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Abstract

The Quantum Unique Ergodicity (QUE) conjecture of Rudnick-
Sarnak is that every quantum (Laplace) eigenfunction φn of an er-
godic, uniformly-hyperbolic classical geodesic flow becomes equidis-
tributed in the semiclassical limit (eigenvalue En → ∞). We report
numerical results on the rate of quantum ergodicity, for a uniformly-
hyperbolic Euclidean billiard with Dirichlet boundary condition (the
‘drum problem’) at unprecedented high E and statistical accuracy.
We calculate matrix elements 〈φn, Âφm〉 of a piecewise-constant test
observable A, and collect 30000 diagonal matrix elements up to level
n ≈ 7×105. Our results support the validity of QUE, that is, there are
no ‘strong scars’. We find asymptotic power-law decay aE−γ of the
diagonal variance with γ ≈ 0.48 ± 0.01. However convergence to the
semiclassical estimate of Feingold-Peres (FP), where γ = 1/2, appears
slow. We also compare off-diagonal variance with the FP sum rule at
the highest accuracy (0.7%) known in any chaotic system.

1 Introduction

The nature of the quantum mechanics of Hamiltonian systems whose classical
counterparts are chaotic has been of long-standing interest, dating back to
Einstein in 1917 (see [51] for a historical account). The field now called ‘quan-
tum chaos’ is the study of such quantized systems in the short wavelength
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(semiclassical, ~ → 0 or high energy) regime, and has become a fruitful area
of enquiry for both physicists and mathematicians in recent decades [29, 31].
A central issue is the behaviour of the eigenfunctions, which in contrast to
the regular eigenfunctions resulting from integrable classical motion, are ir-
regular.

In 1977 Berry [12] put forward the conjecture that chaotic eigenfunc-
tions should look locally like a random superposition of plane waves at all
angles and fixed (locally appropriate) energy, and that their Wigner func-
tions tend to the classical ergodic invariant measure (Liouville measure) on
the constant-energy hypersurface in phase space. This can be thought of as
‘quantum ergodic’ behaviour of the eigenfunctions. (See Figs. 2 and 3 for a vi-
sual comparison of a random wave with an actual eigenfunction, also see [31]).
The resulting Gaussian distribution of coordinate space wavefunction values
would also be predicted by Random Matrix Theory (RMT), assuming that
it is valid for such chaotic systems [16]. Numerical quantum calculations in a
strongly-chaotic system were absent until the pioneering work of McDonald
and Kaufman [41] on the two-dimensional (2D) stadium billiard, which veri-
fied the eigenvalue repulsion predicted by RMT, and showed angular isotropy
for some irregular eigenfunctions. The classical billiard problem in 2D is the
free motion of a point particle bouncing elastically off the boundary Γ of a
bounded domain Ω ⊂ R

2. The phase space coordinate is (r, θ) ∈ Ω×S1, with
position coordinate r := (x, y) and momentum direction θ. We assume con-
stant (unit) speed. The quantum version is the Laplace eigenproblem [34],
also known as the membrane or drum problem,

−∆φn = Enφn, (1)

φn(Γ) = 0, (2)

with homogeneous boundary conditions here chosen to be Dirichlet. Eigen-
functions φn(r) are normalized

〈φn, φm〉 = δnm, (3)

and the corresponding eigenvalues ordered E1 ≤ E2 ≤ · · · . Our units are
such that E = k2 where the wavenumber is k = 2π/λ, the wavelength being
λ. This problem has a rich 150-year history of application to acoustics,
electromagnetism, mechanical vibration, quantum mechanics, and optics, to
name a few areas. In keeping with quantum-mechanical terminology we will
say that level n has energy En.
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Analytical results on quantum ergodicity in hyperbolic manifolds without
boundary (where the Laplacian is replaced by its curved-space generalization)
originated with Schnirelman [48] and was carried through by Zelditch [56]
and Colin de Verdière [21]. These results make use of microlocal analysis
(for reviews see [5, 46, 38]), and study a pseudodifferential operator (for a
physicist, a quantum observable) Â acting on quantum wavefunctions, and its
corresponding classical Weyl symbol A(r, θ) (a function of phase space). The
case of billiards with a boundary was proven by Zelditch and Zworski [58],
and can be stated as

Theorem 1 (Quantum Ergodicity Theorem (QET) [58]) Let Ω ∈ R
2

be a 2D compact domain with piecewise smooth boundary whose classical flow
is ergodic, and whose orthonormal Dirichlet Laplace eigenfunctions are φn.
Then there exists a subsequence nj ⊂ N of density one for which

〈φnj
, Âφnj

〉 − A → 0 as j → ∞, (4)

for all well-behaved [58] observables A(r, θ).

A subsequence is said to have density one if #{j : nj ≤ N}/N → 1 as N →
∞. We call 〈φn, Âφn〉 a diagonal matrix element, or quantum expectation of
A in the pure state φn. The classical expectation is the phase space average
A, which in the case of momentum-independent A = A(r) is

A =
1

vol(Ω)

∫

Ω

A(r) dr , (5)

where dr = dxdy is the area element. A is independent of energy because for
billiards the Hamiltonian obeys a scaling law (dynamics is the same at any
energy). Note that the Weyl law for the level density the equivalence of n →
∞ and En → ∞. Asymptotic equality of quantum and classical expectations
for all observables A is known to physicists as the Correspondence Principle.
(In the semiclassical limit only local energy averages, rather than individual
pure states, are physically accessible, so an exceptional sequence of vanishing
density has no effect on measurable quantities). QET implies [21] that the
mass measure (the usual quantum interpretation being probability density,
or ‘intensity’) dµφn

:= |φn|2 dr tends (in the weak sense) to the uniform
measure dr/vol(Ω), in other words that mass becomes equidistributed in the
semiclassical limit, for almost all n. A(r) can be viewed as a ‘test function’
which measures equidistribution.
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The discovery by Heller [30, 31] that a large fraction of stadium eigen-
functions showed strong visible enhancement near classical unstable periodic
orbits (UPOs) was therefore a surprise. Heller dubbed these localized fea-
tures ‘scars’ and put forward a semiclassical explanation based on enhanced
short-time return probability for wavepackets launched along the least un-
stable UPOs. The theory has been expanded [14, 13, 1, 39]. Although the
meaning of ‘scar’ has varied historically, it is now taken to mean any devi-
ation from the RMT prediction of eigenfunction intensity near a UPO [39].
As reviewed by Kaplan and Heller [40], scar strength depends on what test
function you use to measure it: in most quantum chaos literature this test
function is not held fixed as the limit E → ∞ is taken, rather it is chosen
to collapse onto the orbit with a width ∼ E−1/4. With this measure, scar
strength need not die out in the semiclassical limit (indeed it is believed not
to [39]) however for any fixed coordinate-space test function A(r) deviations
in 〈φn, Âφn〉 will do so. ‘Strong scarring’ we will define to mean an O(1)
deviation of total probability mass in the neighborhood of a UPO, equiva-
lently an O(1) deviation in 〈φn, Âφn〉. (Asymptotically this coincides with
the usage of [44]).

Heller’s numerical calculations were done at the seemingly large quantum
number n ≈ 2 × 103 (for the desymmetrized quarter-stadium or 8 × 103 for
the full stadium). It is now believed to be likely [1, 39, 35] that in 2D billiards
strong scarring dies out in the semiclassical limit, but the issue remains open.
There still exist controversies about the width of scars [35], and in related
quantum models the mechanism of scarring is an active research area [47].
Bear in mind that QET allows for a sequence of strongly-scarred states to
persist asymptotically as long as their density tends to zero. Scarring is not
to be confused with the set of eigenfunctions which concentrates about a fam-
ily of neutrally-stable periodic orbits. Such ‘bouncing ball’ modes (similar
in form to EBK-quantized integrable modes [29]) are present in the stadium,
and are believed to persist asymptotically as a sequence with density van-
ishing algebraically [52, 4], although this is not known rigorously [24]. To
remove this complication we confine our discussion to Anosov systems (uni-
formly hyperbolic, or ‘hard chaos’ in the sense of [29]), that is, all UPOs are
isolated and all Lyapunov exponents bounded away from zero. This excludes
for example the stadium.

