A new integral representation for quasi-periodic scattering problems in two dimensions

IMA workshop, Aug 4, 2010

Alex Barnett (Dartmouth College)

joint work with Leslie Greengard (Courant Institute, NYU)

Scattering in 2D from periodic grating

time-harmonic linear waves, obey $\left(\Delta+\omega^{2}\right) u=0$ incident plane wave $u^{i}(\mathbf{x})=e^{i \mathbf{k} \cdot \mathbf{x}} \quad$ wavevector $\mathbf{k}=\left(\kappa^{i}, k^{i}\right) \quad|\mathbf{k}|=\omega$, unit speed $\Omega \subset \mathbb{R}^{2}$ obstacle, $\quad \Omega_{\mathbb{Z}}=\{\mathbf{x}:(x+n d, y) \in \Omega$ for some $n \in \mathbb{Z}\}$

Scattering in 2D from periodic grating

time-harmonic linear waves, obey $\left(\Delta+\omega^{2}\right) u=0$ incident plane wave $u^{i}(\mathbf{x})=e^{i \mathbf{k} \cdot \mathbf{x}} \quad$ wavevector $\mathbf{k}=\left(\kappa^{i}, k^{i}\right) \quad|\mathbf{k}|=\omega$, unit speed $\Omega \subset \mathbb{R}^{2}$ obstacle, $\quad \Omega_{\mathbb{Z}}=\{\mathbf{x}:(x+n d, y) \in \Omega$ for some $n \in \mathbb{Z}\}$
 total field $u^{t}=u^{i}+u$, where scattered field u solves BVP:

$$
\begin{aligned}
\left(\Delta+\omega^{2}\right) u & =0 \quad \text { in } \mathbb{R}^{2} \backslash \overline{\Omega_{\mathbb{Z}}} \\
u & =-u^{i} \quad \text { on } \partial \Omega_{\mathbb{Z}} \quad \text { Dirichlet } \\
u & \text { 'radiative' as } y \rightarrow \pm \infty
\end{aligned}
$$

Scattering in 2D from periodic grating

time-harmonic linear waves, obey $\left(\Delta+\omega^{2}\right) u=0$ incident plane wave $u^{i}(\mathbf{x})=e^{i \mathbf{k} \cdot \mathbf{x}} \quad$ wavevector $\mathbf{k}=\left(\kappa^{i}, k^{i}\right) \quad|\mathbf{k}|=\omega$, unit speed
 total field $u^{t}=u^{i}+u$, where scattered field u solves BVP:

$$
\begin{aligned}
\left(\Delta+\omega^{2}\right) u & =0 \quad \text { in } \mathbb{R}^{2} \backslash \overline{\Omega_{\mathbb{Z}}} \\
u & =-u^{i} \quad \text { on } \partial \Omega_{\mathbb{Z}} \quad \text { Dirichlet } \\
u & \text { 'radiative' as } y \rightarrow \pm \infty
\end{aligned}
$$

u^{i} quasi-periodic, so u is too:

$$
u(x+d, y)=\alpha u(x, y) \quad \text { Bloch } \alpha=e^{i \kappa^{i} d}
$$

Scattering in 2D from periodic grating

time-harmonic linear waves, obey $\left(\Delta+\omega^{2}\right) u=0$ incident plane wave $u^{i}(\mathbf{x})=e^{i \mathbf{k} \cdot \mathbf{x}} \quad$ wavevector $\mathbf{k}=\left(\kappa^{i}, k^{i}\right) \quad|\mathbf{k}|=\omega$, unit speed
 total field $u^{t}=u^{i}+u$, where scattered field u solves BVP:

$$
\begin{aligned}
\left(\Delta+\omega^{2}\right) u & =0 \quad \text { in } \mathbb{R}^{2} \backslash \overline{\Omega_{\mathbb{Z}}} \\
u & =-u^{i} \quad \text { on } \partial \Omega_{\mathbb{Z}} \quad \text { Dirichlet } \\
u & \text { 'radiative' as } y \rightarrow \pm \infty
\end{aligned}
$$

u^{i} quasi-periodic, so u is too:

$$
u(x+d, y)=\alpha u(x, y) \quad \text { Bloch } \alpha=e^{i \kappa^{i} d}
$$

- classical BVP: acoustics, z-invariant Maxwell

Applications of periodic scattering problems

Gratings, filters, antennae, photonic crystals, meta-materials, solar. . .

Applications of periodic scattering problems

Gratings, filters, antennae, photonic crystals, meta-materials, solar. . .

multi-layer dielectric diffraction grating, NIF lasers (LLNL)
2×10^{6} periods! (Barty ' 04)

Applications of periodic scattering problems

Gratings, filters, antennae, photonic crystals, meta-materials, solar. . .

multi-layer dielectric diffraction grating, NIF lasers (LLNL)
2×10^{6} periods! (Barty '04)

plasmonic solar cell (Atwater '10)

Si microwires absorber (Kelzenberg '10)

- Design optimization - Simulation at $>10^{3}$ inc. angles, frequencies

Applications of periodic scattering problems

Gratings, filters, antennae, photonic crystals, meta-materials, solar. . .

multi-layer dielectric diffraction grating, NIF lasers (LLNL)
2×10^{6} periods! (Barty ${ }^{\prime} 04$)

plasmonic solar cell (Atwater '10)

Si microwires absorber (Kelzenberg '10)

- Design optimization - Simulation at $>10^{3}$ inc. angles, frequencies

First step is our paradigm problem: 2D grating of isolated obstacles. . .

