Joys and pitfalls of numerical computing

Alex H. Barnett

10/14/21

FWAM Episode III — Revenge of the Singular Value Decomposition

1 Center for Computational Mathematics, Flatiron Institute, Simons Foundation
Goals/outline

Crucial practical advice & good habits, examples, further reading

- how does accuracy improve with effort? rate of convergence
- finite-precision (‘‘rounding error’’) considerations
- what accuracy is reasonable to demand? conditioning of a problem
- did you mess up getting such accuracy? stability of an algorithm
Goals/outline

Crucial practical advice & good habits, examples, further reading

• how does accuracy improve with effort? *rate of convergence*

• finite-precision (*“rounding error”*) considerations

• what accuracy is *reasonable* to demand? conditioning of a *problem*

• did you mess up getting such accuracy? stability of an *algorithm*

Please ask questions*

* with finite time-frequency product 😊

PS I will ask YOU questions 😊
Accuracy: how much to you need? have?

Usually care about *relative error*: \(\varepsilon := \frac{\text{size of error of thing}}{\text{size of thing}} = \frac{|y_{\text{computed}} - y_{\text{true}}|}{|y_{\text{true}}|} \)

eg 0.00123 \pm 0.00001 is not “correct to 5 digits”, rather, 2 digits, rel. err. \(10^{-2}\), ie 1% err.
Accuracy: how much to you need? have?

Usually care about *relative* error: \[\varepsilon := \frac{\text{size of error of thing}}{\text{size of thing}} = \frac{|y_{\text{computed}} - y_{\text{true}}|}{|y_{\text{true}}|} \]

eg 0.00123 ± 0.00001 is not "correct to 5 digits", rather, 2 digits, rel. err. \(10^{-2}\), ie 1% err.

Interesting things take a while to compute → is \(\varepsilon = 10^{-1}\) ok, or need \(10^{-10}\) ?
Accuracy: how much to you need? have?

Usually care about relative error: \(\varepsilon := \frac{\text{size of error of thing}}{\text{size of thing}} = \frac{|y_{\text{computed}} - y_{\text{true}}|}{|y_{\text{true}}|} \)

eg 0.00123 \pm 0.00001 is not “correct to 5 digits”, rather, 2 digits, rel. err. \(10^{-2}\), ie 1% err.

Interesting things take a while to compute \(\rightarrow\) is \(\varepsilon = 10^{-1}\) ok, or need \(10^{-10}\)?

In our line of work there is really only one graph that matters:

- useful to measure and/or understand this even for simple tasks
- is crucial for larger tasks! methods differ in graph shapes (rates)
Convergence of a computational routine/method

Often a routine has one (usually many) convergence parameters: “dials”

eg how many iterations you run an iterative method, resolution $h = 1/N$ in discretization, number of terms in summing a series, depth/width of a neural net, # of input data, # independent samples you average, size of box (or # particles) in a random simulation, ... and convergence parameters of any sub-functions called inside your beast
Convergence of a computational routine/method

Often a routine has one (usually many) convergence parameters: “dials”

eg how many iterations you run an iterative method, resolution $h = 1/N$ in discretization, number of terms in summing a series, depth/width of a neural net, # of input data, # independent samples you average, size of box (or # particles) in a random simulation, ...and convergence parameters of any sub-functions called inside your beast

Let’s simplify: 1 such param, call it N, with $\lim_{N \to \infty}$ giving true answer
Convergence of a computational routine/method

Often a routine has one (usually many) convergence parameters: “dials”

eg how many iterations you run an iterative method, resolution $h = 1/N$ in discretization, number of terms in summing a series, depth/width of a neural net, # of input data, # independent samples you average, size of box (or # particles) in a random simulation, …and convergence parameters of any sub-functions called inside your beast

Let’s simplify: 1 such param, call it N, with $\lim_{N \to \infty}$ giving true answer

Defn. convergence of a method is $\varepsilon(N)$: how rel. err. ε drops as N grows
Convergence of a computational routine/method

Often a routine has one (usually many) convergence parameters: “dials”

eg how many iterations you run an iterative method, resolution \(h = 1/N \) in discretization, number of terms in summing a series, depth/width of a neural net, \# of input data, \# independent samples you average, size of box (or \# particles) in a random simulation, . . . and convergence parameters of any sub-functions called inside your beast

Let’s simplify: 1 such param, call it \(N \), with \(\lim_{N \to \infty} \) giving true answer

Defn. convergence of a method is \(\varepsilon(N) \): how rel. err. \(\varepsilon \) drops as \(N \) grows
Convergence of a computational routine/method

Often a routine has one (usually many) convergence parameters: “dials”

eg how many iterations you run an iterative method, resolution $h = 1/N$ in discretization, number of terms in summing a series, depth/width of a neural net, # of input data, # independent samples you average, size of box (or # particles) in a random simulation, ... and convergence parameters of any sub-functions called inside your beast

Let’s simplify: 1 such param, call it N, with $\lim_{N \to \infty}$ giving true answer

Defn. convergence of a method is $\varepsilon(N)$: how rel. err. ε drops as N grows

Eg. say $\varepsilon(N) = cN^{-2}$ (“2nd-order”), but complexity $O(N^3)$. Qu: cost for 1 extra digit?
Convergence of a computational routine/method

Often a routine has one (usually many) convergence parameters: “dials”

eg how many iterations you run an iterative method, resolution $h = 1/N$ in discretization,
number of terms in summing a series, depth/width of a neural net, # of input data,
independent samples you average, size of box (or # particles) in a random simulation,
... and convergence parameters of any sub-functions called inside your beast

Let’s simplify: 1 such param, call it N, with $\lim_{N \to \infty}$ giving true answer

Defn. convergence of a method is $\varepsilon(N)$: how rel. err. ε drops as N grows

Eg. say $\varepsilon(N) = cN^{-2}$ (“2nd-order”), but complexity $O(N^3)$. Qu: cost for 1 extra digit?
Ans: $\varepsilon \to \varepsilon/10$ needs $N \to \sqrt{10}N$,

\[\varepsilon \begin{cases} \text{(rel. error)} \\ 10^0 \\ 10^{-1} \\ 10^{-2} \\ 10^{-3} \end{cases} \rightarrow N \quad \text{CONVERGENCE GRAPH} + \begin{cases} \text{effort} \\ \text{CPU hours} \end{cases} \rightarrow N \quad \text{COMPLEXITY GRAPH} = \begin{cases} \varepsilon \text{(rel. error)} \\ 10^0 \\ 10^{-1} \\ 10^{-2} \\ 10^{-3} \end{cases} \rightarrow \text{effort (CPU time, eg. core-hours)} \quad \text{THE MOST IMPORTANT GRAPH} \]
Convergence of a computational routine/method

Often a routine has one (usually many) convergence parameters: “dials”

eg how many iterations you run an iterative method, resolution $h = 1/N$ in discretization,
number of terms in summing a series, depth/width of a neural net, # of input data,
independent samples you average, size of box (or # particles) in a random simulation,
... and convergence parameters of any sub-functions called inside your beast

Let’s simplify: 1 such param, call it N, with $\lim_{N \to \infty}$ giving true answer

Defn. convergence of a method is $\varepsilon(N)$: how rel. err. ε drops as N grows

Eg. say $\varepsilon(N) = cN^{-2}$ (“2nd-order”), but complexity $O(N^3)$. Qu: cost for 1 extra digit?
Ans: $\varepsilon \to \varepsilon/10$ needs $N \to \sqrt{10}N$, which needs effort mult. by $10^{3/2} \approx 32$ times longer run
Convergence of a computational routine/method

Often a routine has one (usually many) convergence parameters: "dials"

eg how many iterations you run an iterative method, resolution $h = 1/N$ in discretization,
number of terms in summing a series, depth/width of a neural net, # of input data,
independent samples you average, size of box (or # particles) in a random simulation,
... and convergence parameters of any sub-functions called inside your beast

