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Exterior night, cityscape. Thousands of distant points of light lie still in
the summer air. Below them a neon diner sign flickers silently across a nearby
empty street. Suddenly the close up face of the main character moves into the
frame, the focus pulls, bringing their silent profile into crisp silhouette, while
blurring the urban backdrop into a splash of color. Each point of light blooms
into a hexagon, the neon sign now an unreadable splotch of red. The main
character pauses for a second, then moves on into the night. Fade to black.

Something special just happened in this imagined movie scene, when viewed
through a scientific lens. The cityscape image, in its transition from crisp to
out-of-focus, underwent a convolution, a process with a precise mathematical
meaning that will become our main character in this short piece. I will try
to explain as accurately as possible the concept of convolution, using familiar
examples from our everyday lives. Convolution is in fact all around us—we just
have to attune ourselves to it, to shift to a viewpoint in which lights and sounds
and motions become patterns of numbers and signals. It could be argued that
this type of shift, with the logical power to model and predict that it brings, is an
idea that has opened the doors to centuries of tremendous human scientific and
technological creation. I hope to leave you with a glimpse of how an engineer
or scientist, or at least this applied mathematician, thinks about the world.1

The classic cinematic trope above, toying with depth of field, mirrors what
our eyes and brain do daily, mostly unconsciously, as we shift attention in a
complex three-dimensional visual world. The myopic among us may recreate
the same blurring effect for free, simply by taking off our glasses and staring into
the distance (here the hexagons are instead discs). Let’s examine more carefully
what took place. We may treat the cityscape image as a pattern of light intensity
existing across a two-dimensional plane, as in a rectangular photographic still,
or a grid of pixels on your computer screen. Just like Manhattan’s grid of
avenues and streets, each point in this plane has a location given by its horizontal
distance from the left side (x coordinate) and vertical distance up from the
bottom (y coordinate). At each such point the image has a brightness, which
may treat as a number, zero for black, one for bright, two for very bright, . . . and
so forth. So we have a number at each point in the plane: mathematically this

1In footnotes I will add a flavor of the mathematical formulae, but these may be skipped
without missing much of the story.
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scene image f aperture image g convolution image of f and g

is called a function.2

Where did the hexagons come from? They are copies of the shape of the
camera aperture or iris, the other ingredient in the mix. Return to the opening
scene. If the cityscape had instead consisted of only a single bright point of
light, you can picture what would happen upon pulling focus: the single point
blurs into a single, uniformly-bright hexagon, surrounded by blackness. The
key is to realise that this bright-hexagon-on-black-background is also itself an
image (a brightness pattern existing over a two-dimensional plane)—we might
call it the ‘aperture image’. We now have two images: the cityscape ‘scene
image’ and the aperture image (see figure). The act of blurring the scene image
(a function, let’s call it f) using the aperture image (another function, let’s call
it g), is precisely to convolve one by the other, making a new image written
mathematically as,3

f ∗ g

The rule is that each point of light in the scene is replaced by an identical copy
of the hexagonal aperture image, and these individual copies are then layered on
top of each other, or added up, to give the final blurry picture.4 If you like, we
are painting the original scene using a hexagon-shaped paintbrush. The act was
performed by turning a focus ring on a camera, sending a flurry of photons into
different places on the film. However, it may also be performed mathematically
or computationally, and, once it has been defined precisely, abstracted to any
images, functions or data, real or imagined: therein lies its power.

It is a beautiful and not obvious fact that if we swapped the roles of our
two images, the picture produced would be exactly the same as before. In
other words convolution has a symmetry,5 and that is something that delights
the mathematical glands, for both aesthetic and practical reasons. How may

2We could name this function f , in which case the brighness at a point (x, y) is f(x, y).
3Note that the asterisk means convolution, not mere multiplication.
4The adding or summing up operation needs to be done for every single point in the scene

image: there are a continuum of points, which mathematically turns the summation into an
integral, and since there are two directions to sum over, a double integral. Hence the formula
for a two-dimensional convolution, (f ∗ g)(x, y) =

∫ ∫
f(w, z)g(x − w,y − z)dw dz.

5We may state g ∗f = f ∗g as functions, for all f and g. We won’t prove it rigorously here.
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we convince ourselves of this fact by mental visualization? In the swapped
situation we take each point of light within the aperture hexagon and replace
it by a copy of the whole cityscape scene, suitably jiggled to be centered at the
point on the hexagon from which it came. Again we add up all these copies. The
brightness at any point is now a sum of intensities over all the nearby points in
the scene image lying in a hexagon centered at that point. But, thinking back
to the original situation, we realise this describes that too. Painting a scene
using an aperture-shaped brush is equivalent to painting an aperture using a
scene-shaped brush!

