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Scattering in 2D from periodic grating

time-harmonic linear waves, obey (∆ + ω2)u = 0 Helmholtz, freq ω

incident plane wave ui(x) = eik·x wavevector k = (κi, ki) |k| = ω, unit speed
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2 obstacle, ΩZ = {x : (x + nd, y) ∈ Ω for some n ∈ Z}
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Ω

total field ut = ui + u, where

scattered field u solves BVP:

(∆ + ω2)u = 0 in R
2 \ ΩZ

u = −ui on ∂ΩZ Dirichlet

u ‘radiative’ as y → ±∞

ui quasi-periodic, so u is too:

u(x + d, y) = αu(x, y) Bloch α = eiκid

• classical BVP: acoustics, z-invariant Maxwell (Rayleigh 1907,. . . )
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Applications of periodic scattering problems

Gratings, filters, antennae, photonic crystals, meta-materials, solar. . .

multi-layer dielectric diffraction

grating, NIF lasers (LLNL)

2× 106 periods! (Barty ’04)

x
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y

high

aspect

ratio

plasmonic solar cell (Atwater ’10) Si microwires absorber (Kelzenberg ’10)

• Design optimization • Simulation at >103 inc. angles, frequencies

First step is our paradigm problem: 2D grating of isolated obstacles. . .
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Plane waves of same quasi-periodicity

ui is QP, but so are other plane waves, wavevectors (κn, kn):

κn = κi + 2πn/d kn = +
√

ω2 − κ2
n positive real or positive imag

– p. 4



Plane waves of same quasi-periodicity

ui is QP, but so are other plane waves, wavevectors (κn, kn):

κn = κi + 2πn/d kn = +
√

ω2 − κ2
n positive real or positive imag

π2   /d

κ(    ,k  )−1−1

k

0

ω
κ1

κ0(   ,k )0

(   ,k )1

κ2 κ
κ

κ−3 3κ−2

evanescent propagating evanescent

ui

θ
i

– p. 4



Plane waves of same quasi-periodicity

ui is QP, but so are other plane waves, wavevectors (κn, kn):

κn = κi + 2πn/d kn = +
√

ω2 − κ2
n positive real or positive imag

π2   /d

κ(    ,k  )−1−1

k

0

ω
κ1

κ0(   ,k )0

(   ,k )1

κ2 κ
κ

κ−3 3κ−2

evanescent propagating evanescent

ui

θ
i

kn real: propagating

kn imag: evanescent (decaying or growing in y)

kn = 0: Wood’s anomaly rapid change wrt ω, inc. angle θi (Wood 1902)
– p. 4



Plane waves of same quasi-periodicity

ui is QP, but so are other plane waves, wavevectors (κn, kn):

κn = κi + 2πn/d kn = +
√

ω2 − κ2
n positive real or positive imag

iu

π2   /d

κ(    ,k  )−1−1

k

0

ω

BRAGG ANGLES

κ1

κ0(   ,k )0

(   ,k )1

κ2 κ
κ

κ−3 3κ−2

evanescent propagating evanescent

kn real: propagating

kn imag: evanescent (decaying or growing in y)

kn = 0: Wood’s anomaly rapid change wrt ω, inc. angle θi (Wood 1902)
– p. 4



Rayleigh–Bloch radiation conditions
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d

prop. evan.

scattered u only outgoing or decaying

channel modes:

y > y0: upwards-prop. (or -decay)

u(x, y) =
∑

n∈Z

cne
iκnxeikn(y−y0)

y < −y0: downwards-prop. (or -decay)

u(x, y) =
∑

n∈Z

dne
iκnxeikn(−y−y0)

• cn, dn scattered amplitudes vertical channel/waveguide with QP BC

Numerical methods for BVP FDTD, FEM, C-method, coupled-wave,. . .