Let’s simplify: 1 such param, call it N, with $\lim_{N \to \infty}$ giving true answer

Defn. convergence of a method is $\varepsilon(N)$: how rel. err. ε drops as N grows

Eg. say $\varepsilon(N) = cN^{-2}$ ("2nd-order"), but complexity $O(N^3)$. Qu: cost for 1 extra digit?
Ans: $\varepsilon \to \varepsilon/10$ needs $N \to \sqrt{10}N$, which needs effort mult. by $10^{3/2} \approx 32$ times longer run

- some useful methods do not converge, eg asymptotic methods

$(\sqrt{\pi}/2) \text{erfc}(x) := \int_x^\infty e^{-t^2} dt = e^{-x^2} (1/2x - 1/4x^3 + \ldots)$ please don’t use $N \to \infty$ terms!
Convergence $\varepsilon(N)$: EXAMPLE I (series)

Toy example: goal compute $y := 1 + \frac{1}{4} + \frac{1}{9} + \cdots = \sum_{k=1}^{\infty} \frac{1}{k^2}$

```matlab
function y = truncsum(N)
    y = 0;
    for k=1:N
        y = y + 1/k^2;
    end
```

Expected accuracy $\varepsilon(N)$?
Convergence $\varepsilon(N)$: EXAMPLE I (series)

Toy example: goal compute $y := 1 + \frac{1}{4} + \frac{1}{9} + \cdots = \sum_{k=1}^{\infty} k^{-2}$

function $y = \text{truncsum}(N)$

$y = 0;$

for $k=1:N$

\[y = y + \frac{1}{k^2}; \]

end

<table>
<thead>
<tr>
<th>N</th>
<th>y_N</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^2</td>
<td>1.63498390018489</td>
</tr>
<tr>
<td>10^3</td>
<td>1.64393456668156</td>
</tr>
<tr>
<td>10^4</td>
<td>1.64483407184807</td>
</tr>
<tr>
<td>10^5</td>
<td>1.64492406689824</td>
</tr>
<tr>
<td>10^6</td>
<td>1.64493306684877</td>
</tr>
<tr>
<td>10^7</td>
<td>1.64493396684726</td>
</tr>
<tr>
<td>10^8</td>
<td>1.64493405783458</td>
</tr>
</tbody>
</table>

Expected accuracy $\varepsilon(N)$?

Quick to experiment with your func:

- “self-convergence” to unknown y_{true} digits “freeze”
Convergence $\varepsilon(N)$: EXAMPLE I (series)

Toy example: goal compute $y := 1 + \frac{1}{4} + \frac{1}{9} + \cdots = \sum_{k=1}^{\infty} k^{-2}$

function y = truncsum(N)
 y = 0;
 for k=1:N
 y = y + 1/k^2;
 end

<table>
<thead>
<tr>
<th>N</th>
<th>y_N</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^2</td>
<td>1.63498390018489</td>
</tr>
<tr>
<td>10^3</td>
<td>1.64393456668156</td>
</tr>
<tr>
<td>10^4</td>
<td>1.64483407184807</td>
</tr>
<tr>
<td>10^5</td>
<td>1.64492406689824</td>
</tr>
<tr>
<td>10^6</td>
<td>1.64493306684877</td>
</tr>
<tr>
<td>10^7</td>
<td>1.64493396684726</td>
</tr>
<tr>
<td>10^8</td>
<td>1.64493405783458</td>
</tr>
</tbody>
</table>

Expected accuracy $\varepsilon(N)$?
Quick to experiment with your func:

- “self-convergence” to unknown y_{true} digits “freeze”
- Rate? Use your best y as y_{true}, plot errors relative to it.

see $\varepsilon(N) \sim cN^{-1}$ 1st-order, algebraic \rightarrow use loglog plot:

math: rigorous tail bnds $\varepsilon(N) \leq \int_{N}^{\infty} k^{-2} dk = N^{-1}$

rigor unusual; but think, read, measure the rate, compare!

- slow! accelerate? Richardson (etc) extrapolation
Convergence: EXAMPLE II (toy big PCA)

Given $M \times N$ dense matrix A big, eg $M = 40000$ genes, $N = 20000$ samples, 7 GB
Seek $\sigma_1(A) = \sqrt{\lambda_{\text{max}}(A^T A)}$, and assoc. singular vec. v_1 1st cmpnt, PCA

Simple method: power iteration on $A^T A$ takes 14 s; $\text{svd}(A)$ would be ~ 1 hr

$v = \text{randn}(N,1); v = v/norm(v);
for k=1:30
v = A'*(A*v);
vnrm = norm(v); v = v/vnrm;
sig1est(k) = sqrt(vnrm);
end
plot abs(sig1est/sig1est(end)-1) vs param. k

• See $\varepsilon \sim c a^{-\alpha k} \rightarrow$ use log-lin. plot. Called geometric/exponential conv.
• fast (beats any algebraic order) unless $a \approx 1/2$. Plenty of theory; we skip
But much better methods exist: Randomized SVD, Lanczos ($A^T A$)→ lesson is not "code your own methods", rather "test convergence"!
Convergence: EXAMPLE II (toy big PCA)

Given $M \times N$ dense matrix A big, eg $M = 40000$ genes, $N = 20000$ samples, 7 GB

Seek $\sigma_1(A) = \sqrt{\lambda_{\text{max}}(A^T A)}$, and assoc. singular vec. v_1 1st cmpnt, PCA

Simple method: power iteration on $A^T A$ takes 14 s; $\text{svd}(A)$ would be ~ 1 hr

```matlab
v = randn(N,1); v = v/norm(v);
for k=1:30
    v = A'*A*v;
    vnrm = norm(v); v = v/vnrm;
    sig1est(k) = sqrt(vnrm);
end
```

$\text{plot } \text{abs(sig1est/sig1est(end)-1) vs param. k}$

• See $\varepsilon \sim c e^{-\alpha k} \rightarrow$ use log-lin. plot. Called geometric/exponential conv.

• fast (beats any algebraic order) unless $\alpha \approx 1$. Plenty of theory; we skip

But much better methods exist: Randomized SVD, Lanczos ($A^T A$) → lesson is not "code your own methods", rather "test convergence"!
Convergence: EXAMPLE II (toy big PCA)

Given $M \times N$ dense matrix A big, eg $M = 40000$ genes, $N = 20000$ samples, 7 GB

Seek $\sigma_1(A) = \sqrt{\lambda_{\text{max}}(A^T A)}$, and assoc. singular vec. v_1 1st cmpnt, PCA

Simple method: power iteration on $A^T A$

takes 14 s; $\text{svd}(A)$ would be ~ 1 hr

$v = \text{randn}(N,1); v = v/\text{norm}(v);$

for k=1:30

$v = A'(A*v);$
$vnrm = \text{norm}(v); v = v/vnrm;$

$\text{sig1est}(k) = \text{sqrt}(vnrm);$
end

plot abs($\text{sig1est}/\text{sig1est}(\text{end})-1$) vs param. k:

- See $\varepsilon \sim ca^k = ce^{-\alpha k}$ → use log-lin. plot. Called geometric/exponential conv.
- fast (beats any algebraic order) unless $a \approx 1$ ③. Plenty of theory; we skip

[Image: Convergence plot $\varepsilon(k)$ with annotations]
Convergence: EXAMPLE II (toy big PCA)

Given $M \times N$ dense matrix A (big, eg $M = 40000$ genes, $N = 20000$ samples, 7 GB)

Seek $\sigma_1(A) = \sqrt{\lambda_{\text{max}}(A^T A)}$, and assoc. singular vec. v_1

1st cmpnt, PCA

Simple method: power iteration on $A^T A$

takes 14 s; svd(A) would be ~ 1 hr

```matlab
v = randn(N,1); v = v/norm(v);
for k=1:30
    v = A'*A*v;
    vnorm = norm(v); v = v/vnorm;
    sig1est(k) = sqrt(vnorm);
end
```

plot abs(sig1est/sig1est(end)-1) vs param. k:

- See $\varepsilon \sim ca^k = ce^{-\alpha k}$ → use log-lin. plot. Called geometric/exponential conv.
- fast (beats any algebraic order) unless $a \approx 1 \odot$. Plenty of theory; we skip

But much better methods exist: Randomized SVD, Lanczos ($A^T A$)

→ lesson is not “code your own methods”, rather “test convergence”!
Convergence: EXAMPLE III (stochastic)

Monte Carlo: iid samples y_j drawn from a pdf p

simple task: estimate $\mu := \int y p(y) dy$?

usual estimator $\hat{\mu} = \frac{1}{N} \sum_{j=1}^{N} y_j$ sample mean
Convergence: EXAMPLE III (stochastic)

Monte Carlo: iid samples y_j drawn from a pdf p

simple task: estimate $\mu := \int yp(y)dy$?

usual estimator $\hat{\mu} = \frac{1}{N} \sum_{j=1}^{N} y_j$ sample mean

• convergence $\frac{1}{2}$-order (theory: CLT) → v. slow!

