Sonya Hanson (MPI Biophysics, Frankfurt)

Title: Elucidating mechanisms of biological temperature sensing


Despite the existence of engineered thermometers since the time of Galileo and electronic temperature sensors in even our phones, we still do not understand how our own internal biological temperature sensors work. Engineered thermometers take advantage of simple laws, but is the same true for biological temperature sensors? In this talk I will first describe my past work looking for modular sensory domains in the temperature sensitive TRP channels. This work sets the stage for my future vision elucidating mechanisms of biological temperature sensing, for which next generation methods in advanced cryo-electron microscopy (cryo-EM) analysis and molecular dynamics (MD) simulations will be crucial.

In the second part of my talk, I will illustrate the unique potential of these methods to tackle the conformational heterogeneity of three known biological temperature sensors: bacterial voltage-gated sodium channels, a temperature sensing pathway in Arabidopsis, and TRP channels. The mechanisms revealed by this research will improve our ability to 1) develop pain therapeutics, for which both sodium and TRP channels are prime non-opioid receptor targets, and 2) understand the temperature sensitivity of plants and marine bacteria, which play key roles in global ecosystems.


Sonya is Currently a Humboldt Fellow at the Max Planck Institute of Biophysics in Frankfurt, Germany, she received her BS in Biophysics from the University of Southern California and Ph.D. in Biochemistry from the University of Oxford, studying the temperature sensitive TRP ion channels. From 2014-2017 she was a postdoctoral fellow in the lab of John Chodera at Memorial Sloan Kettering Cancer Center, studying the contribution of conformational reorganization energy of kinases to the ligand binding affinity of prominent cancer drugs. Since 2018, she have returned to the question of biological temperature sensors, first working with Joachim Frank at Columbia University on applying cutting-edge analysis methods in cryo-EM to TRP channel datasets and now at the MPI Biophysics with Gerhard Hummer.