Plane waves of same quasi-periodicity

u^{i} is QP , but so are other plane waves, wavevectors $\left(\kappa_{n}, k_{n}\right)$:
$\kappa_{n}=\kappa^{i}+2 \pi n / d \quad k_{n}=+\sqrt{\omega^{2}-\kappa_{n}^{2}} \quad$ positive real or positive imag

Plane waves of same quasi-periodicity

u^{i} is QP, but so are other plane waves, wavevectors $\left(\kappa_{n}, k_{n}\right)$:
$\kappa_{n}=\kappa^{i}+2 \pi n / d \quad k_{n}=+\sqrt{\omega^{2}-\kappa_{n}^{2}} \quad$ positive real or positive imag

Plane waves of same quasi-periodicity

u^{i} is QP, but so are other plane waves, wavevectors $\left(\kappa_{n}, k_{n}\right)$:
$\kappa_{n}=\kappa^{i}+2 \pi n / d \quad k_{n}=+\sqrt{\omega^{2}-\kappa_{n}^{2}}$
positive real or positive imag

k_{n} real: propagating
k_{n} imag: evanescent (decaying or growing in y)
$k_{n}=0: \quad$ Wood's anomaly \quad rapid change wrt ω, inc. angle θ^{i} (Wood 1902)

Plane waves of same quasi-periodicity

u^{i} is QP, but so are other plane waves, wavevectors $\left(\kappa_{n}, k_{n}\right)$:
$\kappa_{n}=\kappa^{i}+2 \pi n / d \quad k_{n}=+\sqrt{\omega^{2}-\kappa_{n}^{2}}$
positive real or positive imag

k_{n} real: propagating
k_{n} imag: evanescent (decaying or growing in y)
$k_{n}=0: \quad$ Wood's anomaly \quad rapid change wrt ω, inc. angle θ^{i} (Wood 1902)

Rayleigh-Bloch radiation conditions

scattered u only outgoing or decaying channel modes:
$y>y_{0}$: upwards-prop. (or -decay)

$$
u(x, y)=\sum_{n \in \mathbb{Z}} c_{n} e^{i \kappa_{n} x} e^{i k_{n}\left(y-y_{0}\right)}
$$

$y<-y_{0}:$ downwards-prop. (or -decay)

$$
u(x, y)=\sum_{n \in \mathbb{Z}} d_{n} e^{i \kappa_{n} x} e^{i k_{n}\left(-y-y_{0}\right)}
$$

Rayleigh-Bloch radiation conditions

- c_{n}, d_{n} scattered amplitudes
scattered u only outgoing or decaying channel modes:
$y>y_{0}$: upwards-prop. (or -decay)

$$
u(x, y)=\sum_{n \in \mathbb{Z}} c_{n} e^{i \kappa_{n} x} e^{i k_{n}\left(y-y_{0}\right)}
$$

$y<-y_{0}:$ downwards-prop. (or -decay)

$$
u(x, y)=\sum_{n \in \mathbb{Z}} d_{n} e^{i \kappa_{n} x} e^{i k_{n}\left(-y-y_{0}\right)}
$$

vertical channel/waveguide with QP BC

Rayleigh-Bloch radiation conditions

- c_{n}, d_{n} scattered amplitudes Numerical methods for BVP
scattered u only outgoing or decaying channel modes:

$$
\begin{aligned}
& y>y_{0}: \text { upwards-prop. (or -decay) } \\
& \qquad u(x, y)=\sum_{n \in \mathbb{Z}} c_{n} e^{i \kappa_{n} x} e^{i k_{n}\left(y-y_{0}\right)}
\end{aligned}
$$

$$
y<-y_{0}: \text { downwards-prop. (or -decay) }
$$

$$
u(x, y)=\sum_{n \in \mathbb{Z}} d_{n} e^{i \kappa_{n} x} e^{i k_{n}\left(-y-y_{0}\right)}
$$

vertical channel/waveguide with QP BC FDTD, FEM, C-method, coupled-wave,...

Piecewise homogeneous \rightarrow integral equations: discretize only interface $\partial \Omega$ Adv: efficient rep. (small \# unknowns), rad. cond. for free, high-order accurate ${ }_{-0.5}$

Potential theory (review)

Single-, double-layer, $\mathbf{x} \in \mathbb{R}^{2}$, curve Γ : $v(\mathbf{x})=\int_{\Gamma} \Phi_{\omega}(\mathbf{x}, \mathbf{y}) \sigma(\mathbf{y}) d s_{\mathbf{y}}:=(\mathcal{S} \sigma)(\mathbf{x})$
$u(\mathbf{x})=\int_{\Gamma} \frac{\partial \Phi_{\omega}}{\partial n_{\mathbf{y}}}(\mathbf{x}, \mathbf{y}) \tau(\mathbf{y}) d s_{\mathbf{y}}:=(\mathcal{D} \tau)(\mathbf{x})$
$\Phi_{\omega}(\mathbf{x}, \mathbf{y}):=\Phi_{\omega}(\mathbf{x}-\mathbf{y})=\frac{i}{4} H_{0}^{(1)}(\omega|\mathbf{x}-\mathbf{y}|)$
Helmholtz fundamental soln a.k.a. free space Greens func

Potential theory (review)

Single-, double-layer, $\mathbf{x} \in \mathbb{R}^{2}$, curve Γ :

$$
\begin{aligned}
& v(\mathbf{x})=\int_{\Gamma} \Phi_{\omega}(\mathbf{x}, \mathbf{y}) \sigma(\mathbf{y}) d s_{\mathbf{y}}:=(\mathcal{S} \sigma)(\mathbf{x}) \\
& u(\mathbf{x})=\int_{\Gamma} \frac{\partial \Phi_{\omega}}{\partial n_{\mathbf{y}}}(\mathbf{x}, \mathbf{y}) \tau(\mathbf{y}) d s_{\mathbf{y}}:=(\mathcal{D} \tau)(\mathbf{x})
\end{aligned}
$$

$$
\Phi_{\omega}(\mathbf{x}, \mathbf{y}):=\Phi_{\omega}(\mathbf{x}-\mathbf{y})=\frac{i}{4} H_{0}^{(1)}(\omega|\mathbf{x}-\mathbf{y}|)
$$

Helmholtz fundamental soln a.k.a. free space Greens func

Jump relations: limit as $\mathbf{x} \rightarrow \Gamma$ may depend on which side (\pm) :

$$
\begin{aligned}
& v^{ \pm}=S \sigma \\
& v_{n}^{ \pm}=D^{*} \sigma \mp \frac{1}{2} \sigma \\
& u^{ \pm}=D \tau \pm \frac{1}{2} \tau \\
& u_{n}^{ \pm}=T \tau
\end{aligned}
$$