• error ε stochastic → now conv. accel. not poss.
Convergence: EXAMPLE III (stochastic)

Monte Carlo: iid samples y_j drawn from a pdf p

simple task: estimate $\mu := \int yp(y)dy$?

usual estimator $\hat{\mu} = \frac{1}{N} \sum_{j=1}^{N} y_j$

• convergence $\frac{1}{2}$-order (theory: CLT) → v. slow!
• error ε stochastic → now conv. accel. not poss.

OTHER CONVERGENCE EXAMPLES

• Taylor series, poly interpolants: exponential $\varepsilon \sim e^{-\alpha N}$ if func analytic
 once you have them, integrate/differentiate analytically: spectral methods (Dan, Fri 11:30am)
• Newton methods (root-find in \mathbb{R}, or min in \mathbb{R}^d): $\varepsilon \sim e^{-cN^2}$ “quadratic”
Convergence: EXAMPLE III (stochastic)

Monte Carlo: iid samples y_j drawn from a pdf p

simple task: estimate $\mu := \int yp(y)dy$?

usual estimator $\hat{\mu} = \frac{1}{N} \sum_{j=1}^{N} y_j$

• convergence $\frac{1}{2}$-order (theory: CLT) \rightarrow v. slow!
• error ε stochastic \rightarrow now conv. accel. not poss.

OTHER CONVERGENCE EXAMPLES

• Taylor series, poly interpolants: exponential $\varepsilon \sim e^{-\alpha N}$ if func analytic
 once you have them, integrate/differentiate analytically: spectral methods (Dan, Fri 11:30am)
• Newton methods (root-find in \mathbb{R}, or min in \mathbb{R}^d): $\varepsilon \sim e^{-cN^2}$ “quadratic”

Point isn’t to memorize rates of methods: rather measure them (type & prefactor) by habit in any routine you use/write

Then you can pick a good N to get acceptable ε, trust results
Floating-point representation, rounding error

So far rounding error basically irrelevant. Now let’s face its consequences:

\[\varepsilon_{\text{mach}} \approx 1.1 \times 10^{-16} \text{ double (64bit)} \]

\[\varepsilon_{\text{mach}} \approx 6 \times 10^{-8} \text{ single (32bit), GPU/TPU} \]

\[\varepsilon_{\text{mach}} \approx 5 \times 10^{-4} \text{ “half” (16bit), GPU/TPU} \]
Floating-point representation, rounding error

So far rounding error basically irrelevant. Now let's face its consequences:

\[\varepsilon_{\text{mach}} \approx 1.1 \times 10^{-16} \text{ double (64bit)} \]
\[\varepsilon_{\text{mach}} \approx 6 \times 10^{-8} \text{ single (32bit), GPU/TPU} \]
\[\varepsilon_{\text{mach}} \approx 5 \times 10^{-4} \text{ "half" (16bit), GPU/TPU} \]

Represents any real to rel. err. \(\varepsilon \leq \varepsilon_{\text{mach}} \); all arith. done to rel. err. \(\varepsilon \leq \varepsilon_{\text{mach}} \)
Floating-point representation, rounding error

So far rounding error basically irrelevant. Now let’s face its consequences:

\[\varepsilon_{\text{mach}} \approx 1.1 \times 10^{-16} \text{ double (64bit)} \]
\[\varepsilon_{\text{mach}} \approx 6 \times 10^{-8} \text{ single (32bit), GPU/TPU} \]
\[\varepsilon_{\text{mach}} \approx 5 \times 10^{-4} \text{ “half” (16bit), GPU/TPU} \]

Represents any real to rel. err. \(\varepsilon \leq \varepsilon_{\text{mach}} \); all arith. done to rel. err. \(\varepsilon \leq \varepsilon_{\text{mach}} \)

eg, in double: \((1 + 1 \times 10^{-16}) - 1 = ?\)
Floating-point representation, rounding error

So far rounding error basically irrelevant. Now let's face its consequences:

\[\varepsilon_{\text{mach}} \approx 1.1 \times 10^{-16} \text{ double (64bit)} \]
\[\varepsilon_{\text{mach}} \approx 6 \times 10^{-8} \text{ single (32bit), GPU/TPU} \]
\[\varepsilon_{\text{mach}} \approx 5 \times 10^{-4} \text{ "half" (16bit), GPU/TPU} \]

Represents any real to rel. err. \(\varepsilon \leq \varepsilon_{\text{mach}} \); all arith. done to rel. err. \(\varepsilon \leq \varepsilon_{\text{mach}} \)

eg, in double: \((1 + 10^{-16}) - 1 = ? 0 \quad \text{And:} \quad (1 - 10^{-16}) - 1 = ?\)
Floating-point representation, rounding error

So far rounding error basically irrelevant. Now let’s face its consequences:

\[\varepsilon_{\text{mach}} \approx 1.1 \times 10^{-16} \text{ double (64bit)} \]
\[\varepsilon_{\text{mach}} \approx 6 \times 10^{-8} \text{ single (32bit), GPU/TPU} \]
\[\varepsilon_{\text{mach}} \approx 5 \times 10^{-4} \text{ "half" (16bit), GPU/TPU} \]

Represents any real to rel. err. \(\varepsilon \leq \varepsilon_{\text{mach}} \); all arith. done to rel. err. \(\varepsilon \leq \varepsilon_{\text{mach}} \)

eg, in double: \((1 + 1e^{-16}) - 1 = ? 0 \) And: \((1 - 1e^{-16}) - 1 = ? -1.11022302462516e-16 \)
Floating-point representation, rounding error

So far rounding error basically irrelevant. Now let’s face its consequences:

\[\varepsilon_{\text{mach}} \approx 1.1e^{-16} \text{ double (64bit)} \]

\[\varepsilon_{\text{mach}} \approx 6e^{-8} \text{ single (32bit), GPU/TPU} \]

\[\varepsilon_{\text{mach}} \approx 5e^{-4} \text{ "half" (16bit), GPU/TPU} \]

Represents any real to rel. err. \(\varepsilon \leq \varepsilon_{\text{mach}} \); all arith. done to rel. err. \(\varepsilon \leq \varepsilon_{\text{mach}} \)

eg, in double: \((1 + 1e^{-16}) - 1 = \, ? \, 0 \)
And: \((1 - 1e^{-16}) - 1 = \, ? \, -1.11022302462516e^{-16} \)

A) Most common way \(\varepsilon_{\text{mach}} \) amplified is subtraction “catastrophic cancellation”

eg, by querying values of \(f(x) \), estim. \(f'(x) \)?

let’s use simplest formula \(\frac{f(x+h)-f(x)}{h} \):

\[
\begin{array}{ccc}
 h & \text{err. in } f' & \text{dominant cause?} \\
 10^{-4} & 10^{-4} & 1\text{st-order conv.} \\
 10^{-8} & 10^{-8} & (\text{balanced causes}) \\
 10^{-12} & 10^{-4} & 2\varepsilon_{\text{mach}}/h \text{ “CC”} \\
\end{array}
\]
Floating-point representation, rounding error