Let’s switch senses from light to sound; we will find convolution lurking
almost everywhere we listen. Speak aloud in a large echoey room and your
usual speech is changed by the acoustics of the space into a boomy, muddied
version: this is convolution of two sounds. What do our actors f and g signify
here? A sound is air pressure or vibrational motion changing very rapidly in
time, which we may describe as a function.6 Speak aloud outdoors in still air
and your voice sounds crisp and dry—this is, give or take, your voice’s source
function f . On the other hand, clap in the silent large room, and you will hear
an echoey reverberation dying away—this is the room’s ‘response function’ g.
Now combine the two: emit your voice into the room and the resulting7 audio
signal is precisely f ∗ g. To help visualize this the reader might enjoy messing
around with a wonderful online interactive demonstration of convolving two
hand-drawn functions [1].

It is worth drawing some connections between this and our original case of
images. Muddying of your voice by a large echoey room is analogous to blurring
of the scene by a wide out-of-focus camera aperture. In order to produce a final
result that was simply g, we sent in for f a ‘clap’ (very short spike-like signal)
in the audio case, or a ‘bright point’ (very narrow spike-like image) in the image
case.8 The power of applied mathematics is that these seemingly unrelated
phenomena are described by (essentially) the same formulae.

The sonic example allows us to explain a final property of convolution—
one which has many applications in signal processing—again using everyday
experiences. I mentioned that sounds are pressure variations as a function of
time; however, there is a complementary way to describe them by the strength
(amplitude) with which each component frequency is present.9 Many home
stereos (and audio player applications) show with a set of illuminated bars
how much signal strength is present in the ranges 50-250Hz, 250-1000Hz, etc,
from the bottom to the top of our hearing range. Moreover, by adjusting the
‘graphic equalizer’ on your stereo (or pressing buttons such as ‘bass boost’) you
are able to selectively amplify or reduce the strengths in each of these frequency

6Now the function depends on only one variable, the time t. It is often called a signal.
7The relevant formula for convolution in one variable is (f ∗ g)(t) =

∫
f(s)g(t − s)ds.

8Mathematically these special short signals are known as delta distributions.
9Recall that frequency is how many times per second something vibrates, and, crudely

speaking, corresponds to musical pitch. In isolation, a single frequency sounds like a pure
tone such as that made by a tuning fork. Combinations of frequencies create all the wonderful
variations in musical timbre. The frequency description is called the Fourier transform.

3



bands, ‘shaping’ or coloring the sound according to a curve. Mathematically
this multiplies the amplitudes by a function which depends on frequency: for
instance if you make this function larger at high frequencies than at low ones
you will get a bright, tinny, or sibilant effect. If instead you choose a ‘flat’
or constant function you don’t color the sound at all, just like the humble
volume knob which merely multiplies the amplitude by the same number at all
frequencies.

We now have a picture of coloring a sound by enhancing or subduing certain
frequencies: it turns out that this is in fact precisely what an echoey room
does to the sound of your voice in the previous example, when viewed through
a ‘frequency lens’. Probably the most convincing demonstration of this is by
singing in the shower: a shower cabinet is a small echoey room so we know it
has a response function (clap and you’ll hear it); on the other hand you know
that when you sing or hum you find that certain notes of the scale stand out as
surprisingly loud and resonant compared to others, indicating heavy coloration
of your voice. The remarkable property we have thus shown is that this process
of coloring (or multiplying) in the frequency picture is identical to convolving
the sound with some response function. All of this can be proven rigorously,10

and used to manipulate audio with computers to great effect [2].
So, how does this mathematical toolbox help humanity? One real-world

problem that repeatedly crops up is that of deconvolution: say you took an
out-of-focus image, or your camera moved by accident during the exposure,
turning your image into a riot of useless squiggly lines—how could you recover
the original unsullied image? Applications vary from forensic investigation of
blurred photographs of license plates, to astronomy [3], seismic imaging, and
improving the MRI images used to diagnose cancer [4]. Maybe the discussion
above has given you some hints: transform into the ‘frequency picture’, then
undo the ‘graphic equalizer’ effect (by dividing rather than multiplying), finally
transform back to the signal or image space. Barring certain computational
details and tricks, this is in fact what is done: the results can be amazingly good.
Problems and failures can occur, most notably when the aperture function is
very smooth, or is unknown. Worse yet, there are situations where a convolution
framework is simply not general enough, such as when blurriness or aperture
size varies across a single image. Something beyond deconvolution would be
required; mathematicians and computer scientists are hard at work on this and
related signal recovery and imaging problems.

Convolution is in the sun’s dappled shadows on the grass, in the vocal reverb
you use to add pizazz to your demo CD, in the way heat spreads out on your
dining table after you have placed your hot coffee mug on it, and in the multi-
plication of binary numbers happening every nanosecond in every computer on
the planet.11 Mathematics is woven through the world around us . . . if only we
choose to bring it into focus.

10If the hat ˆ symbol signifies the Fourier transform (frequency picture) of a signal, then

what I have just explained is known as the convolution theorem: f̂ ∗ g = f̂ ĝ.
11The first two of these examples are similar to the cases I described earlier; the latter two

are more sophisticated, yet convolutions nonetheless.
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discussions.
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