S, D are integral ops with above kernels but defined on $C(\Gamma) \rightarrow C(\Gamma)$
T has kernel $\frac{\partial^{2} \Phi_{\omega}(\mathbf{x}, \mathbf{y})}{\partial n_{\mathbf{x}} \partial n_{\mathbf{y}}}$, hypersingular

Single Dirichlet obstacle scattering (review)

represent scattered field $u=(\mathcal{D}-i \omega \mathcal{S}) \tau \quad$ indirect CFIE on $\partial \Omega$

Single Dirichlet obstacle scattering (review)

 represent scattered field $u=(\mathcal{D}-i \omega \mathcal{S}) \tau \quad$ indirect CFIE on $\partial \Omega$

$$
\mathrm{BC} \& \mathrm{JR} 1,3: \quad A \tau:=\left(\frac{1}{2} I+D-i \omega S\right) \tau=-\left.u^{i}\right|_{\partial \Omega}
$$

2nd-kind IE on $\partial \Omega, \quad D, S$ cpt so A sing. vals. $\nrightarrow 0$

- why important? large scale problems... condition \# bnded, iterative solvers (GMRES) fast

Single Dirichlet obstacle scattering (review)

 represent scattered field $u=(\mathcal{D}-i \omega \mathcal{S}) \tau \quad$ indirect CFIE on $\partial \Omega$

$$
\text { BC \& JR1,3: } \quad A \tau:=\left(\frac{1}{2} I+D-i \omega S\right) \tau=-\left.u^{i}\right|_{\partial \Omega}
$$

2nd-kind IE on $\partial \Omega, \quad D, S$ cpt so A sing. vals. $\nrightarrow 0$

- why important? large scale problems... condition \# bnded, iterative solvers (GMRES) fast

Quadrature: nodes $\mathbf{y}_{j} \in \partial \Omega$, weights $w_{j}, \quad j=1, \ldots, N$ Nyström discretization: N-by- N linear system,

$$
\boldsymbol{A} \boldsymbol{\tau}=\boldsymbol{b} \quad \text { unknown density vector } \boldsymbol{\tau} \approx\left\{\tau\left(\mathbf{y}_{j}\right)\right\}_{j=1}^{N}
$$

- kernel weakly singular. E.g. for $\partial \Omega$ analytic, have spectral scheme for $f(s)+\log \left(4 \sin ^{2} \frac{s}{2}\right) g(s), \quad f, g$ analytic 2π-periodic (Kress '91)

Single Dirichlet obstacle scattering (review)

 represent scattered field $u=(\mathcal{D}-i \omega \mathcal{S}) \tau \quad$ indirect CFIE on $\partial \Omega$
$\mathrm{BC} \& \mathrm{JR} 1,3: \quad A \tau:=\left(\frac{1}{2} I+D-i \omega S\right) \tau=-\left.u^{i}\right|_{\partial \Omega}$
2nd-kind IE on $\partial \Omega, \quad D, S$ cpt so A sing. vals. $\nrightarrow 0$

- why important? large scale problems... condition \# bnded, iterative solvers (GMRES) fast

Quadrature: nodes $\mathbf{y}_{j} \in \partial \Omega$, weights $w_{j}, \quad j=1, \ldots, N$ Nyström discretization: N-by- N linear system,

$$
\boldsymbol{A} \boldsymbol{\tau}=\boldsymbol{b} \quad \text { unknown density vector } \boldsymbol{\tau} \approx\left\{\tau\left(\mathbf{y}_{j}\right)\right\}_{j=1}^{N}
$$

- kernel weakly singular. E.g. for $\partial \Omega$ analytic, have spectral scheme for $f(s)+\log \left(4 \sin ^{2} \frac{s}{2}\right) g(s), \quad f, g$ analytic 2π-periodic (Kress '91)

How turn this into a periodic solver, compatible with modern IE tools?

- large-scale technology: corner and 3D quadratures, FMM accel. . .

The standard way to periodize

replace kernel $\Phi_{\omega}(\mathbf{x})$ by $\Phi_{\omega, \mathrm{QP}}(\mathbf{x}):=\sum_{m \in \mathbb{Z}} \alpha^{m} \Phi_{\omega}(\mathbf{x}-m \boldsymbol{d})$ thus integral operator A becomes A_{QP} (is still 2nd kind)

The standard way to periodize

replace kernel $\Phi_{\omega}(\mathbf{x})$ by $\Phi_{\omega, \mathrm{QP}}(\mathbf{x}):=\sum_{m \in \mathbb{Z}} \alpha^{m} \Phi_{\omega}(\mathbf{x}-m \boldsymbol{d})$
thus integral operator A becomes A_{QP} (is still 2nd kind)

Three problems

- not robust: $\Phi_{\omega, \mathrm{QP}}$ does not exist for Wood's anomaly params (ω, θ^{i}) blows up $\sim\left(\omega-\omega_{\text {Wood }}\right)^{-1 / 2}$, round-off error too \ldots yet soln u well-behaved! can't fix as for surfaces via half-space $\Phi_{\omega, \mathrm{QP}}$
(Chandler-Wilde, Arens)

The standard way to periodize

replace kernel $\Phi_{\omega}(\mathbf{x})$ by $\Phi_{\omega, \mathrm{QP}}(\mathbf{x}):=\sum_{m \in \mathbb{Z}} \alpha^{m} \Phi_{\omega}(\mathbf{x}-m \boldsymbol{d})$
thus integral operator A becomes A_{QP} (is still 2nd kind)