So far rounding error basically irrelevant. Now let's face its consequences:

\[\varepsilon_{\text{mach}} \approx 1.1 \times 10^{-16} \text{ double (64bit)} \]
\[\varepsilon_{\text{mach}} \approx 6 \times 10^{-8} \text{ single (32bit), GPU/TPU} \]
\[\varepsilon_{\text{mach}} \approx 5 \times 10^{-4} \text{ "half" (16bit), GPU/TPU} \]

Represents any real to rel. err. \(\varepsilon \leq \varepsilon_{\text{mach}} \); all arith. done to rel. err. \(\varepsilon \leq \varepsilon_{\text{mach}} \)

eg, in double: \((1 + 1 \times 10^{-16}) - 1 = ? 0\) And: \((1 - 1 \times 10^{-16}) - 1 = ? -1.11022302462516 \times 10^{-16}\)

A) Most common way \(\varepsilon_{\text{mach}} \) amplified is subtraction “catastrophic cancellation”

eg, by querying values of \(f(x) \), estim. \(f'(x) \)?

<table>
<thead>
<tr>
<th>(h)</th>
<th>err. in (f')</th>
<th>dominant cause?</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10^{-4})</td>
<td>(10^{-4})</td>
<td>1st-order conv.</td>
</tr>
<tr>
<td>(10^{-8})</td>
<td>(10^{-8})</td>
<td>(balanced causes)</td>
</tr>
<tr>
<td>(10^{-12})</td>
<td>(10^{-4})</td>
<td>(2 \varepsilon_{\text{mach}} / h) “CC” 😊</td>
</tr>
</tbody>
</table>

Better: use several \(p > 2 \) values to get \(p \)th order!
Floating-point representation, rounding error

So far rounding error basically irrelevant. Now let’s face its consequences:

\[\varepsilon_{\text{mach}} \approx 1.1 \times 10^{-16} \text{ double (64bit)} \]
\[\varepsilon_{\text{mach}} \approx 6 \times 10^{-8} \text{ single (32bit), GPU/TPU} \]
\[\varepsilon_{\text{mach}} \approx 5 \times 10^{-4} \text{ “half” (16bit), GPU/TPU} \]

Represents any real to rel. err. \(\varepsilon \leq \varepsilon_{\text{mach}} \); all arith. done to rel. err. \(\varepsilon \leq \varepsilon_{\text{mach}} \)

eg, in double: \((1 + 1 \times 10^{-16}) - 1 = ? \ 0 \) And: \((1 - 1 \times 10^{-16}) - 1 = ? -1.11022302462516 \times 10^{-16} \)

A) Most common way \(\varepsilon_{\text{mach}} \) amplified is subtraction “catastrophic cancellation”

eg, by querying values of \(f(x) \), estim. \(f'(x) \)?

let’s use simplest formula \(\frac{f(x+h) - f(x)}{h} \):

Better: use several \(p > 2 \) values to get \(p \)th order!

<table>
<thead>
<tr>
<th>(h)</th>
<th>err. in (f')</th>
<th>dominant cause?</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10^{-4})</td>
<td>(10^{-4})</td>
<td>1st-order conv.</td>
</tr>
<tr>
<td>(10^{-8})</td>
<td>(10^{-8})</td>
<td>(balanced causes)</td>
</tr>
<tr>
<td>(10^{-12})</td>
<td>(10^{-4})</td>
<td>(2 \varepsilon_{\text{mach}} / h) “CC” 😊</td>
</tr>
</tbody>
</table>

B) Even without subtraction (or equiv), err. can accumulate:

eg recall \(\sum_{k=1}^{N} k^{-2} : \)

\[
\sum_{k=1}^{N} k^{-2} = \frac{N}{12} \quad y_N
\]

\(y_N \) values:

\[
\begin{align*}
10^8 & \quad 1.64493405783458 \\
10^9 & \quad ?
\end{align*}
\]
Floating-point representation, rounding error

So far rounding error basically irrelevant. Now let’s face its consequences:

\[\varepsilon_{\text{mach}} \approx 1.1 \times 10^{-16} \text{ double (64bit)} \]
\[\varepsilon_{\text{mach}} \approx 6 \times 10^{-8} \text{ single (32bit), GPU/TPU} \]
\[\varepsilon_{\text{mach}} \approx 5 \times 10^{-4} \text{ “half” (16bit), GPU/TPU} \]

Represents any real to rel. err. \(\varepsilon \leq \varepsilon_{\text{mach}} \); all arith. done to rel. err. \(\varepsilon \leq \varepsilon_{\text{mach}} \)

eg, in double: \((1 + 10^{-16}) - 1 = ? 0 \quad \text{And: } (1 - 10^{-16}) - 1 = ? -1.11022302462516 \times 10^{-16} \)

A) Most common way \(\varepsilon_{\text{mach}} \) amplified is subtraction “catastrophic cancellation”

eg, by querying values of \(f(x) \), estim. \(f'(x) \)?

let's use simplest formula \(\frac{f(x+h)-f(x)}{h} \):

Better: use several \(p > 2 \) values to get \(p \)th order!

\[
\begin{array}{ccc}
\h & \text{err. in } f' & \text{dominant cause?} \\
10^{-4} & 10^{-4} & 1\text{st-order conv.} \\
10^{-8} & 10^{-8} & (\text{balanced causes}) \\
10^{-12} & 10^{-4} & 2\varepsilon_{\text{mach}}/h \text{ “CC”} \\
\end{array}
\]

B) Even without subtraction (or equiv), err. can accumulate:

eg recall \[
\begin{array}{c}
N \\
10^8 \\
10^9 \\
\end{array}
\begin{array}{c}
y_N \\
1.64493405783458 \\
1.64493405783458 \\
\end{array}
\]

\[
\sum_{k=1}^{N} k^{-2} : \\
10^8 \quad 1.64493405783458 \\
10^9 \quad 1.64493405783458 \\
\]

Here \(\varepsilon \approx \sqrt{\varepsilon_{\text{mach}}} \), bad! 😞

fix?
Floating-point representation, rounding error

So far rounding error basically irrelevant. Now let’s face its consequences:

\[\varepsilon_{\text{mach}} \approx 1.1 \times 10^{-16} \text{ double (64bit)} \]
\[\varepsilon_{\text{mach}} \approx 6 \times 10^{-8} \text{ single (32bit), GPU/TPU} \]
\[\varepsilon_{\text{mach}} \approx 5 \times 10^{-4} \text{ “half” (16bit), GPU/TPU} \]

Represents any real to rel. err. \[\varepsilon \leq \varepsilon_{\text{mach}} \]; all arith. done to rel. err. \[\varepsilon \leq \varepsilon_{\text{mach}} \]

eg, in double: \[(1 + 10^{-16}) - 1 = ? 0 \quad \text{And: } (1 - 10^{-16}) - 1 = ? -1.11022302462516 \times 10^{-16} \]

A) Most common way \(\varepsilon_{\text{mach}} \) amplified is subtraction “catastrophic cancellation”

eg, by querying values of \(f(x) \), estim. \(f'(x) \)?

let’s use simplest formula \[\frac{f(x+h)-f(x)}{h} \]

Better: use several \(p > 2 \) values to get \(p \)th order!