A much stronger conjecture than QET has been made by Rudnick and
Sarnak in the context of negatively-curved (Anosov) manifolds, namely
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Conjecture 1 (Quantum Unique Ergodicity (QUE) [44]) As the semi-
classical limit is reached, every eigenfunction φn becomes equidistributed.
That is,

〈φn, Âφn〉 − A → 0 as n → ∞, (6)

for all well-behaved observables A(r, θ).

Any limit of the measure dµφn
is called a ‘quantum limit’. It is known that

any quantum limit must be invariant under the classical flow [48, 21, 56].
This leaves open the possibility of arc-length measure along any UPOs, or
combinations thereof, as (singular) quantum limits. The adjective ‘unique’ in
QUE refers to only one possible quantum limit occurring: the uniform mea-
sure. QUE implies that not a single strong scar persists in the semiclassical
limit. In ‘arithmetic’ manifolds, questions about eigenfunctions are accessi-
ble analytically due to the presence of a special set of Hecke operators which
commute with the Hamiltonian [44, 45]. For these manifolds it was known
that singular quantum limits could not exist [44], and, remarkably, QUE
has recently been proved [36]. However, QUE for general manifolds such as
Euclidean billiards, where ergodicity results from the presence of a bound-
ary, remains a conjecture. Note that, in contrast, QUE has been proven not
to hold for certain-dimensional quantizations of Arnold’s cat map, another
paradigm quantum chaotic system [26].

Arithmetic manifolds are very special systems: all Lyapunov exponents
are equal, and they are highly symmetric; for instance this results in eigen-
value spectrum statistics entirely different from RMT predictions [15]. There-
fore it is valid to question what if any results from the arithmetic case carry
over to more generic systems. In this work we collect numerical evidence
for equidistribution and the validity of QUE in a much more generic system,
namely a 2D Euclidean billiard, Anosov, with no symmetry and differing
Lyapunov exponents. We will study the variance of diagonal matrix ele-
ments 〈φn, Âφn〉, and the rate of equidistribution, namely how this variance
decays to zero as E → ∞. We compare this rate to the semiclassical estimate
first formulated by Feingold and Peres [27] (we will call FP) involving the
time-integrated auto-correlation (the ‘classical variance’) of the function A
under the geodesic flow (classical evolution). There are several approaches
to FP, which we review in Section 2.2. Studying this rate is important firstly
because it determines the practical applicability of the QET. Secondly, re-
cent analytic work in arithmetic systems includes the result that the classical
variance provably differs from the true rate, even in the asymptotic limit, in

5



a fashion that depends on the choice of A [46, 37]. It is therefore of great
interest whether the FP estimate holds for more generic systems, such as
billiards.

We know of only one serious numerical study [5] of equidistribution rate
in Euclidean billiards. This was limited to quantum numbers n < 6000, a
range similar to the original work of Heller [30] where strong scarring ap-
pears very common. This fact alone suggests that the study is unlikely to
have reached any asymptotic regime; we will present evidence later that sup-
ports this suggestion. Billiards allow extremely efficient numerical methods
for finding eigenfunctions that enable us to perform a large-scale study of
equidistribution rate, for certain observables A, with very high (and quanti-
fied) statistical accuracy; we will reach 100 times higher in n than the pre-
vious work. Since FP also involves a prediction for variance of off-diagonal
matrix elements, which we can also efficiently calculate, we will compare the
off-diagonal variance to FP, again with very high accuracy.

The rest of this paper is laid out as follows. In Section 2 we present
semiclassical rate estimates, first a crude estimate based on the random-wave
model, then a derivation of the FP result making use of the QET, finally a
review of numerical tests of FP in the literature. Section 3 describes the
system we study and overviews the extremely efficient numerical methods
used for the quantum calculation. Section 4 contains our numerical results
on QUE and ergodicity rate for diagonal elements, followed by results on
off-diagonal elements. We discuss competing interpretations of the data, and
the effect of the boundary, in Section 5. We summarize our conclusions in
Section 6. Two appendices give further details of our numerical calculation
methods: Appendix A explains the classical calculations, and Appendix B
outlines how quantum eigenfunctions are found efficiently. We also point the
reader to the companion paper [10] which contains proof of a theorem which
plays a key role in the method for quantum eigenfunctions. The appendix
of [10] also contains the proof of an overlap identity used in Section 3.1 of
the present work, which is essential for the efficient calculation of matrix
elements.

6



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

Ω Γ

0 0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x

y

ΩA

A=0

A=1

1

θ2

θ
b)a)

Figure 1: Geometry of billiard and test function used in this study. a) shows
quarter generalized Sinai billiard formed from circular arcs which meet at
the location (1, 1) at angles θ1 = 0.4 to the horizontal and θ2 = 0.7 to the
vertical. The arcs intersect the straight sections at right angles. The area is
vol(Ω) ≈ 0.6140. b) shows piecewise-constant A(r) which takes the value 1
inside the region ΩA and zero elsewhere. The ‘chop’ line is straight and has
general orientation.
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Figure 2: An eigenfunction φn(r) of the billiard under study, with kn =
999.90598 · · · , that is, En ≈ 106, and level number n ≈ 5 × 104 (of the
desymmetrized system). The plot shows density |φn(r)|2 on a scale where
white is zero, and darker are larger values. There are about 225 wavelengths
across the diagonal.
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Figure 3: Density plot of a sample from the ensemble of random plane waves
with the same wavenumber magnitude |k| = k and mean intensity as the
eigenfunction in Fig. 2, shown over a square region of space. (There are
no boundary conditions imposed on the edges of the square). Note that the
‘stringy’ structures visible to the eye are a feature of the constant wavevector
magnitude; they disappear if a range of k is included [31].
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2 Ergodicity rate: semiclassical estimates

In this section we summarize some known estimates for the variance of matrix
elements. We call the matrix elements Anm := 〈φn, Âφm〉, where explicitly,

〈φn, Âφm〉 :=

∫

Ω

φn(r)φm(r)A(r)dr. (7)

The variance of diagonal elements we treat as a slowly-varying function of
energy, VA(E). We define it in via a local estimate

VA(E) :=
1

M

N≤n<N+M
∑

En≈E

∣

∣

∣
〈φn, Âφn〉 − A

∣

∣

∣

2

, (8)

where the interval M contains many levels but remains classically small.
That is, 1 � M � N , or equivalently, the range of energy is much smaller
than E itself. We will define off-diagonal variance below.

2.1 Random wave approach

We first derive and discuss a known result [25] arising from the random
wave conjecture. We start with the two-point correlation of a random-wave
field [12],

〈φ(r1)φ(r2)〉 =
1

vol(Ω)
J0(k|r1 − r2|), (9)

where we use the normalization vol(Ω)〈φ2〉 = 1 appropriate to the billiard
volume. This applies to real (time-reversal symmetric) or complex (non time-
reversal symmetric) waves; from now we confine ourselves to the real case.
Averaging here is defined to be over the ensemble of random plane wave
coefficients, with r1 and r2 held fixed. Equivalently, the averaging can be
taken over a region of space (which should be many wavelengths in size but
small compared to the system), with |r1 − r2| fixed. Because the model is a
statistical one, it will be meaningful to speak of the variance of a particular
matrix element, namely var(Anm), within the ensemble. A simple calculation
using (9) and Wick’s theorem for Gaussian random variables gives

〈φn(r1)φm(r1)φn(r2)φm(r2)〉 =
1

vol(Ω)2

[

δnm + gnmJ2
0 (k|r1 − r2|)

]

, (10)
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where

gnm :=

{

g, n = m,
1, n 6= m,

. (11)

The symmetry factor, which we will see shortly gives the ratio of diagonal to
off-diagonal variance, is g = 2. Its value is associated with time-reversal sym-
metry (the ratio is a standard result of RMT within the Gaussian Orthogonal
Ensemble [16]) combined with the assumption that values of φn and φm are
statistically independent for n 6= m. This latter independence assumption,
like the random wave model itself, remains a heuristic one, which also has
numerical support. Clearly orthogonality (3) dictates that, when considered
as functions over all of Ω, φn and φm cannot be independent! However, when
restricted to a region much smaller than the billiard volume, independence
follows from the RMT conjecture that a set of eigenfunctions behaves like a
set of random orthogonal basis vectors drawn from a rotationally-invariant
ensemble. (Projections of random orthogonal vectors onto a much smaller-
dimensional space become approximately independent). We return to this
assumption in step (ii) of the following section.