Three problems

- not robust: $\Phi_{\omega, \mathrm{QP}}$ does not exist for Wood's anomaly params (ω, θ^{i}) blows up $\sim\left(\omega-\omega_{\text {Wood }}\right)^{-1 / 2}$, round-off error too \ldots yet soln u well-behaved! can't fix as for surfaces via half-space $\Phi_{\omega, \mathrm{QP}}$ (Chandler-Wilde, Arens)
- $\Phi_{\omega, \mathrm{QP}}(\mathbf{x})$ hard to evaluate accurately (McPhedran, Linton, Kurkcu-Reitich) e.g. by lattice sums: Fourier-Bessel coeffs s_{l} of regular part,

$$
\begin{equation*}
\Phi_{\omega, \mathrm{QP}}(\mathbf{x})-\Phi_{\omega}(\mathbf{x})=\sum_{l \in \mathbb{Z}} s_{l} J_{l}(\omega r) e^{i l \theta}, \quad \mathbf{x}=(r, \theta) \tag{*}
\end{equation*}
$$

slow; messy rotation algebra in 3D

The standard way to periodize

replace kernel $\Phi_{\omega}(\mathbf{x})$ by $\Phi_{\omega, \mathrm{QP}}(\mathbf{x}):=\sum_{m \in \mathbb{Z}} \alpha^{m} \Phi_{\omega}(\mathbf{x}-m \boldsymbol{d})$
thus integral operator A becomes A_{QP} (is still 2nd kind)

Three problems

- not robust: $\Phi_{\omega, \mathrm{QP}}$ does not exist for Wood's anomaly params (ω, θ^{i}) blows up $\sim\left(\omega-\omega_{\text {Wood }}\right)^{-1 / 2}$, round-off error too \ldots yet soln u well-behaved! can't fix as for surfaces via half-space $\Phi_{\omega, \mathrm{QP}}$ (Chandler-Wilde, Arens)
- $\Phi_{\omega, \mathrm{QP}}(\mathbf{x})$ hard to evaluate accurately (McPhedran, Linton, Kurkcu-Reitich) e.g. by lattice sums: Fourier-Bessel coeffs s_{l} of regular part,

$$
\begin{equation*}
\Phi_{\omega, \mathrm{QP}}(\mathbf{x})-\Phi_{\omega}(\mathbf{x})=\sum_{l \in \mathbb{Z}} s_{l} J_{l}(\omega r) e^{i l \theta}, \quad \mathbf{x}=(r, \theta) \tag{*}
\end{equation*}
$$

slow; messy rotation algebra in 3D

- (*) converges in disc \Rightarrow high aspect ratio Ω is bad: FMM based on cubes, tricky

New way to periodize

use only free-space Φ_{ω}, add densities on unit cell walls, enforce QP fixes 3 problems: robust (no blow-up), no lattice sums, no aspect ratio issue

New way to periodize

use only free-space Φ_{ω}, add densities on unit cell walls, enforce QP fixes 3 problems: robust (no blow-up), no lattice sums, no aspect ratio issue

$$
\begin{array}{cc}
u=\underset{\text { as before }}{(\mathcal{D}-i \omega \mathcal{S}) \tau}+\begin{array}{c}
\text { densities } \xi \text { on } L \text { and } R \\
\mathrm{BC} \\
\mathrm{BC}
\end{array} \mathrm{u}_{\mathrm{QP}}[\xi] \\
-u^{i} & \text { on } \partial \Omega \\
\text { as before }
\end{array}
$$

New way to periodize

use only free-space Φ_{ω}, add densities on unit cell walls, enforce QP fixes 3 problems: robust (no blow-up), no lattice sums, no aspect ratio issue

$$
\left.\begin{array}{l}
u=(\mathcal{D}-i \omega \mathcal{S}) \tau \quad+\quad u_{\mathrm{QP}}[\xi] \\
\text { as before } \quad \text { densities } \xi \text { on } L \text { and } R \\
\mathrm{BC} u=-u^{i} \quad \text { on } \partial \Omega \quad \text { as before }
\end{array}\right\} \begin{aligned}
& \text { new condition: vanishing 'discrepancy' } \\
& \forall y\left\{\begin{array}{rll}
f & := & u_{L}-\alpha^{-1} u_{R}=0 \\
f_{n} & := & u_{n L}-\alpha^{-1} u_{n R}=0
\end{array}\right.
\end{aligned}
$$

2 unknowns $[\tau ; \xi], 2$ conditions \Rightarrow solve 2×2 linear operator system

New way to periodize

use only free-space Φ_{ω}, add densities on unit cell walls, enforce QP fixes 3 problems: robust (no blow-up), no lattice sums, no aspect ratio issue

$$
\left.\begin{array}{l}
u=(\mathcal{D}-i \omega \mathcal{S}) \tau \quad+\quad u_{\mathrm{QP}}[\xi] \\
\text { as before } \quad \text { densities } \xi \text { on } L \text { and } R \\
\mathrm{BC} \quad u=-u^{i} \quad \text { on } \partial \Omega \quad \text { as before }
\end{array}\right\} \begin{aligned}
& \text { new condition: vanishing 'discrepancy' } \\
& \forall y\left\{\begin{array}{l}
f:= \\
f_{n}:= \\
u_{L}-\alpha^{-1} u_{R}=0 \\
n-\alpha^{-1} u_{n R}=0
\end{array}\right.
\end{aligned}
$$

2 unknowns $[\tau ; \xi], 2$ conditions \Rightarrow solve 2×2 linear operator system
Major issues
(1) How choose rep. $u_{\mathrm{QP}}[\xi]$ so effect of ξ on $\left[f ; f_{n}\right]$ is 'nice'? (2nd-kind)
(2) How handle densities on ∞-long L, R ? (no decay as $|y| \rightarrow \infty!$)

Trick (1): choose a good $u_{\mathrm{QP}}[\xi]$ representation

Consider ξ one SLP:

effect on discrep: $f=\left(S_{L L}-\alpha^{-1} S_{R L}\right) \mu$ self-interaction, bad \nearrow

Trick (1): choose a good $u_{\mathrm{OP}}[\xi]$ representation

Consider ξ one SLP:

effect on discrep: $f=\left(S_{L L}-\alpha^{-1} S_{R L}\right) \mu$ self-interaction, bad \nearrow

Add phased copy on R :

$$
\begin{aligned}
f & =\left(S_{L L}-\alpha^{-1} S_{R L}\right) \mu+\alpha\left(S_{L R}-\alpha^{-1} S_{R R}\right) \mu \\
& =\left(-\alpha^{-1} S_{R L}+\alpha S_{L R}\right) \mu \quad \text { distant only }
\end{aligned}
$$