B) Even without subtraction (or equiv), err. can accumulate:

eg recall

\[
\sum_{k=1}^{N} k^{-2} :
\begin{array}{c|c|c}
N & y_N \\
10^8 & 1.64493405783458 \\
10^9 & 1.64493405783458
\end{array}
\]

Here \(\varepsilon \approx \sqrt{\varepsilon_{\text{mach}}}, \text{ bad!} \)

fix? sum small to large, most stable
Floating-point representation, rounding error

So far rounding error basically irrelevant. Now let’s face its consequences:

\[\epsilon_{\text{mach}} \approx 1.1 \times 10^{-16} \text{ double (64bit)} \]
\[\epsilon_{\text{mach}} \approx 6 \times 10^{-8} \text{ single (32bit), GPU/TPU} \]
\[\epsilon_{\text{mach}} \approx 5 \times 10^{-4} \text{ "half" (16bit), GPU/TPU} \]

Represents any real to rel. err. \(\epsilon \leq \epsilon_{\text{mach}} \); all arith. done to rel. err. \(\epsilon \leq \epsilon_{\text{mach}} \).

eg, in double: \((1 + 10^{-16}) - 1 = ? 0 \) And: \((1 - 10^{-16}) - 1 = ? -1.11022302462516 \times 10^{-16} \)

A) Most common way \(\epsilon_{\text{mach}} \) amplified is subtraction “catastrophic cancellation”

eg, by querying values of \(f(x) \), estim. \(f'(x) \)?

let’s use simplest formula \(\frac{f(x+h)-f(x)}{h} \):

<table>
<thead>
<tr>
<th>(h)</th>
<th>(\text{err. in } f')</th>
<th>(\text{dominant cause?})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10^{-4})</td>
<td>(10^{-4})</td>
<td>1st-order conv.</td>
</tr>
<tr>
<td>(10^{-8})</td>
<td>(10^{-8})</td>
<td>(balanced causes)</td>
</tr>
<tr>
<td>(10^{-12})</td>
<td>(10^{-4})</td>
<td>(2\epsilon_{\text{mach}}/h) “CC”</td>
</tr>
</tbody>
</table>

Better: use several \(p > 2 \) values to get \(p \)th order!

B) Even without subtraction (or equiv), err. can accumulate:

eg recall \[\sum_{k=1}^{N} k^{-2} : \]

<table>
<thead>
<tr>
<th>(N)</th>
<th>(y_N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10^8)</td>
<td>1.64493405783458</td>
</tr>
<tr>
<td>(10^9)</td>
<td>1.64493405783458</td>
</tr>
</tbody>
</table>

Here \(\epsilon \approx \sqrt{\epsilon_{\text{mach}}} \), bad! 😞

fix? sum small to large, most stable

Usually stoch. \(\epsilon \sim \sqrt{\# \text{ flops}} \epsilon_{\text{mach}} \)
For which tasks is it reasonable to demand accuracy?

Qu: is \(\sin(1e16) \) reasonable to compute accurately (in double prec.)?
For which tasks is it reasonable to demand accuracy?

Qu: is $\sin(1e16)$ reasonable to compute accurately (in double prec.)?

Ans: no! $x = 10^{16}$, floating rel. err. $\varepsilon_{\text{mach}}$ → abs. err. $10^{16} \varepsilon_{\text{mach}} \approx 1.1 = O(1)$ wiggle → result garbage, just via *input variation*
For which tasks is it reasonable to demand accuracy?

Qu: is \(\sin(1e16) \) reasonable to compute accurately (in double prec.)?

Ans: no! \(x = 10^{16} \), floating rel. err. \(\epsilon_{\text{mach}} \) → abs. err. \(10^{16}\epsilon_{\text{mach}} \approx 1.1 = O(1) \) wiggle
→ result garbage, just via input variation

Defn. (relative) condition number of task “eval. \(f(x) \)” is

\[
\kappa(x) := \left| \frac{xf'(x)}{f(x)} \right| \quad \text{sensitivity to rel. change in } x
\]
\[
\text{converts abs. to rel. error}
\]
For which tasks is it reasonable to demand accuracy?

Qu: is \(\sin(1e16) \) reasonable to compute accurately (in double prec.)?

Ans: no! \(x = 10^{16} \), floating rel. err. \(\varepsilon_{\text{mach}} \)

\[\rightarrow \text{abs. err. } 10^{16} \varepsilon_{\text{mach}} \approx 1.1 = O(1) \text{ wiggle} \]

\[\rightarrow \text{result garbage, just via input variation} \]

Defn. (relative) condition number of task “eval. \(f(x) \)” is

\[
\kappa(x) := \left| \frac{xf'(x)}{f(x)} \right| \quad \leftarrow \text{sensitivity to rel. change in } x
\]

\[
\leftarrow \text{converts abs. to rel. error}
\]

gives Rule: for this task, can only demand rel. err. at best \(\varepsilon \approx \kappa \varepsilon_{\text{mach}} \)

why? look at picture: \(\varepsilon \) must exceed change in \(f \) due to \(\varepsilon_{\text{mach}} \) rel. err. in input \(x \)
For which tasks is it reasonable to demand accuracy?

Qu: is $\sin(1e16)$ reasonable to compute accurately (in double prec.)?

Ans: no! $x = 10^{16}$, floating rel. err. $\varepsilon_{\text{mach}}$ → abs. err. $10^{16}\varepsilon_{\text{mach}} \approx 1.1 = \mathcal{O}(1)$ wiggle → result garbage, just via input variation

Defn. (relative) condition number of task “eval. $f(x)$” is

\[\kappa(x) := \left| \frac{xf'(x)}{f(x)} \right| \]

← sensitivity to rel. change in x

← converts abs. to rel. error

gives Rule: for this task, can only demand rel. err. at best $\varepsilon \approx \kappa \varepsilon_{\text{mach}}$

why? look at picture: ε must exceed change in f due to $\varepsilon_{\text{mach}}$ rel. err. in input x

Eg $f(x) = \sin(x)$, $\kappa(x) = |x \cot x|$ $x = 10^{16}$ ⇒ κ typ. $\geq 10^{16}$

the problem is ill-conditioned: meaningless to demand any digits in double-prec!
For which tasks is it reasonable to demand accuracy?

Qu: is \(\sin(1e16) \) reasonable to compute accurately (in double prec.)?

Ans: no! \(x = 10^{16} \), floating rel. err. \(\varepsilon_{\text{mach}} \) → abs. err. \(10^{16}\varepsilon_{\text{mach}} \approx 1.1 = O(1) \) wiggle → result garbage, just via input variation

Defn. (relative) condition number of task “eval. \(f(x) \)” is

\[
\kappa(x) := \left| \frac{xf'(x)}{f(x)} \right| \quad \text{sensitivity to rel. change in } x
\]

\[
\text{converts abs. to rel. error}
\]

gives Rule: for this task, can only demand rel. err. at best \(\varepsilon \approx \kappa \varepsilon_{\text{mach}} \)

why? look at picture: \(\varepsilon \) must exceed change in \(f \) due to \(\varepsilon_{\text{mach}} \) rel. err. in input \(x \)

Eg \(f(x) = \sin(x) \), \(\kappa(x) = |x \cot x| \quad x = 10^{16} \Rightarrow \kappa \text{ typ. } \geq 10^{16} \)

the problem is ill-conditioned: meaningless to demand any digits in double-prec!

eg \(x = 10^5 \Rightarrow \kappa \text{ typ. } \geq 10^5 \quad \Rightarrow \text{expect } \varepsilon \sim ? \)
For which tasks is it reasonable to demand accuracy?

Qu: is \(\sin(1e16) \) reasonable to compute accurately (in double prec.)?

Ans: no! \(x = 10^{16} \), floating rel. err. \(\varepsilon_{\text{mach}} \)

\[\rightarrow \text{abs. err. } 10^{16}\varepsilon_{\text{mach}} \approx 1.1 = O(1) \text{ wiggle} \]

\[\rightarrow \text{result garbage, just via input variation} \]

Defn. (relative) condition number of task “eval. \(f(x) \)” is

\[\kappa(x) := \left| \frac{xf'(x)}{f(x)} \right| \]

\[\leftarrow \text{sensitivity to rel. change in } x \]

\[\leftarrow \text{converts abs. to rel. error} \]

Rule: for this task, can only demand rel. err. at best \(\varepsilon \approx \kappa \varepsilon_{\text{mach}} \)

why? look at picture: \(\varepsilon \) must exceed change in \(f \) due to \(\varepsilon_{\text{mach}} \) rel. err. in input \(x \)

Eg \(f(x) = \sin(x) \), \(\kappa(x) = |x \cot x| \)

\[x = 10^{16} \Rightarrow \kappa \text{ typ. } \geq 10^{16} \]

the problem is ill-conditioned: meaningless to demand any digits in double-prec!

eg \(x = 10^5 \Rightarrow \kappa \text{ typ. } \geq 10^5 \Rightarrow \text{expect } \varepsilon \sim ? 10^{-11} \]
For which tasks is it reasonable to demand accuracy?