Now we use (10) to evaluate the variance of both diagonal or off-diagonal
matrix elements,

var(Anm) = 〈
∣

∣

∣

∣

∫

Ω

φn(r)φm(r)A(r)dr

∣

∣

∣

∣

2

〉 − 〈Anm〉2

=
gnm

vol(Ω)2

∫∫

J0(kn|r1 − r2|)J0(km|r1 − r2|)dr1dr2 (12)

≈ gnm

πvol(Ω)
E−1/2

∫∫

A(r1)A(r2)

|r1 − r2|
dr1dr2. (13)

Note that 〈Anm〉 = δnmA. In the final step two approximations have been
made: i) L|kn−km| � 1 where L is the largest spatial scale of A(r), meaning
that the two Bessel functions always remain in phase so can be set equal,
and ii) the asymptotic form J0(x) ∼ (2/πx)1/2 cos(x − π/4) was used, and
cos2 replaced by its average value 1

2
, giving a semiclassical expression valid

when kl � 1, where l is the smallest relevant spatial scale in A(r). Thus we
have

var(Ann) = g var(Anm) (14)

in a region n ≈ m close enough to the diagonal. Returning to the diagonal
case we have a power law in energy,

VA(E) ≈ aRWE−1/2, (15)
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where the prefactor takes the form of the Coulomb interaction energy of the
‘charge density’ A(r),

aRW =
g

πvol(Ω)

∫∫

A(r1)A(r2)

|r1 − r2|
dr1dr2. (16)

2.2 Classical auto-correlation approach (FP)

Feingold and Peres [27] were the first to derive a semiclassical expression for
matrix element variance in chaotic systems. There are two steps:

(i) relating off-diagonal variance a certain distance from the diagonal to
the classical auto-correlation, then

(ii) relating diagonal variance to the off-diagonal variance close to the di-
agonal.

Step (i) has been more rigorously presented as a ‘sum rule’ for off-diagonal ele-
ments by Wilkinson who derived the result using a wavepacket approach [55].
Prosen [42] has extended the result to all types of classical dynamics. More-
over it has since been proven to hold asymptotically using microlocal analy-
sis [57, 22], and in systems with a smooth potential using coherent states [23].
In the original FP paper step (ii) was argued, via the RMT expectation that
(for a set of eigenfunctions in a small energy range) there is invariance under
orthogonal basis rotations.

An alternative approach [25] for uniformly-hyperbolic systems uses a pe-
riodic orbit expansion and diagonal approximation, and enables the diagonal
variance symmetry factor g = 2 to be justified at the periodic orbit level,
thus avoiding the RMT assumption needed in step (ii). Hortikar and Sred-
nicki [33] have also shown that if the free-space 2-point correlation (9) is
replaced by its periodic orbit expansion, then the calculation of Section 2.1
becomes equivalent to step (i) of FP. Here we will perform step (i) using the
QET, in a similar fashion to Cohen [19].

Step (i): We consider the ‘signal’ A(t) := A(r(t)) as a function of time
t for a given classical ergodic trajectory r(t) which starts at (r0, θ0) in phase
space at t = 0. Due to the scaling Hamiltonian for billiards we can choose unit
speed, in which case t is arclength along the trajectory. The auto-correlation
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of this signal is

CA(τ) := lim
T→∞

1

T

∫ T

0

A(t)A(t + τ) dt (17)

= A(0)A(τ) (18)

where the ergodic theorem was used to rewrite the time average as an average
over initial phase space locations. For any finite τ , the function A(r0, θ0) :=
A(0)A(τ) is a smooth (although possibly convoluted) function of phase space
(r0, θ0). We will only need to consider τ of order tcorr, the system’s correlation
decay time. Applying QET1 to the symbol A gives, for all n excluding a
density-zero sequence,

〈φn, Â(0)Â(τ)φn〉 → C(τ). (19)

Here Â(t) indicates the pseudodifferential operator corresponding to the clas-
sical symbol A, shifted in time by t (the usual Heisenberg picture in quantum
mechanics). By considering the time-evolution of stationary states we express
Â(t) in the energy basis,

〈φn Â(t)φm〉 = Anme−i(km−kn)t. (20)

The exponent involves wavenumbers because t measures arclength. (For
simplicity we have chosen a dispersion relation ω = k in order to express unit
wave group velocity; we are at liberty to choose any convenient dispersion
relation). Inserting a complete set of states into (19) gives

∞
∑

m=1

|Anm|2e−i(km−kn)τ → CA(τ). (21)

For row n of the matrix Anm, we define the off-diagonal variance locally at a
wavenumber ‘distance’ ω = km − kn from the diagonal as

VA,n(ω) := ∆k

∞
∑

m=1

|Anm|2δε(km − kn − ω), (22)

where δε is a smoothed delta function with width ε and unit mass. We scale
ε in such a way that in the semiclassical limit an arbitrarily large number of

1Note that equivalently, Egorov’s theorem can be used here to argue that the time
evolution implicit in A(0)A(τ) does not invalidate QET
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levels fall into the wavenumber range ε as ε → 0. For instance, ε ∼ k−1/2.
The mean level spacing expressed in terms of wavenumber is

∆k =
2π

k vol(Ω)
, (23)

as given by the leading Weyl law term. Taking the inverse Fourier transform
of (22) then using (21) gives

1

2π

∫

e−iωτVA,n(ω) dω → ∆k

2π
CA(τ). (24)

This convergence is better expressed in the Fourier domain: using (23) we
get

VA,n(ω) → 1

k vol(Ω)
C̃A(ω) (25)

where the power spectral density of the signal is

C̃A(ω) :=

∫ ∞

−∞

CA(τ)eiωτdτ. (26)

The power spectral density can be estimated from trajectory simulations (see
Appendix A). Thus we have an asymptotic formula for off-diagonal variance
of Anm along all rows n excluding a density-zero sequence. If QUE were to
hold then we would expect this exclusion to be lifted. This corresponds to
a banded structure to the matrix Anm (illustrated by Fig. 9), where the off-
diagonal ‘band profile’ (local variance) is given by a classical power spectrum.
Note that by using QET we have avoided the double energy-averaging of
Wilkinson [55], instead arriving at an off-diagonal sum rule true for (almost
all) individual rows of the matrix.

Step (ii): To approach the diagonal we take the limit ω → 0, which is
well-defined because the exponential tails of CA(τ) ensure that all of its mo-
ments are finite. To relate off-diagonal to diagonal variance the time-reversal
invariance symmetry factor (14) was argued by FP to hold, again with g = 2,
essentially by requiring invariance of the matrix element distributions under
a basis rotation [27]. This can be justified by the idea, discussed in Sec-
tion 2.1, that properties of eigenfunctions (within a narrow energy range)
are invariant under basis rotations. Although this was not discussed by FP,
the system must be assumed to be without further symmetry. It is crucial
to note that if the system does possess other symmetries, then step (ii) can
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break down altogether. Sarnak (Appendix 5 of [46]) has illustrated this for
the case of a reflection symmetry: all diagonal matrix elements of an anti-
symmetric A vanish (A only couples odd to even states), so diagonal variance
is zero, therefore g = 0 ! Yet, the sum rule of step (i) would still hold in this
case. Averaging (25) over a local range of n we have

VA(E) = aFPE
−1/2 (27)

with prefactor

aFP =
g

vol(Ω)
C̃A(0). (28)

Finally, the physical significance of the correlation functions used above
should be noted: the right-hand side of (25) is proportional to dissipation
(heating) rate in a classical system driven at frequency ω with the forcing
function A, and the left-hand side to quantum dissipation rate under equiva-
lent forcing (with Â) within linear response theory (for reviews see [19, 9, 7]).
Therefore (25) underlies another manifestation of the Correspondence Prin-
ciple of quantum mechanics.