Trick (1): choose a good $u_{\mathrm{QP}}[\xi]$ representation

Consider ξ one SLP:

effect on discrep: $f=\left(S_{L L}-\alpha^{-1} S_{R L}\right) \mu$ self-interaction, bad \nearrow

Add phased copy on R :

$$
\begin{aligned}
f & =\left(S_{L L}-\alpha^{-1} S_{R L}\right) \mu+\alpha\left(S_{L R}-\alpha^{-1} S_{R R}\right) \mu \\
& =\left(-\alpha^{-1} S_{R L}+\alpha S_{L R}\right) \mu \\
f_{n} & =\left(\begin{array}{ll}
\left.-I-\alpha^{-1} D_{R L}^{*}+\alpha D_{L R}^{*}\right) \mu & I / 2 \text { 's add }
\end{array}\right.
\end{aligned}
$$

Trick (1): choose a good $u_{\mathrm{OP}}[\xi]$ representation

Consider ξ one SLP:

effect on discrep: $f=\left(S_{L L}-\alpha^{-1} S_{R L}\right) \mu$ self-interaction, bad \nearrow

Add phased copy on R :

$$
\begin{aligned}
& f=\left(S_{L L}-\alpha^{-1} S_{R L}\right) \mu+\alpha\left(S_{L R}-\alpha^{-1} S_{R R}\right) \mu \\
&=\left(-\alpha^{-1} S_{R L}+\alpha S_{L R}\right) \mu \quad \text { distant only } \\
& f_{n}=\left(-I-\alpha^{-1} D_{R L}^{*}+\alpha D_{L R}^{*}\right) \mu \\
& I / 2 \text { 's add }
\end{aligned}
$$

Similarly need to control f via JRs, so...
Add DLP ν on L, R,:

$$
\left[\begin{array}{c}
f \\
f_{n}
\end{array}\right]=Q\left[\begin{array}{c}
\nu \\
-\mu
\end{array}\right]=: Q \xi
$$

block operator $Q=I+($ interactions of distance $\geq d)$

- If L, R bounded segments: $Q \xi=g$ is 2 nd kind, rapidly convergent

Trick (2): handle densities on $y \in(-\infty, \infty)$

Fourier transform in y-direction: handle $\hat{\mu}, \hat{\nu}, \hat{f}, \hat{f}_{n}$

Trick (2): handle densities on $y \in(-\infty, \infty)$

Fourier transform in y-direction: handle $\hat{\mu}, \hat{\nu}, \hat{f}, \hat{f}_{n}$, use spectral rep,

$$
\Phi_{\omega}(x, y)=\frac{i}{4 \pi} \int_{-\infty}^{\infty} e^{i k y} \frac{e^{i \sqrt{\omega^{2}-k^{2}}|x|}}{\sqrt{\omega^{2}-k^{2}}} d k \quad \begin{aligned}
& \text { exponential tails for }|k|>\omega \\
& \text { decay rate prop. to }|x|
\end{aligned}
$$

Trick (2): handle densities on $y \in(-\infty, \infty)$

Fourier transform in y-direction: handle $\hat{\mu}, \hat{\nu}, \hat{f}, \hat{f}_{n}$, use spectral rep,

$$
\Phi_{\omega}(x, y)=\frac{i}{4 \pi} \int_{-\infty}^{\infty} e^{i k y} \frac{e^{i \sqrt{\omega^{2}-k^{2}}|x|}}{\sqrt{\omega^{2}-k^{2}}} d k
$$ exponential tails for $|k|>\omega$ decay rate prop. to $|x|$

Gives FT- y densities on L (or R) wall at $x=x_{0}$:

$$
\begin{aligned}
\left(\hat{\mathcal{S}}_{L} \hat{\mu}\right)(x, y) & =\frac{i}{2} \int_{-\infty}^{\infty} e^{i k y} \frac{e^{i \sqrt{\omega^{2}-k^{2}}\left|x-x_{0}\right|}}{\sqrt{\omega^{2}-k^{2}}} \hat{\mu}(k) d k \\
\left(\hat{\mathcal{D}}_{L} \hat{\nu}\right)(x, y) & =\frac{\operatorname{sign}\left(x-x_{0}\right)}{2} \int_{-\infty}^{\infty} e^{i k y} e^{i \sqrt{\omega^{2}-k^{2}}\left|x-x_{0}\right|} \hat{\nu}(k) d k
\end{aligned}
$$

- same JRs as before; $\hat{\mu}(k), \hat{\nu}(k)$ affect only $\hat{f}(k), \hat{f}_{n}(k)$ diagonal in k

k-space quadrature on Sommerfeld contour

> nodes k_{j}
> weights w_{j}
> $j=1, \ldots, M$
sample Re k with periodic trapezoid rule, $\operatorname{Im} k$ is scaled tanh curve

- exponentially convergent as $h \rightarrow 0, K \rightarrow \infty$ (beats nodes on real axis!)

k-space quadrature on Sommerfeld contour

> nodes k_{j}
> weights w_{j}
> $j=1, \ldots, M$
sample Re k with periodic trapezoid rule, $\operatorname{Im} k$ is scaled tanh curve

- exponentially convergent as $h \rightarrow 0, K \rightarrow \infty$ (beats nodes on real axis!)

Unknowns $\hat{\sigma}\left(k_{j}\right), \hat{\tau}\left(k_{j}\right)$; enforce $\hat{f}\left(k_{j}\right)=\hat{f}^{\prime}\left(k_{j}\right)=0$: $\hat{\boldsymbol{Q}}=I+$ block diag.

k-space quadrature on Sommerfeld contour

nodes k_{j}
weights w_{j}
$j=1, \ldots, M$
sample $\operatorname{Re} k$ with periodic trapezoid rule, $\operatorname{Im} k$ is scaled tanh curve

- exponentially convergent as $h \rightarrow 0, K \rightarrow \infty$ (beats nodes on real axis!)

