A new integral representation for quasi-periodic scattering problems in two dimensions

IMA workshop, Aug 4, 2010

Alex Barnett (Dartmouth College) joint work with Leslie Greengard (Courant Institute, NYU)

time-harmonic linear waves, obey $(\Delta + \omega^2)u = 0$ incident plane wave $u^i(\mathbf{x}) = e^{i\mathbf{k}\cdot\mathbf{x}}$ wavevector $\mathbf{k} = (\kappa^i, k^i)$ $|\mathbf{k}| = \omega$, unit speed $\Omega \subset \mathbb{R}^2$ obstacle, $\Omega_{\mathbb{Z}} = \{\mathbf{x} : (x + nd, y) \in \Omega \text{ for some } n \in \mathbb{Z}\}$

time-harmonic linear waves, obey $(\Delta + \omega^2)u = 0$ incident plane wave $u^i(\mathbf{x}) = e^{i\mathbf{k}\cdot\mathbf{x}}$ wavevector $\mathbf{k} = (\kappa^i, k^i)$ $|\mathbf{k}| = \omega$, unit speed $\Omega \subset \mathbb{R}^2$ obstacle, $\Omega_{\mathbb{Z}} = \{\mathbf{x} : (x + nd, y) \in \Omega \text{ for some } n \in \mathbb{Z}\}$

total field $u^t = u^i + u$, where scattered field u solves BVP:

$$(\Delta + \omega^2)u = 0$$
 in $\mathbb{R}^2 \setminus \overline{\Omega_Z}$
 $u = -u^i$ on $\partial \Omega_Z$ Dirichlet
 u 'radiative' as $y \to \pm \infty$

time-harmonic linear waves, obey $(\Delta + \omega^2)u = 0$ incident plane wave $u^i(\mathbf{x}) = e^{i\mathbf{k}\cdot\mathbf{x}}$ wavevector $\mathbf{k} = (\kappa^i, k^i)$ $|\mathbf{k}| = \omega$, unit speed $\Omega \subset \mathbb{R}^2$ obstacle, $\Omega_{\mathbb{Z}} = \{\mathbf{x} : (x + nd, y) \in \Omega \text{ for some } n \in \mathbb{Z}\}$

total field $u^t = u^i + u$, where scattered field u solves BVP:

$$(\Delta + \omega^2)u = 0$$
 in $\mathbb{R}^2 \setminus \overline{\Omega_Z}$
 $u = -u^i$ on $\partial \Omega_Z$ Dirichlet
 u 'radiative' as $y \to \pm \infty$

 u^i quasi-periodic, so u is too: $u(x+d,y) = \alpha u(x,y)$ Bloch $\alpha = e^{i\kappa^i d}$

time-harmonic linear waves, obey $(\Delta + \omega^2)u = 0$ incident plane wave $u^i(\mathbf{x}) = e^{i\mathbf{k}\cdot\mathbf{x}}$ wavevector $\mathbf{k} = (\kappa^i, k^i)$ $|\mathbf{k}| = \omega$, unit speed $\Omega \subset \mathbb{R}^2$ obstacle, $\Omega_{\mathbb{Z}} = \{\mathbf{x} : (x + nd, y) \in \Omega \text{ for some } n \in \mathbb{Z}\}$

total field $u^t = u^i + u$, where scattered field u solves BVP:

$$(\Delta + \omega^2)u = 0 \quad \text{in } \mathbb{R}^2 \setminus \overline{\Omega_{\mathbb{Z}}}$$

 $u = -u^i \quad \text{on } \partial \Omega_{\mathbb{Z}} \quad \text{Dirichlet}$
 $u \quad \text{`radiative' as } y \to \pm \infty$

 u^i quasi-periodic, so u is too:

 $u(x+d,y) = \alpha u(x,y)$ Bloch $\alpha = e^{i\kappa^i d}$

• classical BVP: acoustics, *z*-invariant Maxwell

(Rayleigh 1907,...)

Gratings, filters, antennae, photonic crystals, meta-materials, solar...

Gratings, filters, antennae, photonic crystals, meta-materials, solar...