2.3 Existing numerical tests of FP

Now we review numerical tests of the FP prediction in chaotic systems. The
validity of (25) was originally shown at the order-of-magnitude level in a dou-
ble rotator model, a mixed finite-dimensional system [27]. The off-diagonal
sum rule, step (i), has since been tested in a quartic oscillator, showing
50% or greater errors [3], in a limacon billiard (for mixed and fully ergodic
cases), showing good (but unquantified) agreement over many orders of mag-
nitude [42], and in the stadium billiard, with operators A comprising singular
functions on the boundary (for which QET is not known to hold), showing
agreement at the 10% level [8].

The diagonal variance has been shown to agree with FP to about 10%
in the quantum Bakers map [25]. These researchers also studied the hydro-
gen atom in a strong magnetic field (nearly completely ergodic with sticky
islands), and found some agreement at the 20% level, however they admit
that the agreement was ‘unexpectedly good’ since it depended on a choice
of smoothing parameter [25]. Better but unquantified agreement has since
been found in this system for off-diagonal variance [17]. Tests of quantum
ergodicity rate have also been performed which connect to FP. Notably, the
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work of Bäcker et al. [5] has shown about 20% deviations from FP (see
Errata for this work).

Common features of existing studies are: low and almost completely un-
quantified accuracy (i.e. lack of statistical rigor in the tests), and relatively
low energy (quantum levels of order n ∼ 103 to 104). In our work we remedy
these omissions, by achieving tests of FP at known high accuracy, and at
high energy.

3 Choice of system and numerical methods

We choose a generalized Sinai billiard with concave walls. Such everywhere-
dispersing billiards are known [49] to be Anosov, and have been studied
classically [9]. We consider a boundary formed from four circular arcs, with
reflection symmetry about both x- and y-axes. We then desymmetrize (this
reduces numerical effort for the quantum calculation [7]), to give Ω, the ‘gen-
eralized quarter-Sinai billiard’ shown in Fig. 1a. Because the two wall cur-
vatures differ, there is no remaining symmetry, thus we believe the resulting
billiard to be generic. Γ denotes the entire boundary of the (desymmetrized)
billiard, and Γdesym the part of Γ which excludes the symmetry lines (axes).
We will study the odd-odd symmetry class only (Dirichlet boundary condi-
tions on the axes, therefore on all of Γ). We choose the test function A(r)
piecewise constant in order to allow fast quantum calculation (Section 3.1).
Throughout this work we use the function

A(r) =

{

1, r ∈ ΩA

0, otherwise
(29)

as shown in Fig. 1b, for which

A =
vol(ΩA)

vol(Ω)
≈ 0.55000 (30)

and

Anm := 〈φn, Âφm〉 = 〈φn, φm〉ΩA
:=

∫

ΩA

φn(r)φm(r) dr. (31)

Thus we have a ‘chopped billiard’ where the test function measures the mass
lying on one side of the ‘chop line’. Even though A(r) is discontinuous the
QET is known to apply [21]. Our choice of the shape of ΩA was also informed
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by the issue of boundary effects raised by Bäcker et al. [5] and discussed in
Section 5.1.

Numerical calculations in our work separate into classical and quantum.
The classical calculation of the power spectrum C̃A(ω) is explained in Ap-
pendix A. The much trickier task of calculating the quantum matrix elements
is discussed below.

3.1 Calculation of matrix elements

The numerical method used to find the Dirichlet eigenvalues {En} and eigen-
functions {φn} is called the ‘scaling method’ [54]. It makes use of a basis set
of size N = O(Nsc), where the semiclassical basis size is

Nsc :=
k|Γdesym|

π
, (32)

where |Γdesym| indicates the (desymmetrized) perimeter. The method simul-
taneously returns the basis coefficients for the cluster of eigenfunctions whose
eigenvalues lie within a narrow energy window. Per level this requires O(N 2)
numerical effort, which is faster by O(N) than other known methods (sum-
marized in [7]) such as boundary integral equations [6]. We have N ≈ 3500
at the largest wavenumber reached (k ≈ 4000) for the billiard under study;
in this case the resulting efficiency gain is roughly a factor of 103! Similar
efficiency gains have been reported in other studies of the Dirichlet eigen-
problem at extremely high energy in both 2D [54, 53, 20, 18] and 3D [43].
Despite its success the scaling method has not yet been presented in a rigor-
ous fashion (see [7] for a review). We refer the reader to the outline of the
method presented in Appendix B, pending a more detailed account [11].

Once a large set of eigenfunctions (in the form of their basis coefficients)
have been found, diagonal matrix elements are calculated using the following
formula,

〈u, v〉ΩA
=

1

2E

∮

ΓA

(r ·n)(Euv−∇u ·∇v)+(r ·∇u)(n ·∇v)+(r ·∇v)(n ·∇u) ds,

(33)
where s is the boundary coordinate, n(s) is the outwards unit boundary
normal vector, and ds is the line element on the boundary ΓA := ∂ΩA.
This identity holds for any two functions u(r) and v(r) which are regular
solutions of the Helmholtz equation (1) at the same energy Eu = Ev = E
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within an arbitrary bounded domain ΩA. The functions u and v need satisfy
no particular boundary conditions on ΓA. The identity expresses an inner
product over a domain purely in terms of boundary information. It is the
d = 2 special case of an identity proved in the appendix of the companion
paper [10] (see (36) in that paper), where the regularity conditions on u, v
and ΩA are also discussed. The diagonal matrix elements are found using
(33) with u = v = φn, and realising that the boundary integrand is nonzero
only on ΓA,desym, the part of ΓA excluding the symmetry lines.

Off-diagonal matrix elements are found via the more well-known identity,

〈u, v〉ΩA
=

1

Eu − Ev

∮

ΓA

(un · ∇v − vn · ∇u) ds, (34)

which holds given the same conditions as for (33) except that Eu 6= Ev. (34)
follows directly from Green’s Theorem. Choosing u = φn and v = φm, the
boundary integrand is nonzero only on ΓA,desym \ Γ, that is, on the chop line.
Thus by using (33) and (34), values and first derivatives of eigenfunctions
on boundaries alone are sufficient to evaluate all matrix elements (31). The
eigenfunctions need never be evaluated in the interior of ΩA. For the bound-
ary integrals, O(N) quadrature points are needed, and at each point O(N)
basis evaluations are needed to calculate φn and its gradient, giving O(N 2)
effort per eigenfunction. This is O(N) times faster than direct integration
over ΩA, an enormous efficiency gain.

Thus the eigenfunction calculation and the matrix element evaluation
both scale as O(N 2) per level. The calculations reported below took only
a few CPU-days (1GHz Pentium III equivalent) in total. Most of the ef-
fort is spent evaluating basis (Bessel) functions and their gradients at the
quadrature points.

4 Results

To give an idea of the typical energy range we work in, Fig. 2 shows a
density plot of an eigenfunction at E ≈ 106. Our calculations include data
at energies 16 times greater than this, corresponding to n ≈ 7× 105. Only a
couple of studies in billiards have computed eigenfunctions at greater n, and
they invariably involved shapes without corners (see for example [18]).