Unknowns $\hat{\sigma}\left(k_{j}\right), \hat{\tau}\left(k_{j}\right)$; enforce $\hat{f}\left(k_{j}\right)=\hat{f}^{\prime}\left(k_{j}\right)=0$: $\hat{\boldsymbol{Q}}=I+$ block diag.
Solve full $(N+2 M)$-by- $(N+2 M)$ linear system:

$$
\left[\begin{array}{ll}
A & \hat{B} \\
\hat{C} & \hat{Q}
\end{array}\right]\left[\begin{array}{l}
\tau \\
\hat{\xi}
\end{array}\right]=\left[\begin{array}{l}
b \\
0
\end{array}\right] \quad \leftarrow \text { BC on } \partial \Omega,
$$

- fill $\hat{\boldsymbol{B}}$ by evaluating $\hat{\mathcal{S}}, \hat{\mathcal{D}}$ Sommerfeld integrals at nodes $\mathbf{y}_{j} \in \partial \Omega$
- fill \hat{C} by spectral rep. of each source $\mathbf{y}_{j} \in \partial \Omega$ at walls L, R

Results

$d=1.6 \lambda \quad N=70 \quad M=80 \quad$ error $10^{-14} \quad t_{\text {fill }}=0.13 \mathrm{~s} \quad t_{\text {solve }}=0.04 \mathrm{~s}$

Results

Exponential convergence:

$d=1.6 \lambda \quad N=70 \quad M=80 \quad$ error $10^{-14} \quad t_{\text {fill }}=0.13 \mathrm{~s} \quad t_{\text {solve }}=0.04 \mathrm{~s}$

Results

Exponential convergence:

$d=1.6 \lambda \quad N=70 \quad M=80 \quad$ error $10^{-14} \quad t_{\text {fill }}=0.13 \mathrm{~s} \quad t_{\text {solve }}=0.04 \mathrm{~s}$

- improved convergence rate by summing 1 or $2 \partial \Omega$ neighbors directly
- low condition \# $\sim 10^{2}$: solved to 14 digits in 55 GMRES iters.

Handling Wood's anomalies $\left(k_{n} \rightarrow 0\right)$

recall k_{n} are Rayleigh-Bloch y-wavenumbers: $+k_{n}$ travels upwards, $-k_{n}$ downwards

Handling Wood's anomalies $\left(k_{n} \rightarrow 0\right)$

recall k_{n} are Rayleigh-Bloch y-wavenumbers: $+k_{n}$ travels upwards, $-k_{n}$ downwards
Sommerfeld FT- y densities $\hat{\mu}(k), \hat{\nu}(k)$ have poles at $\pm k_{n}$:

Why?

Handling Wood's anomalies $\left(k_{n} \rightarrow 0\right)$

recall k_{n} are Rayleigh-Bloch y-wavenumbers: $+k_{n}$ travels upwards, $-k_{n}$ downwards

Sommerfeld FT- y

 densities $\hat{\mu}(k), \hat{\nu}(k)$ have poles at $\pm k_{n}$:

Why? $\quad \frac{i}{2 \pi\left(k_{n}-k\right)} \stackrel{\mathrm{FT}}{\leftrightarrow}\left\{\begin{array}{ll}e^{i k_{n} y}, & y>0 \\ 0, & y<0\end{array}\right.$ or $\begin{cases}0, & y>0 \\ -e^{i k_{n} y}, & y<0\end{cases}$

interpretation for $k_{n}>0: \quad \mathrm{R}-\mathrm{B}$ outgoing above

incoming below

Handling Wood's anomalies $\left(k_{n} \rightarrow 0\right)$

recall k_{n} are Rayleigh-Bloch y-wavenumbers: $+k_{n}$ travels upwards, $-k_{n}$ downwards
Sommerfeld FT- y densities $\hat{\mu}(k), \hat{\nu}(k)$ have poles at $\pm k_{n}$:

Why? $\quad \frac{i}{2 \pi\left(k_{n}-k\right)} \stackrel{\mathrm{FT}}{\leftrightarrow}\left\{\begin{array}{ll}e^{i k_{n} y}, & y>0 \\ 0, & y<0\end{array}\right.$ or $\begin{cases}0, & y>0 \\ -e^{i k_{n} y}, & y<0\end{cases}$

interpretation for $k_{n}>0$: $\quad \mathrm{R}-\mathrm{B}$ outgoing above

incoming below

Crude fix: as $k_{n} \rightarrow 0$, grade nodes geometrically (sinh map) near 0 ?

- not robust: \log blow-up of M, cond. \# and $\|\hat{\xi}\|$ diverge!

Well-conditioned robust scheme near Wood's

deform contour to be safe $O(1)$ dist from all poles:

Now solves BVP with wrong radiation condition! enforces $n^{\text {th }} \mathrm{R}-\mathrm{B}$ mode incoming below instead of outgoing above

Well-conditioned robust scheme near Wood's

deform contour to be safe $O(1)$ dist from all poles:

Now solves BVP with wrong radiation condition!
enforces $n^{\text {th }} \mathrm{R}-\mathrm{B}$ mode incoming below instead of outgoing above
The fix:

- add plane-wave $a e^{i k_{n} x} e^{i k_{n} y}$ to the $u(x, y)$ rep.
- add new linear condition: $n^{\text {th }}$ amplitude incoming below $=0$
implement by projection of $u\left(\cdot,-y_{0}\right)$ onto $n^{\text {th }}$ Fourier mode
System now has extra row and column, solve for unknowns $[\boldsymbol{\tau} ; \hat{\boldsymbol{\xi}} ; a]$ at Wood $k_{n}=0$: replace $\left\{e^{i k_{n} y}, e^{-i k_{n} y}\right\}$ by $\{1, y\}$, enforce " y " amplitude $=0$
- result: cond. \# and error bounded uniformly in params $\left(\omega, \theta^{i}\right) \ldots$

Results precisely at Wood's anomaly

$d=1.6 \lambda \quad N=70 \quad M=90 \quad$ error $10^{-13} \quad t_{\text {fill }}$ solve $=0.26 \mathrm{~s} \quad$ cond. \# 10^{3}

- previously impossible to solve this via integral equations!