Qu: is \(\sin(1e16) \) reasonable to compute accurately (in double prec.)?

Ans: no! \(x = 10^{16} \), floating rel. err. \(\varepsilon_{\text{mach}} \)

\[\rightarrow \text{abs. err.} \ 10^{16} \varepsilon_{\text{mach}} \approx 1.1 = \mathcal{O}(1) \text{ wiggle} \]

\[\rightarrow \text{result garbage, just via input variation} \]

Defn. (relative) condition number of task “eval. \(f(x) \)” is

\[\kappa(x) := \left| \frac{xf'(x)}{f(x)} \right| \]

\(\leftarrow \) sensitivity to rel. change in \(x \)

\(\leftarrow \) converts abs. to rel. error

gives Rule: for this task, can only demand rel. err. at best \(\varepsilon \approx \kappa \varepsilon_{\text{mach}} \)

why? look at picture: \(\varepsilon \) must exceed change in \(f \) due to \(\varepsilon_{\text{mach}} \) rel. err. in input \(x \)

Eg \(f(x) = \sin(x) \), \(\kappa(x) = |x \cot x| \)

\(x = 10^{16} \Rightarrow \kappa \) typ. \(\geq 10^{16} \)

the problem is ill-conditioned: meaningless to demand any digits in double-prec!

eg \(x = 10^5 \Rightarrow \kappa \) typ. \(\geq 10^5 \) \(\Rightarrow \) expect \(\varepsilon \sim ? 10^{-11} \)

eg \(x = 1 \Rightarrow \kappa(x) = 0.64 \Rightarrow \text{good method should get } \varepsilon \approx ? \)
For which tasks is it reasonable to demand accuracy?

Qu: is \(\sin(1e16) \) reasonable to compute accurately (in double prec.)?

Ans: no! \(x = 10^{16} \), floating rel. err. \(\varepsilon_{\text{mach}} \)

\[\rightarrow \text{abs. err. } 10^{16}\varepsilon_{\text{mach}} \approx 1.1 = \mathcal{O}(1) \text{ wiggle} \]

\[\rightarrow \text{result garbage, just via input variation} \]

Defn. (relative) condition number of task “eval. \(f(x) \)” is

\[
\kappa(x) := \left| \frac{x f'(x)}{f(x)} \right| \quad \leftarrow \text{sensitivity to rel. change in } x
\]

\[\leftarrow \text{converts abs. to rel. error} \]

Rule: for this task, can only demand rel. err. at best \(\varepsilon \approx \kappa \varepsilon_{\text{mach}} \)

why? look at picture: \(\varepsilon \) must exceed change in \(f \) due to \(\varepsilon_{\text{mach}} \) rel. err. in input \(x \)

Eg \(f(x) = \sin(x), \quad \kappa(x) = |x \cot x| \)

\[x = 10^{16} \Rightarrow \kappa \text{ typ. } \geq 10^{16} \]

the problem is ill-conditioned: meaningless to demand any digits in double-prec!

eg \(x = 10^5 \Rightarrow \kappa \text{ typ. } \geq 10^5 \Rightarrow \text{expect } \varepsilon \sim 10^{-11} \)

eg \(x = 1 \Rightarrow \kappa(x) = 0.64 \Rightarrow \text{good method should get } \varepsilon \sim \varepsilon_{\text{mach}} \)

eg \(x = \pi \) ?
For which tasks is it reasonable to demand accuracy?

Qu: is \(\sin(1e16) \) reasonable to compute accurately (in double prec.)?

Ans: no! \(x = 10^{16} \), floating rel. err. \(\varepsilon_{\text{mach}} \)

\[\rightarrow \text{abs. err. } 10^{16}\varepsilon_{\text{mach}} \approx 1.1 = O(1) \text{ wiggle} \]

\[\rightarrow \text{result garbage, just via input variation} \]

<table>
<thead>
<tr>
<th>Defn. (relative) condition number of task “eval. (f(x))” is</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\kappa(x) := \frac{</td>
</tr>
<tr>
<td>sensitivity to rel. change in (x)</td>
</tr>
<tr>
<td>converts abs. to rel. error</td>
</tr>
</tbody>
</table>

Rule: for this task, can only demand rel. err. at best \(\varepsilon \approx \kappa \varepsilon_{\text{mach}} \)

why? look at picture: \(\varepsilon \) must exceed change in \(f \) due to \(\varepsilon_{\text{mach}} \) rel. err. in input \(x \)

Eg \(f(x) = \sin(x) \), \(\kappa(x) = |x \cot x| \)

\(x = 10^{16} \Rightarrow \kappa \text{ typ. } \geq 10^{16} \)

the problem is ill-conditioned: meaningless to demand any digits in double-prec!

eg \(x = 10^5 \Rightarrow \kappa \text{ typ. } \geq 10^5 \Rightarrow \text{expect } \varepsilon \sim 10^{-11} \)

eg \(x = 1 \Rightarrow \kappa(x) = 0.64 \Rightarrow \text{good method should get } \varepsilon \approx \varepsilon_{\text{mach}} \)

eg \(x = \pi \Rightarrow \kappa(x) = \infty \), can’t demand relative acc. (merely abs. accuracy)
Stability of an algorithm (method) for some task

Recap: task “eval. $f(x)$” has cond. # $\kappa(x) := \left| \frac{xf'(x)}{f(x)} \right|$ indep. of any method
Stability of an algorithm (method) for some task

Recap: task “eval. \(f(x) \)” has cond. \(\# \kappa(x) := |\frac{xf'(x)}{f(x)}| \) indep. of any method

Defn. A *method* for this task called **backward stable** if returns an exact answer \(f(\tilde{x}) \) for *some* perturbed data \(\tilde{x} \) with \(|\tilde{x} - x|/|x| = O(\varepsilon_{\text{mach}})\)

- modern notion of stability
 - here \(O \) implies some “small” const, eg \(\lesssim 10^2 \)

Thus: backward stable \(\Rightarrow \) rel. err. \(\varepsilon = O(\kappa \varepsilon_{\text{mach}}) \) by rule: can’t demand more!
Stability of an algorithm (method) for some task

Recap: task “eval. $f(x)$” has cond. $\# \kappa(x) := \left| \frac{xf'(x)}{f(x)} \right|$ indep. of any method

Defn. A method for this task called **backward stable** if returns an exact answer $f(\tilde{x})$ for some perturbed data \tilde{x} with $|\tilde{x} - x|/|x| = O(\varepsilon_{\text{mach}})$

- modern notion of stability

Thus: backward stable \Rightarrow rel. err. $\varepsilon = O(\kappa \varepsilon_{\text{mach}})$ by rule: can’t demand more!

1) Consequences for physical simulations (nonlinear ODEs, PDEs...)

Eg, task: solve ODE

$$\begin{cases} u' = F(t, u) & \text{for } 0 \leq t \leq T \\ u(0) = x & \text{initial condition} \end{cases}$$

Output “$f(x)$” is final state $u(T)$
Stability of an algorithm (method) for some task

Recap: task “eval. \(f(x) \)” has cond. \(\# \kappa(x) := \left| \frac{xf'(x)}{f(x)} \right| \) indep. of any method

Defn. A *method* for this task called **backward stable** if returns an exact answer \(f(\tilde{x}) \) for some perturbed data \(\tilde{x} \) with \(|\tilde{x} - x|/|x| = \mathcal{O}(\varepsilon_{\text{mach}}) \)

- modern notion of stability
 Thus: backward stable \(\Rightarrow \) rel. err. \(\varepsilon = \mathcal{O}(\kappa\varepsilon_{\text{mach}}) \) by rule: can’t demand more!