Piecewise homogeneous→ integral equations: discretize only interface ∂Ω
Adv: efficient rep. (small # unknowns), rad. cond. for free, high-order accurate
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Potential theory (review)

Single-, double-layer, x ∈ R
2, curve Γ:

v(x) =
∫

Γ
Φω(x, y)σ(y)dsy := (Sσ)(x)

u(x) =
∫

Γ
∂Φω

∂ny
(x, y)τ(y)dsy := (Dτ)(x)

Φω(x, y) := Φω(x− y) = i
4
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(1)
0 (ω|x− y|)

Helmholtz fundamental soln

a.k.a. free space Greens func SLP DLP
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Helmholtz fundamental soln

a.k.a. free space Greens func SLP DLP

Φ
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ρΦ (x,y)ω(x,y) ω

Γ Γ

Jump relations: limit as x→ Γ may depend on which side (±):

v± = Sσ
v±

n = D∗σ ∓ 1
2
σ

u± = Dτ ± 1
2
τ

u±
n = Tτ

S, D are integral ops with above kernels

but defined on C(Γ)→ C(Γ)

T has kernel
∂2Φω(x,y)

∂nx∂ny
, hypersingular
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BC & JR1,3: Aτ := (1
2
I + D − iωS)τ = −ui|∂Ω

2nd-kind IE on ∂Ω, D, S cpt so A sing. vals. 9 0

• why important? large scale problems. . .

condition # bnded, iterative solvers (GMRES) fast

Quadrature: nodes yj ∈ ∂Ω, weights wj , j = 1, . . . , N

Nyström discretization: N -by-N linear system,

Aτ = b unknown density vector τ ≈ {τ(yj)}Nj=1

• kernel weakly singular. E.g. for ∂Ω analytic, have spectral scheme

for f(s) + log(4 sin2 s
2
)g(s), f, g analytic 2π-periodic (Kress ’91)
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Single Dirichlet obstacle scattering (review)
represent scattered field u = (D − iωS)τ indirect CFIE on ∂Ω

BC & JR1,3: Aτ := (1
2
I + D − iωS)τ = −ui|∂Ω

2nd-kind IE on ∂Ω, D, S cpt so A sing. vals. 9 0

• why important? large scale problems. . .

condition # bnded, iterative solvers (GMRES) fast

Quadrature: nodes yj ∈ ∂Ω, weights wj , j = 1, . . . , N

Nyström discretization: N -by-N linear system,

Aτ = b unknown density vector τ ≈ {τ(yj)}Nj=1

• kernel weakly singular. E.g. for ∂Ω analytic, have spectral scheme

for f(s) + log(4 sin2 s
2
)g(s), f, g analytic 2π-periodic (Kress ’91)

How turn this into a periodic solver, compatible with modern IE tools?

• large-scale technology: corner and 3D quadratures, FMM accel. . .
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The standard way to periodize

replace kernel Φω(x) by Φω,QP(x) :=
∑

m∈Z
αmΦω(x−md)

thus integral operator A becomes AQP (is still 2nd kind)
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• Φω,QP(x) hard to evaluate accurately (McPhedran, Linton, Kurkcu–Reitich)

e.g. by lattice sums: Fourier-Bessel coeffs sl of regular part,

Φω,QP(x)− Φω(x) =
∑

l∈Z

slJl(ωr)eilθ, x = (r, θ) (∗)

slow; messy rotation algebra in 3D

• (∗) converges in disc⇒ high aspect ratio Ω is bad:

FMM based on cubes, tricky (Otani–Nishimura ’08) direct sum
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New way to periodize

use only free-space Φω, add densities on unit cell walls, enforce QP

fixes 3 problems: robust (no blow-up), no lattice sums, no aspect ratio issue
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u = (D − iωS)τ + uQP[ξ]
as before densities ξ on L and R

BC u = −ui on ∂Ω as before

new condition: vanishing ‘discrepancy’

∀y
{

f := uL − α−1uR = 0

fn := unL − α−1unR = 0

2 unknowns [τ ; ξ], 2 conditions⇒ solve 2× 2 linear operator system

Major issues

(1) How choose rep. uQP[ξ] so effect of ξ on [f ; fn] is ‘nice’ ? (2nd-kind)

(2) How handle densities on∞-long L, R ? (no decay as |y| → ∞ !)
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Trick (1): choose a good uQP[ξ] representation

Consider ξ
one SLP: L R

µ
effect on discrep: f = (SLL − α−1SRL)µ

self-interaction, badր
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Trick (1): choose a good uQP[ξ] representation

Consider ξ
one SLP: L R

µ
effect on discrep: f = (SLL − α−1SRL)µ

self-interaction, badր

Add phased

copy on R: L R

µ αµ f = (SLL−α−1SRL)µ+α(SLR−α−1SRR)µ
= (−α−1SRL + αSLR)µ distant only

fn = (−I − α−1D∗
RL + αD∗

LR)µ I/2’s add

Similarly need to control f via JRs, so. . .