18



0 2 4 6 8 10

x 10
5

0.35

0.4

0.45

0.5

0.55

0.6

0.65

E
n

<
φ n, A

 φ
n>

quantum expectations
classical mean

Figure 4: Scatter plot of diagonal matrix elements Ann plotted against energy
eigenvalue En. The gaps are due to the fact that only certain windows on the
E axis have been computed; within each window all eigenvalues are found.
The windows correspond to wavenumbers k ∈ [100, 500], k ∈ [650, 750] and
k ∈ [950, 1050], giving a total of 28171 levels. The classical mean A is shown
as a horizontal line.
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Figure 5: Demonstration that none of the 6812 levels are missing in the
wavenumber window k ∈ [650, 750]. The level counting function N(E) :=
#{n : En < E} is plotted after the first two Weyl terms NWeyl(E) =
(vol(Ω)/4π)E−(|Γ|/4π)

√
E have been subtracted. The horizontal axis shows

wavenumber k = E1/2. Spectral rigidity ensures that a single missing or ex-
tra level can be detected [29]; this would be visible as a jump of size 1 (the
gap between the dotted horizontal lines). No such jump occurs. Plots for
the other two intervals in Fig. 4 look similar.
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The random wave prediction given by (15) and (16) has no fitted parameters
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21



0.46 0.47 0.48 0.49 0.5

0.33

0.34

0.35

0.36

FP semiclassical

        γ

   
   

   
   

a’

Figure 7: Comparison of power-law fit uncertainty with the FP semiclassical
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of the likelihood function, that is, likelihood that the data came from a
power law model for the variance, with given parameters (γ, a′). See text for
definition of a′. The FP prediction is shown as a large dot with an errorbar
due to the classical power spectrum estimation.
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Best-fit Random wave Feingold-Peres

a
(1/2)
BF aRW aFP

prefactor 0.334 ± 0.003 0.5995 ± 0.001 0.3550 ± 0.0004

deviation from a
(1/2)
BF — 79 ± 1% 6.5 ± 0.9%

Table 1: Comparison of measured (best-fit) prefactor to the two semiclassical
prefactor estimates assuming γ = 1/2 power-law decay of quantum variance
with energy. The random wave estimate is (16) and the Feingold-Peres is
(28).

4.1 Evidence for Quantum Unique Ergodicity

Fig. 4 shows values of diagonal matrix elements Ann, for all En lying in
certain energy windows, up to about E ≈ 106, comprising 28171 levels. We
are certain that all quantum levels and no duplicates have been found in
the energy ranges shown: for instance the comparison of the level counting
function against Weyl’s law in Fig. 5 shows not a single missing or duplicate
level. We continued collecting smaller windows at higher energies up to
E ≈ 1.6 × 107, comprising another 2718 levels (calculation is more time-
consuming at higher energy). The slow decay of the size of deviations from
the classical mean can be seen in Fig. 4.

Are the quantum expectations condensing to the classical mean? We find
that the average of Ann at low energies is slightly, but detectably, higher
than A. However, if we restrict ourselves to E > 9 × 104, the mean of these
27037 levels is 0.55023 ± 0.00013, where the error quoted is ±1σ (standard
deviation). This is about 1.8σ from the classical mean (30), thus our data
is consistent with convergence to the classical mean with a relative error of
0.02%.

Of this entire collection, both the maximum 0.6811 and minimum 0.3437
of Ann occur at En < 2×104, visible at the far left side of Fig. 4. Furthermore
there is not a single exceptional value falling outside of this slowly-condensing
distribution. If there is a sequence of strongly-scarred states (where the form
of the scarring gives an anomalous value of Ann), this implies that its density
is unlikely to be more than 3 × 10−5. This provides strong support for the
QUE conjecture in this system.
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4.2 Ergodicity rate

At what rate are the quantum expectations tending towards the classical
mean? We measure variance VA(E) for levels within local windows of energy,
to give the data with errorbars shown in Fig. 6. The relative errorbar of an
estimator of variance is

√

2/N if N independent samples from a Gaussian
population are taken. For instance, we would need to collect 20000 samples
in order to achieve a 1% errorbar—this explains why previous studies have
not achieved high accuracy. We perform a (correctly statistically weighted)
fit of the parameters (γ, a) in a power-law model,

VA(E) = aE−γ. (35)

We found that restricting to data with E > Emin = 1.6 × 105 was needed to
avoid corruption by the non-asymptotic dependence at lower energy (fitted
values were dependent on Emin when Emin was set any lower). However,
because of the slow convergence, we still cannot be sure that we have reached
the asymptotic regime. The best-fit value of γ was found to be

γBF = 0.479 ± 0.009. (36)

This is very close (but a 2.3σ deviation) to the γ = 1/2 power expected from
both semiclassical estimates in Section 2. The errorbar here was found from
the width of the likelihood function when marginalized over a. (Recall that
the likelihood, as a function of model parameters, gives the likelihood that
the data came from a model with those parameters [50]). This best-fit power
law (γBF, aBF) is shown in Fig. 6. The distribution of rescaled deviations,
given this power law, is shown to be very close to Gaussian in Fig. 8.

We now consider the question: assuming the semiclassical power law
γ = 1/2 is in fact correct, how well does the prefactor match the estimates

from Section 2? Fixing γ = 1/2, we fit for the prefactor a to get a
(1/2)
BF , and

compare against semiclassically predicted values, in Table 1. The random
wave prefactor overestimates by nearly a factor of two: this is hardly sur-
prising since the support of A(r) covers an O(1) fraction of the total volume,
and extends to the boundary of Ω where the random wave assumption surely
breaks down (no reflected waves have been taken into account). By careful

consideration of the errorbars, we see that the deviation between fitted a
(1/2)
BF

and the FP prediction aFP (28) is statistically significant: FP overestimates
by about 7σ. The systematic deviation is visible at low and intermediate
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energies in the inset of Fig. 6; at high energies the errorbars are sufficiently
large that there is no evidence for systematic deviation.

In order to visualize where FP falls relative to the statistical uncertainty
in the power law fit, in Fig. 7 we plot the likelihood over the (γ, a′) parameter
space given the quantum variance data. For this plot we used an equivalent
version of (35),

VA(E) = a′E
−1/2
0

(

E

E0

)−γ

, (37)

with the ‘pivot’ energy is E0 = 106, for the simple reason that with this choice
γ and a′ are nearly uncorrelated, aiding the visual interpretation (cf. γ and
a are highly correlated). Note that when γ = 1/2, a′ = a. In this plot the
FP prediction (1/2, aFP) is shown for comparison. If FP exactly explained
the variance data, we would expect the dot to fall within the likelihood
probability ‘blob’; the fact that it doesn’t indicates statistically significant
deviations.

4.3 Off-diagonal variance (band-profile)

By computing off-diagonal matrix elements we can test step (i) of FP directly.
The amount of data we can collect for any single matrix row n is insufficient
to estimate VA,n(ω) to any useful accuracy. Therefore we measure a local
energy average of this quantity,

VA(E, ω) :=
1

M

N≤n<N+M
∑

En≈E

VA,n(ω), (38)

to which we expect VA,n(ω) to converge for all levels n barring a vanishing-
density set. As with (8), a large number of levels M needs to be chosen which
span an energy range much smaller than E itself (this can be much larger
than the averaging scale ε → 0 implicit in VA,n(ω) required to converge the
off-diagonal structure). VA(E, ω), equivalent to Wilkinson’s S(E, ∆E) [55],
measures the off-diagonal band profile (variance) of the matrix Anm, by av-
eraging over an oblique, narrow ‘patch’ of the matrix. A density plot of a
piece of this matrix is shown in Fig. 9.

Fig. 10 shows VA(E, ω) estimated around E = 4.9×105, compared to FP,
that is, the classical power spectrum (25). About 2.3 × 106 distinct matrix
elements were calculated between 6812 eigenfunctions. There are no fitted
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for the 637 quantum levels lying in k ∈ [650, 660], shown in the form of the
matrix. The range white to black indicates zero to 1.7 × 10−3. The band
profile (ω-dependent variance, see Fig. 10) appears to be the only significant
structure, other than the matrix being symmetric.