1) Consequences for physical simulations (nonlinear ODEs, PDEs . . .)

Eg, task: solve ODE

\[
\begin{align*}
 u' &= F(t, u) \quad \text{for } 0 \leq t \leq T \\
 u(0) &= x \quad \text{initial condition}
\end{align*}
\]

Output “\(f(x) \)” is final state \(u(T) \)

\(\kappa = \text{sensitivity to IC} \)
Stability of an algorithm (method) for some task

Recap: task “eval. $f(x)$” has cond. $\# \kappa(x) := \left| \frac{xf'(x)}{f(x)} \right|$ indep. of any method

Defn. A *method* for this task called **backward stable** if returns an exact answer $f(\tilde{x})$ for *some* perturbed data \tilde{x} with $|\tilde{x} - x|/|x| = O(\varepsilon_{\text{mach}})$

- modern notion of stability
 - Thus: backward stable \Rightarrow rel. err. $\varepsilon = O(\kappa \varepsilon_{\text{mach}})$ by rule: can’t demand more!

1) Consequences for physical simulations (nonlinear ODEs, PDEs. . .)

Eg, task: solve ODE

$$\begin{cases} u' = F(t, u) & \text{for } 0 \leq t \leq T \\ u(0) = x & \text{initial condition} \end{cases}$$

Output “$f(x)$” is final state $u(T)$

- common that $\kappa \sim e^{\lambda T}$ (Lyapunov exponent $\lambda > 0$, chaos, eg *n*-body sims.)
- then even stable solver must soon lose all accurate digits see: shadowing
- meaning of long-T numerics is only *statistical* (correlations, manifold, etc)
Stability of algorithms: more examples

Recap: (backward) stable if “exact answer to nearly the right question”

2) There are unstable algorithms . . . don’t use them!

Eg eval. \(f(x) = 1 - \cos(x), \quad \text{for } |x| \ll 1\) we all know \(f(x) = x^2/2 + O(x^4)\)

ALWAYS FIRST ASK: Is task (problem) well-conditioned?
Stability of algorithms: more examples

Recap: (backward) stable if “exact answer to nearly the right question”

2) There are unstable algorithms . . . don’t use them!

 Eg eval. \(f(x) = 1 - \cos(x) \), for \(|x| \ll 1\) we all know \(f(x) = x^2/2 + O(x^4) \)

 ALWAYS FIRST ASK: Is task (problem) well-conditioned? yes, \(\kappa \approx 2 \)

 Now, methods: naive code \(1-\cos(x) \) stable?
Stability of algorithms: more examples

Recap: (backward) stable if “exact answer to nearly the right question”

2) There are unstable algorithms . . . don’t use them!

Eg eval. $f(x) = 1 - \cos(x)$, for $|x| \ll 1$ we all know $f(x) = x^2/2 + \mathcal{O}(x^4)$

ALWAYS FIRST ASK: Is task (problem) well-conditioned? yes, $\kappa \approx 2$

Now, methods: naive code $1 - \cos(x)$ stable? no: catastrophic cancellation!

. . . w/o clarity on conditioning vs stability, may conclude ill-conditioned problem. Not so!

Suggest stable methods?
Stability of algorithms: more examples

Recap: (backward) stable if “exact answer to nearly the right question”

2) There are unstable algorithms ... don’t use them!

E.g. eval. \(f(x) = 1 - \cos(x) \), for \(|x| \ll 1\) we all know \(f(x) = x^2/2 + O(x^4) \)

ALWAYS FIRST ASK: Is task (problem) well-conditioned? yes, \(\kappa \approx 2 \)

Now, methods: naive code \(1 - \cos(x) \) stable? no: catastrophic cancellation!

... w/o clarity on conditioning vs stability, may conclude ill-conditioned problem. Not so!

Suggest stable methods? i) \(2\sin(x/2)^2 \)
Stability of algorithms: more examples

Recap: (backward) stable if “exact answer to nearly the right question”

2) There are unstable algorithms . . . don’t use them!

Eg eval. \(f(x) = 1 - \cos(x) \), for \(|x| \ll 1\) we all know \(f(x) = x^2/2 + O(x^4) \)

ALWAYS FIRST ASK: Is task (problem) well-conditioned? yes, \(\kappa \approx 2 \)

Now, methods: naive code \(1-\cos(x) \) stable? no: catastrophic cancellation!

. . . w/o clarity on conditioning vs stability, may conclude ill-conditioned problem. Not so!

Suggest stable methods? i) \(2\sin(x/2)^2 \) ii) Taylor series (how many terms? conv . . .)
Stability of algorithms: more examples

Recap: (backward) stable if “exact answer to nearly the right question”

2) There are unstable algorithms . . . don’t use them!

 Eg eval. \(f(x) = 1 - \cos(x) \), for \(|x| \ll 1\) we all know \(f(x) = x^2/2 + O(x^4) \)

 ALWAYS FIRST ASK: Is task (problem) well-conditioned? yes, \(\kappa \approx 2 \)

 Now, methods: naive code \(1 - \cos(x) \) stable? no: catastrophic cancellation!

 . . . w/o clarity on conditioning vs stability, may conclude ill-conditioned problem. Not so!

 Suggest stable methods? i) \(2 \times \sin(x/2)^2 \) ii) Taylor series (how many terms? conv . . .)

3) Linear systems: solve \(Ac = b \), square \(N \times N \) needs whole lecture

 Task is \(f(b) = “c solving Ac = b” \) brain hurts because \(b \) is input, \(c \) is output!
Stability of algorithms: more examples

Recap: (backward) stable if “exact answer to nearly the right question”

2) There are unstable algorithms . . . don’t use them!
 Eg eval. \(f(x) = 1 - \cos(x) \), for \(|x| \ll 1\) we all know \(f(x) = x^2/2 + O(x^4) \)

 ALWAYS FIRST ASK: Is task (problem) well-conditioned? yes, \(\kappa \approx 2 \)

 Now, methods: naive code \(1 - \cos(x) \) stable? no: catastrophic cancellation!
 . . . w/o clarity on conditioning vs stability, may conclude ill-conditioned problem. Not so!
 Suggest stable methods? i) \(2 \cdot \sin(x/2)^2 \) ii) Taylor series (how many terms? conv . . .)

3) Linear systems: solve \(Ac = b \), square \(N \times N \) needs whole lecture

 Task is \(f(b) = "c \) solving \(Ac = b" \)

 brain hurts because \(b \) is input, \(c \) is output!

 Stable alg: gives \(\tilde{c} \) solving \(A\tilde{c} = \tilde{b} \) exactly, where \(\frac{\|\tilde{b} - b\|}{\|b\|} = O(\varepsilon_{\text{mach}}) \)

 Defn. relative residual of \(\tilde{c} \) is \(\frac{\|A\tilde{c} - b\|}{\|b\|} \):
Stability of algorithms: more examples

Recap: (backward) stable if “exact answer to nearly the right question”

2) There are unstable algorithms ... don’t use them!
 Eg eval. \(f(x) = 1 - \cos(x) \), for \(|x| \ll 1 \) we all know \(f(x) = x^2/2 + O(x^4) \)
 ALWAYS FIRST ASK: Is task (problem) well-conditioned? yes, \(\kappa \approx 2 \)
 Now, methods: naive code \(1-\cos(x) \) stable? no: catastrophic cancellation!
 ... w/o clarity on conditioning vs stability, may conclude ill-conditioned problem. Not so!
 Suggest stable methods? i) \(2\sin(x/2)^2 \) ii) Taylor series (how many terms? conv...)