Add DLP ν
on L, R,: L R

µ
ν

αµ
αν

[

f

fn

]

= Q

[

ν

−µ

]

=: Qξ

block operator Q = I + (interactions of distance ≥ d)

• If L, R bounded segments: Qξ = g is 2nd kind, rapidly convergent
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Trick (2): handle densities on y ∈ (−∞,∞)

Fourier transform in y-direction: handle µ̂, ν̂, f̂ , f̂n
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Trick (2): handle densities on y ∈ (−∞,∞)

Fourier transform in y-direction: handle µ̂, ν̂, f̂ , f̂n, use spectral rep,

Φω(x, y) =
i

4π

∫ ∞

−∞
eiky ei

√
ω2−k2 |x|

√
ω2 − k2

dk
exponential tails for |k| > ω

decay rate prop. to |x|

branch cut Re

Im k

k

k
Sommerfeld
contour:

−ω +ω

x

L R

Ω
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Fourier transform in y-direction: handle µ̂, ν̂, f̂ , f̂n, use spectral rep,

Φω(x, y) =
i

4π

∫ ∞

−∞
eiky ei

√
ω2−k2 |x|

√
ω2 − k2

dk
exponential tails for |k| > ω

decay rate prop. to |x|

branch cut Re

Im k

k

k
Sommerfeld
contour:

−ω +ω

x

L R

Ω

Gives FT-y densities on L (or R) wall at x = x0:

(ŜLµ̂)(x, y) =
i

2

∫ ∞

−∞
eiky ei

√
ω2−k2 |x−x0|
√

ω2 − k2
µ̂(k) dk

(D̂Lν̂)(x, y) =
sign(x− x0)

2

∫ ∞

−∞
eiky ei

√
ω2−k2 |x−x0| ν̂(k) dk

• same JRs as before; µ̂(k), ν̂(k) affect only f̂(k), f̂n(k) diagonal in k
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k-space quadrature on Sommerfeld contour
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j = 1, . . . ,M

sample Re k with periodic trapezoid rule, Im k is scaled tanh curve

• exponentially convergent as h→ 0, K →∞ (beats nodes on real axis!)
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k-space quadrature on Sommerfeld contour
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−ω +ω

k

h

K

−K

nodes kj

weights wj

j = 1, . . . ,M

sample Re k with periodic trapezoid rule, Im k is scaled tanh curve

• exponentially convergent as h→ 0, K →∞ (beats nodes on real axis!)

Unknowns σ̂(kj), τ̂(kj); enforce f̂(kj)=f̂ ′(kj)=0: Q̂ = I+ block diag.

Solve full (N+2M)-by-(N+2M) linear system:

[

A B̂

Ĉ Q̂

][

τ

ξ̂

]

=

[

b

0

] ← BC on ∂Ω

← FT-y of discrep.

• fill B̂ by evaluating Ŝ, D̂ Sommerfeld integrals at nodes yj ∈ ∂Ω

• fill Ĉ by spectral rep. of each source yj ∈ ∂Ω at walls L, R
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Results (10-line code in Matlab toolbox MPSpack by B–Betcke ’09)
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d = 1.6λ N = 70 M = 80 error 10−14 tfill = 0.13 s tsolve = 0.04 s

