5] from the percolation model, we find a that the distribution of sizes
of nodal domains matches, while the mean and variance of number of nodal do-
mains differ. We are the first to collect data from the generalized Sinai billiard,
which displays hard chaos and has a mean number of nodal domains nearly in
agreement with that determined experimentally for random superpositions of
plane waves.

The source code for tools developed here has been released under an open
source license [1] and is available for the community to modify and distribute
[9].
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Appendix A

Definition of Ergodicity

Informally, a mapping T is said to be ergodic if it has homogenous dynamics
across its domain, i.e., there are no regions which behave “differently” under
the mapping T . Formally, we consider T as a mapping on a probability space.
A probabilty space requires a measure, which is defined over a σ-algebra. Thus
we present the following definitions:

Definition 1 (σ-algebra). Σ ⊂ 2Ω is a σ-algebra over Ω if:

1. ∅,Ω ∈ Σ

2. Ω\A ∈ Σ ∀A ∈ Σ

3. ∞
⋃

i=1

Ai ∈ Σ ∀ {Ai}∞i=1 such that Ai ∈ Σ∀i

Definition 2 (Measure). µ: Σ→ R is a measure on Σ if:

1. µ(A) ≥ 0 ∀A ∈ Σ

2. µ(∅) = 0

3.

µ

( ∞
⋃

i=1

Ai

)

=

∞
∑

i=1

µ(Ai)

Definition 3 (Measure space). A measure space is a triple (Ω,Σ, µ) where Σ
is a σ-algebra over Ω and µ is a measure on Σ.

Definition 4 (Probability space). A probability space is a measure space (Ω,Σ, µ)
where µ(Ω) = 1.

These definitions allow us to formally define ergodicity as:
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Definition 5 (Ergodicity). Let (Ω,Σ, µ) be a probability space. A mapping T :
Σ→ Σ is ergodic if T (E) = E =⇒ µ(E) = 0 or µ(E) = 1

Thus, under an ergodic mapping T , any E ∈ Σ that maps to itself must
have measure zero (in which case dynamics on this set are inconsequential) or
measure one (in which case the set is almost the entire domain Ω). Futhermore,
all E ∈ Σ such that 0 < µ(E) < 1 must contain points that map to points
outside of E under T . In this sense, T “mixes” points in the domain Ω.
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Appendix B

General Solution of the

Helmholtz Equation

Here we show that the functions Jn(kr) sin(nθ) and Jn(kr) cos(nθ) form a com-
plete basis of solutions of (1.1).

In polar coordinates,

∆ =
1

r
∂r(r∂r) +

1

r2
∂θθ

Thus, (1.1) can be expressed as

urr(r, θ) +
1

r
ur(r, θ) +

1

r2
uθθ(r, θ) + k2u(r, θ) = 0

Using separation of variables we attempt solutions of the form

u(r, θ) = R(r)Θ(θ)

where Θ(θ) is periodic with period 2π. This gives

Θ′′(θ) + n2Θ(θ) = 0

and
r2R′′(r) + rR′(r) + r2k2R(r)− n2R(r) = 0

The periodicity of Θ(θ) requires that

Θ(θ) = α sin(nθ) + β cos(nθ)

where n ∈ Z. The radial differential equation is known as Bessel’s equation and
has solutions

R(r) = Jn(kr)

where Jn is a regular Bessel function and k ∈ R is allowed to take discrete values
determined by boundary conditions.
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Thus, the general solution of (1.1) can be expressed as a sum of the form

b0J0(kr) +

∞
∑

n=1

anJn(kr) sinnθ + bnJnkr cosnθ (B.1)
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