Dielectric (transmission) obstacles

$$
\left.\begin{array}{r}
\left(\Delta+\omega^{2}\right) u=0 \\
\begin{array}{c}
\text { in } \mathbb{R}^{2} \backslash \overline{\Omega_{\mathbb{Z}}} \\
\left(\Delta+n^{2} \omega^{2}\right) u=0
\end{array} \quad \text { in } \Omega_{\mathbb{Z}} \\
u^{+}-u^{-}=-u^{i} \\
u_{n}^{+}-u_{n}^{-}=-u_{n}^{i}
\end{array}\right\} \text { on } \partial \Omega_{\mathbb{Z}} \begin{aligned}
& \text { matching } \\
& (\text { TM Maxwell })
\end{aligned}
$$

Dielectric (transmission) obstacles

$$
\left.\begin{array}{rl}
\left(\Delta+\omega^{2}\right) u=0 & \text { in } \mathbb{R}^{2} \backslash \overline{\Omega_{\mathbb{Z}}} \\
\left(\Delta+n^{2} \omega^{2}\right) u=0 & \text { in } \Omega_{\mathbb{Z}} \\
u^{+}-u^{-}=-u^{i} \\
u_{n}^{+}-u_{n}^{-}=-u_{n}^{i}
\end{array}\right\} \text { on } \partial \Omega_{\mathbb{Z}} \begin{aligned}
& \text { matching } \\
& (\text { TM Maxwell })
\end{aligned}
$$

non-periodic rep: (Müller '69, Rokhlin '83)

$$
u= \begin{cases}\mathcal{D} \tau+\mathcal{S} \sigma & \text { in } \mathbb{R}^{2} \backslash \overline{\Omega_{\mathbb{Z}}} \\ \mathcal{D}_{i} \tau+\mathcal{S}_{i} \sigma & \text { in } \Omega_{\mathbb{Z}}\end{cases}
$$

2nd kind Fredholm $A \eta=b, \quad \eta=\left[\begin{array}{c}-\tau \\ \sigma\end{array}\right], \quad A=I+\left[\begin{array}{cc}D-D_{i} & S_{i}-S \\ T-T_{i} & D_{i}^{*}-D^{*}\end{array}\right]$

Dielectric (transmission) obstacles

$$
\begin{array}{r}
\left(\Delta+\omega^{2}\right) u=0 \\
\left.\begin{array}{c}
\text { in } \mathbb{R}^{2} \backslash \overline{\Omega_{\mathbb{Z}}} \\
\left(\Delta+n^{2} \omega^{2}\right) u=0
\end{array} \begin{array}{l}
\text { in } \Omega_{\mathbb{Z}} \\
u^{+}-u^{-}=-u^{i} \\
u_{n}^{+}-u_{n}^{-}=-u_{n}^{i}
\end{array}\right\} \text { on } \partial \Omega_{\mathbb{Z}} \begin{array}{l}
\text { matching } \\
(\text { TM Maxwell })
\end{array}
\end{array}
$$

non-periodic rep: (Müller '69, Rokhlin '83)

$$
u= \begin{cases}\mathcal{D} \tau+\mathcal{S} \sigma & \text { in } \mathbb{R}^{2} \backslash \overline{\Omega_{\mathbb{Z}}} \\ \mathcal{D}_{i} \tau+\mathcal{S}_{i} \sigma & \text { in } \Omega_{\mathbb{Z}}\end{cases}
$$

2nd kind Fredholm $\quad A \eta=b, \quad \eta=\left[\begin{array}{c}-\tau \\ \sigma\end{array}\right], \quad A=I+\left[\begin{array}{cc}D-D_{i} & S_{i}-S \\ T-T_{i} & D_{i}^{*}-D^{*}\end{array}\right]$

- periodize just as before (add $u_{\mathrm{QP}}[\xi]$ in exterior only)

Dielectric (transmission) obstacles

$$
\left.\begin{array}{r}
\left(\Delta+\omega^{2}\right) u=0 \\
\left(\Delta+n^{2} \omega^{2}\right) u=0 \\
\text { in } \mathbb{R}^{2} \backslash \overline{\Omega_{\mathbb{Z}}} \\
\text { in } \Omega_{\mathbb{Z}} \\
u^{+}-u^{-}=-u^{i} \\
u_{n}^{+}-u_{n}^{-}=-u_{n}^{i}
\end{array}\right\} \text { on } \partial \Omega_{\mathbb{Z}} \begin{aligned}
& \text { matching } \\
& (\text { TM Maxwell })
\end{aligned}
$$

non-periodic rep: (Müller '69, Rokhlin '83)

$$
u= \begin{cases}\mathcal{D} \tau+\mathcal{S} \sigma & \text { in } \mathbb{R}^{2} \backslash \overline{\Omega_{\mathbb{Z}}} \\ \mathcal{D}_{i} \tau+\mathcal{S}_{i} \sigma & \text { in } \Omega_{\mathbb{Z}}\end{cases}
$$

2nd kind Fredholm $\quad A \eta=b, \quad \eta=\left[\begin{array}{c}-\tau \\ \sigma\end{array}\right], \quad A=I+\left[\begin{array}{cc}D-D_{i} & S_{i}-S \\ T-T_{i} & D_{i}^{*}-D^{*}\end{array}\right]$

- periodize just as before (add $u_{\mathrm{QP}}[\xi]$ in exterior only)
shown: $d=8 \lambda \quad N=230 \quad M=160 \quad$ err $10^{-14} \quad t_{\text {fill }+ \text { solve }}=2.4 \mathrm{~s} \quad$ cond. $\# 10^{3}$

Diffraction efficiencies vs inc. angle

Power fractions scattered into each transmitted/reflected Bragg order:

$d=1.6 \lambda \quad$ error $10^{-12} \quad 3000$ angles in 30 mins

- square-root type cusps at each Wood anomaly (dotted red)

Results: high aspect ratio dielectric

$$
\text { height } H=10 d \quad \text { (} 24 \lambda \text { in interior) }
$$

if lattice sums were used:
would need >10 neighbor copies of $\partial \Omega$
to be summed directly ($>10^{2}$ in 3D)
$d=1.6 \lambda \quad N=500 \quad M=330$
error $10^{-13} \quad t_{\text {fill }}=9 \mathrm{~s} \quad t_{\text {solve }}=4 \mathrm{~s}$
$M=O(\omega H)$ but prefactor small

Obstacle intersecting artificial unit cell walls

B and C blocks break

Obstacle intersecting artificial unit cell walls

B and C blocks break directly sum $\partial \Omega$ neighbors in u rep.:
cancels intersecting C terms!