3) Linear systems: solve \(Ac = b \), square \(N \times N \) needs whole lecture
 Task is \(f(b) = “c solving Ac = b” \) brain hurts because \(b \) is input, \(c \) is output!
 Stable alg: gives \(\tilde{c} \) solving \(A\tilde{c} = \tilde{b} \) exactly, where \(\frac{\|\tilde{b}-b\|}{\|b\|} = O(\varepsilon_{mach}) \)
 Defn. relative residual of \(\tilde{c} \) is \(\frac{\|A\tilde{c}-b\|}{\|b\|} \):
 Stable alg \iff Rel. resid. \(O(\varepsilon_{mach}) \)
 • even a stable alg doesn’t mean \(\tilde{c} \) is close to \(c \) ...
 Let’s demo a classic unstable algorithm ...
MATLAB demo: unstable vs stable linear solve

>> c = [1;2;3]; % "true" solution column vector
>> A = ones(3,3) + 1e-14*rand(3,3) % system matrix (precisely: ill-cond.)
 A =
 1.00000000000001 1.00000000000001 1
 1.00000000000001 1.00000000000001 1.00000000000001
 1 1 1.00000000000001
>> b = A*c; % make data (input to solver)

Now let's do some solving. . .

>> ct = inv(A)*b; % classic pitfall, may be unstable
>> norm(A*ct-b) / norm(b) % rel resid terrible, proving it's unstable!
 0.046875

>> ct = linsolve(A,b); % use (backward) stable solver
>> norm(A*ct-b) / norm(b) % rel resid O(e_mach): must be if stable
 8.54650082837135e-17

>> norm(ct-c) / norm(c) % rel err in soln? huge, but that's ok...
 0.0426438890711514

If time: here's one stable way to store a soln operator. . .

[U,S,V] = svd(A); W = diag(1./diag(S))*U'; % inv(A)=VW, need two factors
ct = V*(W*b); % apply them to any RHS
>> norm(A*ct-b) / norm(b) % rel resid again O(e_mach)
 2.83455365181694e-16
MATLAB demo: unstable vs stable linear solve

\[
\begin{align*}
\texttt{>> c} &= \begin{bmatrix} 1; 2; 3 \end{bmatrix}; & \text{"true" solution column vector} \\
\texttt{>> A} &= \text{ones}(3,3) + 1e-14 \times \text{rand}(3,3) & \text{system matrix (precisely: ill-cond.)} \\
A &=
\begin{bmatrix}
1.0000000000000001 & 1.0000000000000001 & 1.0000000000000001 \\
1.0000000000000001 & 1.0000000000000001 & 1.0000000000000001 \\
1 & 1 & 1.0000000000000001
\end{bmatrix} \\
\texttt{>> b} &= A \times c; & \text{make data (input to solver)} \\
\texttt{Now let's do some solving...} \\
\texttt{>> ct} &= \text{inv}(A) \times b; & \text{classic pitfall, may be unstable} \\
\texttt{>> norm(A \times ct - b) / norm(b)} & \text{rel resid terrible, proving it’s unstable!} \\
0.046875 \\
\end{align*}
\]
MATLAB demo: unstable vs stable linear solve

```matlab
>> c = [1;2;3]; % "true" solution column vector
>> A = ones(3,3) + 1e-14*rand(3,3) % system matrix (precisely: ill-cond.)
A =
    1.00000000000001  1.00000000000001  1
    1.00000000000001  1.00000000000001  1.00000000000001
    1  1  1.00000000000001
>> b = A*c; % make data (input to solver)

Now let's do some solving...

>> ct = inv(A)*b; % classic pitfall, may be unstable
>> norm(A*ct-b) / norm(b) % rel resid terrible, proving it's unstable!
   0.046875

>> ct = linsolve(A,b); % use (backward) stable solver
>> norm(A*ct-b) / norm(b) % rel resid 0(e_mach): must be if stable
   8.54650082837135e-17
```
MATLAB demo: unstable vs stable linear solve

```matlab
>> c = [1;2;3]; % "true" solution column vector
>> A = ones(3,3) + 1e-14*rand(3,3) % system matrix (precisely: ill-cond.)
A =
    1.00000000000001 1.00000000000001 1.00000000000001
    1.00000000000001 1.00000000000001 1.00000000000001
    1.00000000000001 1.00000000000001 1.00000000000001
>> b = A*c; % make data (input to solver)

Now let's do some solving...

>> ct = inv(A)*b; % classic pitfall, may be unstable
>> norm(A*ct-b) / norm(b) % rel resid terrible, proving it's unstable!
0.046875

>> ct = linsolve(A,b); % use (backward) stable solver
>> norm(A*ct-b) / norm(b) % rel resid O(e_mach): must be if stable
8.54650082837135e-17

>> norm(ct-c) / norm(c) % rel err in soln? huge, but that's ok...
0.0426438890711514
```
MATLAB demo: unstable vs stable linear solve

```
>> c = [1;2;3]; % "true" solution column vector
>> A = ones(3,3) + 1e-14*rand(3,3) % system matrix (precisely: ill-cond.)
A =
   1.00000000000001 1.00000000000001 1
   1.00000000000001 1.00000000000001 1.00000000000001
   1 1 1.00000000000001
>> b = A*c; % make data (input to solver)

Now let's do some solving...

>> ct = inv(A)*b; % classic pitfall, may be unstable
>> norm(A*ct-b) / norm(b) % rel resid terrible, proving it's unstable!
   0.046875

>> ct = linsolve(A,b); % use (backward) stable solver
>> norm(A*ct-b) / norm(b) % rel resid 0(e_mach): must be if stable
   8.54650082837135e-17
>> norm(ct-c) / norm(c) % rel err in soln? huge, but that's ok...
   0.0426438890711514

If time: here's one stable way to store a soln operator...

[U,S,V] = svd(A); W = diag(1./diag(S))*U'; % inv(A)=VW, need two factors
ct = V*(W*b);
>> norm(A*ct-b) / norm(b) % rel resid again 0(e_mach)
   2.83455365181694e-16
```
If time: conditioning of linear systems

For vector map $f(x)$, condition number is

$$\kappa(x) := \lim_{\delta x \to 0} \sup_{\|\delta x\| \leq \delta x} \frac{\|\delta f\|}{\|f\|}$$

- Lin. solve task: can show $\kappa(b) \leq \kappa(A) := \|A\| \|A^{-1}\| = \frac{\sigma_1(A)}{\sigma_N(A)}$ or ∞

Consequence for how accurate solution \tilde{c} is? Let $\varepsilon = \frac{\|\tilde{c} - c\|}{\|c\|}$ rel. soln. err.

Now recall: stable solver (best you can demand) has $\varepsilon = O(\kappa \varepsilon_{mach})$

- Idea useful in inverse problems: replace ε_{mach} by meas. err; reverse above pic!

Idea to sample all c consistent w/ small residual \to Bayes Inv. Prob. (Bob, Fri 9:10am)
Recap

- Convergence rates (type & prefactor) key to measure and understand
- Finite-precision $\varepsilon_{\text{mach}}$ can be amplified by catastrophic cancellation
- Before methods, first understand condition # of your problem
 - condition number of problem combines with $\varepsilon_{\text{mach}}$ to limit accuracy of any method
- Stable methods: solve exactly some $\varepsilon_{\text{mach}}$-perturbation of problem
 - “(un)stable” vs “ill-conditioned” have precise definitions: learn and use!
 - check for unstable method and avoid
- For linear systems: “stable” \iff finds relative residual $O(\varepsilon_{\text{mach}})$
References for today material

Convergence acceleration and all-round fun:

Randomized SVD, PCA, and big matrix factorizations:
- Martinsson’s slides at http://users.oden.utexas.edu/~pgm

I will host slides at https://users.flatironinstitute.org/~ahb
(also see: 2019 FWAM on interpolation & quadrature; Burns on PDE)

(fortnightly from 10/26, see Indico)

THANK-YOU!