• improved convergence rate by summing 1 or 2 ∂Ω neighbors directly

• low condition # ∼ 102: solved to 14 digits in 55 GMRES iters.
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Handling Wood’s anomalies (kn → 0)

recall kn are Rayleigh–Bloch y-wavenumbers: +kn travels upwards, −kn downwards
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Handling Wood’s anomalies (kn → 0)

recall kn are Rayleigh–Bloch y-wavenumbers: +kn travels upwards, −kn downwards

Sommerfeld FT-y
densities µ̂(k), ν̂(k)
have poles at ±kn :
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Why?
i

2π(kn − k)

FT↔
{ eikny, y > 0

0, y < 0
or

{ 0, y > 0

−eikny, y < 0

interpretation for kn > 0:

Re

Im y>0

y<0

kn

R–B outgoing above

Re

Im

nk
y>0

y<0

incoming below

Crude fix: as kn → 0, grade nodes geometrically (sinh map) near 0 ?

• not robust: log blow-up of M , cond. # and ‖ξ̂‖ diverge!
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Well-conditioned robust scheme near Wood’s

deform contour to

be safe O(1) dist

from all poles:
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enforces nth R–B mode incoming below instead of outgoing above
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Well-conditioned robust scheme near Wood’s

deform contour to

be safe O(1) dist

from all poles:
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Sommerfeld contour
wrong side of
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Now solves BVP with wrong radiation condition!

enforces nth R–B mode incoming below instead of outgoing above

The fix: (inspiration: Mikhlin ’57)

• add plane-wave aeiκnxeikny to the u(x, y) rep.

• add new linear condition: nth amplitude incoming below = 0

implement by projection of u(·,−y0) onto nth Fourier mode

System now has extra row and column, solve for unknowns [τ ; ξ̂; a]

at Wood kn = 0: replace {eikny, e−ikny} by {1, y}, enforce “y” amplitude = 0

• result: cond. # and error bounded uniformly in params (ω, θi) . . .
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Results precisely at Wood’s anomaly

area = Inf
perim = Inf

L R

u
inc

 & Bragg directions

−1 0 1
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u total wrapped
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2

d = 1.6λ N = 70 M = 90 error 10−13 tfill+solve = 0.26 s cond. # 103

• previously impossible to solve this via integral equations! MOVIES
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Dielectric (transmission) obstacles

index n

index 1

(∆ + ω2)u = 0 in R
2 \ ΩZ

(∆ + n2ω2)u = 0 in ΩZ

u+ − u− = −ui
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n − u−

n = −ui
n

}

on ∂ΩZ

matching

(TM Maxwell)
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Dielectric (transmission) obstacles

index n

index 1

(∆ + ω2)u = 0 in R
2 \ ΩZ

(∆ + n2ω2)u = 0 in ΩZ

u+ − u− = −ui

u+
n − u−

n = −ui
n

}

on ∂ΩZ

matching

(TM Maxwell)

non-periodic rep: (Müller ’69, Rokhlin ’83)

u =

{ Dτ + Sσ in R
2 \ ΩZ

Diτ + Siσ in ΩZ

2nd kind Fredholm Aη = b, η =

[−τ

σ

]

, A = I +

[

D −Di Si − S

T − Ti D∗
i −D∗

]

• periodize just as before (add uQP[ξ] in exterior only)

shown: d = 8λ N = 230 M = 160 err 10−14 tfill+solve = 2.4 s cond. # 103
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Diffraction efficiencies vs inc. angle

Power fractions scattered into each transmitted/reflected Bragg order:
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d = 1.6λ error 10−12 3000 angles in 30 mins

• square-root type cusps at each Wood anomaly (dotted red)
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Results: high aspect ratio dielectric

−1 0 1
−6

−4

−2

0

2

4

height H = 10 d (24λ in interior)

if lattice sums were used:

would need > 10 neighbor copies of ∂Ω

to be summed directly (> 102 in 3D)

d = 1.6λ N = 500 M = 330

error 10−13 tfill = 9 s tsolve = 4 s

M = O(ωH) but prefactor small
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Obstacle intersecting artificial unit cell walls

R
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B

B and C blocks break
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Obstacle intersecting artificial unit cell walls

R

Ω

L

C C

B and C blocks break

directly sum ∂Ω neighbors in u rep.:

cancels intersecting C terms!
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Obstacle intersecting artificial unit cell walls