27



0 1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0.3

ω

po
w

er
 s

pe
ct

ru
m

kV
A
(E)/2 quantum, diagonal

a) kV
A
(E,ω) quantum, off−diagonal

C
A
(ω)/vol(Ω) FP semiclassical

0 0.2 0.4 0.6 0.8
0.16

0.165

0.17

0.175

0.18

0.185

0.19

0 1 2 3 4 5 6 7 8
−0.05

0

0.05

ω

re
la

tiv
e 

de
vi

at
io

n

b)

Figure 10: a) Average quantum variance VA(E; ω) (errorbars) as a function
of distance ω (wavenumber units) from the diagonal, compared against FP
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on the ω → 0 region. b) Relative deviation between quantum variance and
FP.
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parameters. The agreement is excellent. With 0.7% quantum errorbars (near
the diagonal) this is believed to be the most accurate test of the Feingold-
Peres result ever performed. However it is clear (Fig. 10b) that there is
statistically significant deviation: the peaks and valleys (points of highest
curvature) are exaggerated more in the quantum variance than the classical
power spectrum, by up to about 3% (4σ). This is a real effect: the smoothing
of C̃A(ω) (see Appendix A) is on a much finer ω scale and cannot explain the
rounding of the peaks and valleys. The situation at ω = 0 could be viewed
as another example of this (the power spectrum being a symmetric function
of ω). The deviation between FP and the observed ω → 0 limit of VA(E, ω)
is 3.8 ± 0.7%.

The diagonal quantum variance, divided by g = 2, is also shown. If step
(ii) of FP applied exactly then this would coincide with VA(E, 0), however
a 3 ± 1% difference is found. It is unlikely but possible that this is merely
a statistical fluctuation (a null result). Thus, at this energy, the diagonal
variance prefactor discrepancy of 7% seems to result from the addition of
two roughly equal effects: step (i) has about 4% discrepancy, and step (ii)
about 3%.

5 Discussion

We return to our chief issue: quantum ergodicity, as measured by diagonal
variance. Looking at Fig. 6, we could postulate three hypotheses for the
variance VA(E):

I. There is asymptotic agreement with FP, γ = 1/2 with prefactor aFP

given by (28), but the convergence to this is quite slow.

II. There is power-law behaviour with the power being the semiclassically
expected γ = 1/2, but the prefactor differs, a 6= aFP. Again, we admit
the possibility of slow convergence here.

III. There is power-law behaviour but with a new power γ 6= 1/2 (therefore
the prefactor cannot be related to semiclassical estimates).

Our data is consistent with hypothesis I, if for example we assume a finite-E
correction of the form

VA(E) ≈ aBFE
−1/2

(

1 − bE−β + o(E−β)
)

(39)
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with β sufficiently small, and b sufficiently large. We do not have enough
data to do a meaningful fit for β and b, however, our data suggests 0.25 ≤
β ≤ 0.5, and that b is several times greater than 1. On the theoretical
side, the issue of finite-E (finite-~) corrections to FP appears unresolved:
the O(~), here corresponding to O(E−1/2), periodic orbit corrections derived
by Wilkinson [55] were later claimed by Prosen not to contribute at this
order [42]. Thus future analytic and numerical study is needed in this area.
Our data imply that asymptotic convergence is very slow, and that we would
have to collect a lot of statistics at E ∼ 107 or above to improve upon the
6–7% variance discrepancy found at E ∼ 106 (where the bulk of our data
was taken). This slow convergence is best shown in the inset of Fig. 6.

Our data is equally well consistent with hypothesis II, but only if we
also allow slow convergence here. The observed slope in our energy range
being shallower than γ = 1/2 indicates that, asymptotically, the prefactor
deviation would be less than 6.5%. Differences in prefactor have actually
been recently proved to hold in arithmetic systems [46, 37]. As a function of
the operator A, both quantum (diagonal) variance and classical variance (the
FP prediction) are quadratic forms. In the arithmetic setting these quadratic
forms are remarkably diagonalized (asymptotically) by the φn themselves,
but with differing corresponding eigenvalues. This would correspond to the
presence of an A-dependent prefactor in (27), (28). It would be fascinating
if this carried over to our Euclidean billiard case.

Our data is consistent with hypothesis III, with the power given by (36).
However there is not enough data to distinguish between I and III (this would
require more statistics, e.g. another 10000 eigenfunctions at E ∼ 107).

The off-diagonal variance data in Section 4.3 offers us the insight that
at E ≈ 4.9 × 105, the off-diagonal band profile is very close to, but has not
yet converged to, the FP prediction. Convergence is ω-dependent, and, as
with the diagonal, seems very slow. However, as discussed in Section 2.2,
asymptotically step (i) of FP is proven to hold. So if hypothesis II holds,
then step (ii) alone must account for the prefactor discrepancy, that is, g 6= 2.
In our case, g would tend to about 1.85. Any such deviation from the RMT
(GOE) value g = 2 would be surprising, since it tells us that there are
significant (in this case positive) correlations between eigenfunctions with
nearby n. Instead if hypothesis III held, g would have to tend to 0 (for
γ < 1/2) or ∞ (for γ > 1/2), both unsettling prospects for a system which
does not possess remaining symmetries. As is stands, our data only shows
a 3σ discrepancy from g = 2, which is not tremendously significant. So if
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hypothesis I holds, it may be that in fact g = 2, leaving all the discrepancy
in the diagonal case to be accounted for by the slow convergence of step (i).
We note that, for the uniformly-hyperbolic case, any hypothesis other than
I would be inconsistent with the derivation of Eckhardt et al. [25].

Recently Zelditch [59] has shown that QUE, if valid, extends to off-
diagonal matrix elements. We find strong numerical evidence for off-diagonal
QUE: there are no exceptionally large off-diagonal elements in data such as
Fig. 9.

Can our observed rate of ergodicity be reconciled with scar theory? As
now understood, scar theory [39] predicts typical intensity enhancements
along each UPO staying constant (not vanishing) as E → ∞. However,
the width of the scarred region transverse to the UPO scales like E−1/4 (in
2D), so does vanish, and along with it the amount of excess probability mass
associated with the scar. Scar-related fluctuations in Ann would then die like
E−1/4, corresponding to the FP power law γ = 1/2. Therefore there is no
conflict.

It is worth comparing our results to the previous numerical work on quan-
tum ergodicity in billiards. Aurich and Taglieber tested polygons in the
hyperbolic plane, and found rough agreement with γ = 1/2 [2]. The only
known study on Euclidean billiards, that of Bäcker et al. [5], contains ex-
haustive permutations of billiard and ΩA region shapes, but was limited to
n < 6000. They found assorted power laws, covering the range γ = 0.37
to 0.5 even for the (Anosov) cardioid billiard. If our hypothesis I is to be
believed, the slow asymptotic convergence of variance we find explains why
their power laws are so at odds with expectation, and why when they are
close to γ = 1/2, the prefactors differ from FP by 20% (see Errata to [5]). By
reaching 100 times higher in E, we can see (Fig. 6) that the apparent power
law for low energies (E < 105) is deceptive (non-asymptotic). Their study,
by focussing on a sum S1(E,A) over all levels up to n, also integrated away
useful information on individual eigenfunction variances and resulted in less
conclusive results, of unquantified statistical significance.

5.1 Effect of Gibbs phenomenon at the boundary

In this section we estimate if boundary effects could be responsible for the
observed difference between quantum variance VA(E) and FP. The Dirich-
let boundary condition means that very close to the walls the eigenfunction
intensity must vanish. The result is an oscillation or ‘ringing’ (Gibbs phe-
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Figure 11: Geometry for estimating the effect of oscillations in mean eigen-
function intensity near the wall.

nomenon) in the mean intensity |φn|2 as a function of d(r), the shortest
distance from point r to the boundary, namely

〈|φ(r)|2〉 =
1

vol(Ω)

(

1 − J0(2kd(r)) + O(
1

kL
)

)

(40)

The oscillation occurs at distance scale 1/kn and dies like square root of
distance. The symbol 〈·〉 means a local energy average (an average over
eigenfunctions φn whose wavenumbers kn are very close to k). The O(1/kL)
correction is due to the perimeter term in the Weyl level density. The func-
tional form has been proved analytically for Γ ∈ C∞ [32] and it has been
verified numerically [5] that this is the dominant correction to the uniformity
of |φ|2 in billiards. It can most simply be derived by considering that the
random wave assumption must be modified near a (straight) boundary by
addition of a reflected wave in order to preserve the boundary condition, then
making use of (9).