Obstacle intersecting artificial unit cell walls

- $L-R$ separation $3 d$, Bloch phase α^{3}
- makes walls 'invisible' in scheme

Why works? Lemma (non-Wood case):
For $L-R$ separation a whole \# periods, solution density η equals that when periodizing in standard way via $\Phi_{\omega, \mathrm{QP}}$
Pf: Schur complement of upper-left block,

$$
A_{\mathrm{QP}} \eta=\left(A-B Q^{-1} C\right) \eta=b
$$

Obstacle intersecting artificial unit cell walls

- $L-R$ separation $3 d$, Bloch phase α^{3}
- makes walls 'invisible' in scheme

Why works? Lemma (non-Wood case):
For $L-R$ separation a whole \# periods, solution density η equals that when periodizing in standard way via $\Phi_{\omega, \mathrm{QP}}$
Pf: Schur complement of upper-left block,

$$
A_{\mathrm{QP}} \eta=\left(A-B Q^{-1} C\right) \eta=b
$$

Preliminary results: multi-layer media

Periodic Dirichlet interface below dielectric inclusions:

$d=3.2 \lambda \quad$ at Wood's anomaly error $10^{-4} \ldots$ low-order open-segment quadrature

- try high-order quadrature w/ endpoints (Alpert, Kapur-Rokhlin,...)

Idea also good for band structure (taste)

Doubly-periodic QP phases (α, β)
EVP: seek Bloch eigen-triples (ω, α, β)

- App: photonic crystal bandgap design May periodize by replacing A by $A_{\mathrm{QP}} \ldots$

Idea also good for band structure (taste)

Doubly-periodic QP phases (α, β)
EVP: seek Bloch eigen-triples (ω, α, β)

- App: photonic crystal bandgap design May periodize by replacing A by $A_{\mathrm{QP}} \ldots$

Thm: if A_{QP} exists, Null $A_{\mathrm{QP}} \neq\{0\} \quad \Leftrightarrow \quad(\omega, \alpha, \beta)$ Bloch eigenvalue
proof: QP Calderón projectors, flipping inside-out to get transmission BVP

Idea also good for band structure (taste)

Doubly-periodic QP phases (α, β)
EVP: seek Bloch eigen-triples (ω, α, β)

- App: photonic crystal bandgap design May periodize by replacing A by $A_{\mathrm{QP}} .$.

Thm: if A_{QP} exists, Null $A_{\mathrm{QP}} \neq\{0\} \quad \Leftrightarrow \quad(\omega, \alpha, \beta)$ Bloch eigenvalue
proof: QP Calderón projectors, flipping inside-out to get transmission BVP
\ldots. . but $\Phi_{\omega, \mathrm{QP}}$ has poles at resonances of empty unit cell: scheme fails

Idea also good for band structure (taste)

Doubly-periodic
QP phases (α, β)
EVP: seek Bloch eigen-triples (ω, α, β)

- App: photonic crystal bandgap design May periodize by replacing A by $A_{\mathrm{QP}} .$.

Thm: \quad if A_{QP} exists, \quad Null $A_{\mathrm{QP}} \neq\{0\} \quad \Leftrightarrow \quad(\omega, \alpha, \beta)$ Bloch eigenvalue
proof: QP Calderón projectors, flipping inside-out to get transmission BVP
\ldots. . but $\Phi_{\omega, \mathrm{QP}}$ has poles at resonances of empty unit cell: scheme fails
Fix: as before, discard A_{QP} in favor of larger system $\left[\begin{array}{ll}A & B \\ C & Q\end{array}\right]$

- robust for all params, 2 nd kind, couples to existing $\partial \Omega$ scatt. code

2nd kind 'tic-tac-toe' scheme

 sticking-out phased copies of walls \& 3×3 phased copies of $\partial \Omega$:

2nd kind 'tic-tac-toe' scheme

 sticking-out phased copies of walls \& 3×3 phased copies of $\partial \Omega$:

- Careful cancellations: B, C, Q have only interactions of distance ≥ 1
- Large dist increases convergence rate, i.e. large c in error $=O\left(e^{-c N}\right)$

Philosophy: sum neighboring image sources directly, so fields due to remainder of lattice have distant singularities

Conclusions

- robust 2nd-kind IE spectral schemes for periodic problems
- periodize via small \# extra degrees of freedom on cell walls
- scattering: densities on unbounded walls via Fourier rep.
- Bloch eigenvalue: kill corner interactions w/ tic-tac-toe
- more reliable and flexible than quasi-periodic Green's function:
- well-behaved at Wood's anomaly or spurious resonances
- high aspect-ratios, extends simply to 3D, unlike lattice sums

Future:

- multi-layer; insert FMM for inclusion; 3D ...

code: http://code.google.com/p/mpspack (B-Betcke, SIAM J. Sci. Comp. '10)
funding:
NSF DMS-0811005

B-Greengard, J. Comput. Phys. '10
B-Greengard, BIT, submitted
http://math.dartmouth.edu/~ahb

EXTRA SLIDES

Results: small inclusion

band structure: simply plot $\log \min \operatorname{sing}$. val. of M vs $\left(\omega, k_{x}, k_{y}\right) \ldots$

Results: small inclusion

band structure: simply plot \log min sing. val. of M vs $\left(\omega, k_{x}, k_{y}\right) \ldots$

0.1 sec per eval pre-store α, β coeffs 30 sec per const- ω slice
24×24 evals
$N=40 \quad M=20 \quad(160$ unknowns total $) \quad$ err 10^{-9}