R

Ω

L

C C

Ω

RL

C C

• L–R separation 3d, Bloch phase α3

• makes walls ‘invisible’ in scheme

Why works? Lemma (non-Wood case):

For L–R separation a whole # periods,

solution density η equals that when

periodizing in standard way via Φω,QP

Pf: Schur complement of upper-left block,

AQPη = (A−BQ−1C)η = b
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• L–R separation 3d, Bloch phase α3

• makes walls ‘invisible’ in scheme

Why works? Lemma (non-Wood case):

For L–R separation a whole # periods,

solution density η equals that when

periodizing in standard way via Φω,QP

Pf: Schur complement of upper-left block,

AQPη = (A−BQ−1C)η = b
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Preliminary results: multi-layer media

Periodic Dirichlet interface below dielectric inclusions:

x

y

d)

−1.5 −1 −0.5 0 0.5 1 1.5
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−0.5

0

0.5

1

d = 3.2λ at Wood’s anomaly error 10−4 . . . low-order open-segment quadrature

• try high-order quadrature w/ endpoints (Alpert, Kapur–Rokhlin,. . . )
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Idea also good for band structure (taste)

Ω
index n

index 1

U

e
1

e
2

Doubly-periodic QP phases (α, β)

EVP: seek Bloch eigen-triples (ω, α, β)

• App: photonic crystal bandgap design

May periodize by replacing A by AQP. . .
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Idea also good for band structure (taste)

Ω
index n

index 1

U

e
1

e
2

Doubly-periodic QP phases (α, β)

EVP: seek Bloch eigen-triples (ω, α, β)

• App: photonic crystal bandgap design

May periodize by replacing A by AQP. . .

Thm: if AQP exists, Null AQP 6= {0} ⇔ (ω, α, β) Bloch eigenvalue

proof: QP Calderón projectors, flipping inside-out to get transmission BVP

. . . but Φω,QP has poles at resonances of empty unit cell: scheme fails

Fix: as before, discard AQP in favor of larger system

[

A B

C Q

]

• robust for all params, 2nd kind, couples to existing ∂Ω scatt. code
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2nd kind ‘tic-tac-toe’ scheme (B–Greengard, JCP, 2010)

sticking-out phased copies of walls & 3x3 phased copies of ∂Ω:

directly summed

singularities in field

rep by L,B densities

Ω

U
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2nd kind ‘tic-tac-toe’ scheme (B–Greengard, JCP, 2010)

sticking-out phased copies of walls & 3x3 phased copies of ∂Ω:

directly summed

singularities in field

rep by L,B densities

Ω

U

• Careful cancellations: B,C,Q have only interactions of distance ≥ 1
• Large dist increases convergence rate, i.e. large c in error = O(e−cN)

Philosophy: sum neighboring image sources directly, so fields

due to remainder of lattice have distant singularities
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Conclusions

• robust 2nd-kind IE spectral schemes for periodic problems

• periodize via small # extra degrees of freedom on cell walls

– scattering: densities on unbounded walls via Fourier rep.

– Bloch eigenvalue: kill corner interactions w/ tic-tac-toe

• more reliable and flexible than quasi-periodic Green’s function:

– well-behaved at Wood’s anomaly or spurious resonances

– high aspect-ratios, extends simply to 3D, unlike lattice sums

Future:

• multi-layer; insert FMM for inclusion; 3D . . .

B

L

z x
y

code: http://code.google.com/p/mpspack

(B–Betcke, SIAM J. Sci. Comp. ’10)

funding: NSF DMS-0811005

B–Greengard, J. Comput. Phys. ’10

B–Greengard, BIT, submitted

http://math.dartmouth.edu/∼ahb
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EXTRA SLIDES
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Results: small inclusion

band structure: simply plot log min sing. val. of M vs (ω, kx, ky) . . .
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Results: small inclusion

band structure: simply plot log min sing. val. of M vs (ω, kx, ky) . . .

0.1 sec per eval

pre-store α, β coeffs

30 sec per

const-ω slice

24× 24 evals

N = 40 M = 20 (160 unknowns total) err 10−9
MOVIE
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