As pointed out by Bäcker this effect causes the quantum mean expectation
value to differ from A, for any finite E. How significant are its effects on our
study, and could it explain any discrepancies in variance? We can estimate
∆µ, the deviation of mean Ann from the classical average A, using the integral
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of (40) inside the triangle T (of height D) shown in Fig. 11,

∆µ ≈
∫

T
(1 − J0(2ky)) dr − vol(T )

vol(Ω)

≈ − 1

vol(Ω)

∫ D

0

J0(2ky)y tan θ dy

= −D tan θ

2vol(Ω)

J0(2kD)

k
. (41)

Here we assumed that distances are small compared to radius of curvature, in
which case d(r) ≈ y. In an infinite sized system the limit D → ∞ could now
be taken, in which case (41) diverges at any fixed k. However in any finite
sized billiard Eq. (40) and our form for d(r) will break down for distances
D comparable to the billiard size L. This will destroy the coherent addition
which causes the divergence, and allows us to fix D at a constant of order
L. For kD � 1 the asymptotic form of the Bessel function then gives the
bound |∆µ| < cE−3/4 where c contains geometric constants.

To see if this systematic shift in mean is significant, it should be compared
to the quantum deviations. The bound on ∆µ is O(E1/2) smaller than the
deviation size ∼ E−1/4, meaning that it will have an insignificant effect on
variance at the energies studied. Indeed this is supported by the highly
accurate mean agreement found in Section 4.1. To conclude, boundary effects
cannot explain the observed discrepancies of several %.

Finally a word on the choice of domain ΩA is in order. We avoided the
use of an interior domain (where Γ ∩ ΓA = {0}) not only to minimize the
perimeter ΓA\Γ on which (33) need be evaluated, but to reduce sensitivity to
the above ringing effect. Bäcker et al. investigated domains with boundaries
containing long segments parallel and close to Γ, and as they point out, these
were therefore very sensitive to the ringing effect [5]. Using this knowledge,
we were able to avoid such choices.

6 Conclusions

We have studied a generic Euclidean Dirichlet billiard whose classical dy-
namics is Anosov, testing quantum ergodicity by comparing quantum ex-
pectations (diagonal matrix elements) Ann to the classical mean A for a
piecewise-constant position-dependent operator A. For over 30000 computed
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eigenfunctions φn, no values of Ann were found to fall outside of a Gaussian
distribution which slowly condenses around A. This is strong evidence for
Quantum Unique Ergodicity. The ergodicity rate is quantified by var(Ann)
(quantum variance). Calculating this numerically up to unprecedented en-
ergies (100 times higher n than any previous ergodicity study) and with un-
precedented accuracy (due to the large number of eigenfunctions computed),
diagonal variance is found to obey a power law (35) remarkably well over
3 decades of energy (Fig. 6). Such large-scale high-energy matrix element
calculations would not be possible without the scaling method (a factor of
103 faster than other boundary methods) with a new basis set introduced by
the author (Appendix B), and the identity (33) which allows diagonal matrix
elements to be evaluated using boundary integrals alone.

The variance power law was found to deviate by only 4% from the semi-
classically predicted γ = 1/2 (which we note is also consistent with scar
theory). If γ = 1/2 is assumed to hold asymptotically as E → ∞, then
convergence to this law is surprisingly slow. As a result, even at the high
energies we test (the bulk of data coming from E ≈ 106, or n ≈ 5 × 104),
we cannot tell if the observed 7% variance deviation from the Feingold-Peres
prediction (27) and (28) will vanish (hypothesis I) or persist (hypothesis II)
asymptotically. This distinction is important to resolve since in arithmetic
systems a persistent prefactor difference has recently been proven analyti-
cally [46, 37]. The slow convergence helps explain the fluctuating γ observed
in a previous ergodicity study at much lower E [5]. Neither can we rule out a
persisitent power law of γ = 0.48 ± 0.01 (hypothesis III). However the effect
of known eigenfunction boundary effects has been estimated and ruled out as
a possible cause for the observed deviation. More data at higher E would be
needed to resolve the matter; given the numerical tools presented here this
is simply a matter of increased CPU time.

We have also tested the FP prediction, step (i), that off-diagonal matrix
element variance has a banded off-diagonal profile given by the classical power
spectrum, at an unprecedented 0.7% accuracy level at around n ≈ 2.5× 104.
We find excellent agreement, but that systematic ω-dependent discrepancies
of up to 4% exist, for which no theory yet exists. Given that off-diagonal
variance is proven to obey FP asymptotically, we can only assume this is
another manifestation of slow convergence. The observed 3% discrepancy in
the RMT (GOE) predicted symmetry factor g = 2, that is, step (ii) of FP,
is a surprise, but is not statistically highly significant. Our data strongly
support a QUE conjecture for off-diagonal matrix elements.
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Clearly, in order to perform this first large-scale study, we have limited
ourselves to one billiard Ω and one operator A. In order to complete the
picture, the rate of ergodicity, more precisely the deviations from the FP
prediction for the rate, should be studied as a function of Ω and A. If indeed
hypothesis I does then prevail, then an understanding of the corrections such
as b and β in (39) becomes a priority.
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Appendix A: Classical power spectrum

C̃A(ω) defined by (26) is the Fourier transform of the auto-correlation of
observable A, and is otherwise known as the spectral density. We will use
standard techniques to estimate it [28]. For a particular trajectory, launched
with certain initial location in phase space, A(t) is a noisy function (stochastic
stationary process). We define its windowed Fourier transform as

Ã(ω) :=

∫ T

0

A(t)eiωtdt, (42)

where the window is a ‘top-hat’ function from 0 to T . Using with (17) and
(26), and taking care with order of limits, we have the Wiener-Khinchin
Theorem,

C̃A(ω) = lim
T→∞

1

2πT
Ã∗(ω)Ã(ω). (43)

For this single trajectory, Ã(ω) is a rapidly-fluctuating random function of
ω, with zero mean (for ω 6= 0), variance given by 2πT C̃A(ω), and correla-
tion length in ω of order 2π/T . (As T → ∞, the ω-correlation becomes a
delta-function). Thus (43) converges only in the weak sense, that is, when
smoothed in ω by a finite width test function.
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A given trajectory is found by solving the particle collisions with the
straight and circular sections of Γ, and A(t) is sampled at intervals ∆t = 0.02
along the trajectory (recall we assume the particle has unit speed). Then
Ã(ω) is estimated using the Discrete Fourier Transform (DFT, implemented
by the FFT) of this sequence of samples, giving samples of the spectrum at
ω values separated by ∆ω = 2π/T . The correlation in ω is such that each
sample is (nearly) independent. ∆t was chosen sufficiently short that aliasing
(reflection of high-frequency components into apparently low frequencies)
was insignificant. A trajectory length T = 104 (about 1.8 × 104 collisions)
was used. The finiteness of T causes relative errors of order tcorr/T , where
tcorr ≈ 2 (for our domain) is the timescale for exponential (since the billiard
is Anosov) decay of correlations. Thus more sophisticated window functions
are not needed.

Given Ã(ω) we use (43), with the fixed T , to estimate C̃A(ω). We smooth
in ω by a Gaussian of width ωsm = 0.03. This width is chosen to be as large
as possible to average the largest number of independent samples from the
neighborhood of each ω, but small enough to cause negligible convolution of
the sharpest features of C̃A(ω).

Finally, in order to reduce further the random fluctuations in the estimate,
nr = 6000 independent trajectory realizations with random initial phase
space locations were averaged. An estimate for the resultant relative error
ε in C̃A(ω) can be made by counting the number N of independent random
samples which get averaged, and using the fact that the variance of the square
of a Gaussian zero-mean random variable (i.e. χ2 distribution with 1 degree
of freedom) is twice the mean. This gives

ε =

(

2

N

)1/2

≈
(

2π

nrωsmT

)1/2

, (44)

which numerically has been found to be a conservative estimate. In our case
ε ≈ 2 × 10−3, that is, about 0.2% error.

The zero-frequency limit C̃A(0) is found using the smoothed C̃A(ω) graph
at ω = 0, and therefore is an average of frequencies within ∼ ωsm of zero.
This approach is justified because exponential correlation decay results in all
moments of CA(τ) finite, hence there is no singularity in C̃A(ω) at ω = 0 (it
can be expanded in an even Taylor series about ω = 0 with finite coefficients).
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Appendix B: Scaling method for the Dirichlet

eigenproblem

The ‘scaling method’ for the solution of the Dirichlet eigenproblem in star-
shaped domains was invented by Vergini and Saraceno [54], and considering
its great efficiency (discussed above in Section 3.1) it has received remarkably
little attention. Here we give only an outline.

Let Ω be a bounded Euclidean domain in R
d, with d ≥ 2. For example

we envisage a domain with boundary composed of a finite number of piece-
wise smooth surfaces. Let Γ := ∂Ω be the boundary parametrized by the
(d−1) dimensional coordinate s ∈ Γ, with outwards unit normal vector n(s).
Dirichlet eigenfunctions are defined by (1) with (2). The method relies on
the remarkable fact that the normal derivatives of eigenfunctions lying close
in energy are ‘quasi-orthogonal’ (nearly orthogonal) on the boundary, with
respect to the boundary weight function rn := r · n, where r is the position
vector relative to some origin. This can be expressed by the identity,

Qij :=

∮

Γ

rn(n · ∇φi)(n · ∇φj) ds = 2Eiδij +
(Ei − Ej)

2

4
〈φi, r

2φj〉Ω, (45)

where ds is the surface element. The content of (45) is that, since r2 is a
bounded operator on the domain, off-diagonal elements of Q must vanish
quadratically as one approaches the diagonal. Thus the matrix Qij/2Ei

approximates the identity matrix, when restricted to an energy window
Ei, Ej ∈ [E − ε0, E + ε0], if the window size remains relatively narrow
ε0 = o(E1/2). The proof of (45), and its generalization to adjoint bound-
ary conditions, is presented in [10] (where it is Lemma 1.1).

We choose a ‘center’ wavenumber k = E1/2, near which we are interested
in extracting eigenfunctions, and relative to which the wavenumber shift of
level i is ωi(k) := k − ki. Consider an eigenfunction φi for which ωi < 0
and |ωi| � O(1). We create a version spatially rescaled (dilated about the
origin) by an amount needed to bring its wavenumber to k, that is, χi(k, r) :=
φi(kr/ki). We call this function k-rescaled. Thus we have −∆χi = Eχi

everywhere inside Ω, with χi(k, r) = 0 on the rescaled boundary (i.e. for all
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kr/ki ∈ Γ). The rescaled eigenfunction can be Taylor expanded in ωi,

χi(k, r) = φi

(

r +
ωi

ki

r

)

= φi(r) +
ωi

ki

r · ∇φi + O(ω2)

=
ωi

ki

rnn · ∇φi + O(ω2) for r ∈ Γ, (46)

where Dirichlet boundary conditions were applied. We construct a basis of
N functions ξl(k, r), satisfying −∆ξl = Eξl inside Ω, no particular boundary
conditions on Γ, and non-orthogonal over Ω. We assume they approximately
span the linear space in which rescaled eigenfunctions live, so that

χi(k, r) =
N

∑

l=1

Xli ξl(k, r) + εi(r) for all i of interest, (47)

where the error εi can be made negligibly small for some N . In practise
N need exceed Nsc defined in (32) by only a small factor (2 or less). Our
goal is then to solve for a shift ωi and the corresponding ith column of the
coefficient matrix X. We can do this by simultaneous diagonalization of
quadratic forms. We define two symmetric bilinear forms on the boundary,

f(u, v) :=

∮

Γ

1

rn

uv ds, (48)

g(u, v) :=
1

k

∮

Γ

1

rn

(ur · ∇v + vr · ∇u) ds. (49)

Note that defining these forms brings the extra requirement that the domain
be strictly star-shaped about the origin (rn > 0), which from now on we
assume. In the rescaled eigenbasis f is, via (46) and (45)

f(χi, χj) =
ωiωj

kikj

Qij + O(ω3) = 2ω2
i δij + O(ω3), (50)

a matrix which is close to diagonal, because of the closeness of Q to the iden-
tity. In the same basis, recognizing that for k-rescaled functions g is equiva-
lent to df/dk, the derivative of (49) with respect to the center wavenumber,
and using dωi/dk = 1, we have

g(χi, χj) =
ωi + ωj

kikj

Qij + O(ω2) = 4ωiδij + O(ω2), (51)
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so g is also close to diagonal. Thus the set {χi} with small |ωi| approximately
diagonalizes both bilinear forms, with the approximation error growing as a
power of |ωi|. As we explain below, in practise the converse applies, that is,
by simultaneously diagonalizing f and g we can extract the set of eigenfunc-
tions {χi} with smallest |ωi|. Therefore, loosely speaking, when the boundary
weight function 1/rn is used, domain eigenfunctions are given by the simul-
taneous eigenfunctions of the (squared) boundary norm and its k-derivative.

We perform the diagonalization in the basis (47). That is, matrices
Flm := f(ξl, ξm) and Glm := g(ξl, ξm), with l,m = 1 · · ·N , are filled. This
requires basis and first derivative evaluations on the boundary. It is an el-
ementary fact that given a positive matrix F and a symmetric matrix G
there exists a square matrix Y and a diagonal matrix D := diag{µi} which
satisfy Y T FY = I and Y T GY = D. The matrices Y and D can be found by
standard numerical diagonalization algorithms in O(N 3) time. If (50) and
(51) held without error terms, and the number of levels i for which they held
were equal to (or exceeded) the basis size N , then we would be able directly
to equate the columns of Y with the desired columns of X (barring permu-
tations). In this case ωi = 2/µi would also hold, from which the desired
wavenumbers ki follow. However, using Weyl’s law and (32) is follows that
such a large number of levels requires that the largest |ωi| is of order unity,
in which case errors in (50) and (51) would become unacceptable. It is an
empirical observation found through numerical study that in fact columns
of Y corresponding to the largest magnitude generalized eigenvalues µi (and
therefore the smallest shifts |ωi|) do accurately match columns of X. Thus
perturbations by other vectors in the span of basis functions are small. Fur-
ther discussion is postponed to a future publication [11].

We mention a couple of other implementation details. Because the gener-
alized eigenproblem turns out to be singular it is truncated to its non-singular
part [54, 7]. If columns of Y are normalized such that Y T FY = I holds then
the resulting eigenfunctions can be normalized over Ω by dividing the ith

column of Y by
√

2ωi. Depending on the choice of basis, spurious solutions
can result; they are easily identified because their norm over Ω, easily found
via the Rellich-type identity (discussed in [10])

∫

Ω

u2 dr =
1

2E

∮

Γ

rn(un)2 ds, (52)

is not close to 1. The maximum |ωi| in which levels of useful accuracy are
found is of order 0.2/R where R is the largest radius of the domain. The lack
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of missing levels obtained with this method is illustrated by Fig. 5. There are
several implementation issues and improvements that we do not have space
to discuss here [54, 7, 11].

A word about the basis set choice {ξ(k, r)}, 1 ≤ i ≤ N , is needed. Until
now plane waves (including evanescent plane waves [54]) or regular Bessel
functions [18] have been used. These fail for non-convex domain shapes, or
those with corners, thus to tackle the domain in this study a basis of irregular
Bessel (i.e. Neumann) functions, placed at equal intervals along a curve Γ+

exterior to Ω, was developed by the author. Γ+ is defined as the set of points
whose nearest distance to Γ is D, with kD = 7 (roughly one wavelength
distant). This was found to handle (non-reentrant) corners successfully. It
performs extremely well for all shapes that have been attempted so far. The
basis size N is about 1.5Nsc (see (32)), thus, depending on required accuracy,
about N/20 useful levels are found per dense matrix diagonalization (O(N 3)
effort). This is O(N) faster than other boundary methods; we remind the
reader that N is larger than 103 in our work.
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