 $\begin{array}{l} \mbox{multi-layer dielectric diffraction} \\ \mbox{grating, NIF lasers (LLNL)} \\ \mbox{2×10^6 periods!} & (\mbox{Barty '04}) \end{array}$

Gratings, filters, antennae, photonic crystals, meta-materials, solar...

multi-layer dielectric diffraction grating, NIF lasers (LLNL) 2×10^6 periods! (Barty '04)

plasmonic solar cell (Atwater '10)

high aspect ratio

Si microwires absorber (Kelzenberg '10)

Design optimization • Simulation at $>10^3$ inc. angles, frequencies

Gratings, filters, antennae, photonic crystals, meta-materials, solar...

multi-layer dielectric diffractiongrating, NIF lasers (LLNL) 2×10^6 periods!(Barty '04)

plasmonic solar cell (Atwater '10)

high aspect ratio

Si microwires absorber (Kelzenberg '10)

Design optimization
 Simulation at >10³ inc. angles, frequencies
 First step is our paradigm problem: 2D grating of isolated obstacles...

 u^i is QP, but so are other plane waves, wavevectors (κ_n, k_n) : $\kappa_n = \kappa^i + 2\pi n/d$ $k_n = +\sqrt{\omega^2 - \kappa_n^2}$ positive real or positive imag

 u^i is QP, but so are other plane waves, wavevectors (κ_n, k_n) : $\kappa_n = \kappa^i + 2\pi n/d$ $k_n = +\sqrt{\omega^2 - \kappa_n^2}$ positive real or positive imag

 u^i is QP, but so are other plane waves, wavevectors (κ_n, k_n) : $\kappa_n = \kappa^i + 2\pi n/d$ $k_n = +\sqrt{\omega^2 - \kappa_n^2}$ positive real or positive imag

 k_n real:propagating k_n imag:evanescent (decaying or growing in y) $k_n = 0$:Wood's anomalyrapid change wrt ω , inc. angle θ^i (Wood 1902)

 u^i is QP, but so are other plane waves, wavevectors (κ_n, k_n) : $\kappa_n = \kappa^i + 2\pi n/d$ $k_n = +\sqrt{\omega^2 - \kappa_n^2}$ positive real or positive imag

 k_n real:propagating k_n imag:evanescent (decaying or growing in y) $k_n = 0$:Wood's anomalyrapid change wrt ω , inc. angle θ^i (Wood 1902)

Rayleigh–Bloch radiation conditions

scattered *u* only outgoing or decaying channel modes:

$$y > y_0$$
: upwards-prop. (or -decay)

$$u(x,y) = \sum_{n \in \mathbb{Z}} c_n e^{i\kappa_n x} e^{ik_n(y-y_0)}$$

 $y < -y_0$: downwards-prop. (or -decay)

$$u(x,y) = \sum_{n \in \mathbb{Z}} d_n e^{i\kappa_n x} e^{ik_n(-y-y_0)}$$

Rayleigh–Bloch radiation conditions

• c_n, d_n scattered amplitudes

scattered u only outgoing or decaying channel modes:

$$y > y_0$$
: upwards-prop. (or -decay)

$$u(x,y) = \sum_{n \in \mathbb{Z}} c_n e^{i\kappa_n x} e^{ik_n(y-y_0)}$$

 $y < -y_0$: downwards-prop. (or -decay)

$$u(x,y) = \sum_{n \in \mathbb{Z}} d_n e^{i\kappa_n x} e^{ik_n(-y-y_0)}$$

vertical channel/waveguide with QP BC

Rayleigh–Bloch radiation conditions

scattered u only outgoing or decaying channel modes:

$$y > y_0$$
: upwards-prop. (or -decay)

$$u(x,y) = \sum_{n \in \mathbb{Z}} c_n e^{i\kappa_n x} e^{ik_n(y-y_0)}$$

 $y < -y_0$: downwards-prop. (or -decay)

$$u(x,y) = \sum_{n \in \mathbb{Z}} d_n e^{i\kappa_n x} e^{ik_n(-y-y_0)}$$

 c_n, d_n scattered amplitudes vertical channel/waveguide with QP BC
 Numerical methods for BVP FDTD, FEM, C-method, coupled-wave,...
 Piecewise homogeneous → integral equations: discretize only interface ∂Ω Adv: efficient rep. (small # unknowns), rad. cond. for free, high-order accurate

Potential theory (review)

Single-, double-layer,
$$\mathbf{x} \in \mathbb{R}^2$$
, curve Γ :
 $v(\mathbf{x}) = \int_{\Gamma} \Phi_{\omega}(\mathbf{x}, \mathbf{y}) \sigma(\mathbf{y}) ds_{\mathbf{y}} := (S\sigma)(\mathbf{x})$
 $u(\mathbf{x}) = \int_{\Gamma} \frac{\partial \Phi_{\omega}}{\partial n_{\mathbf{y}}} (\mathbf{x}, \mathbf{y}) \tau(\mathbf{y}) ds_{\mathbf{y}} := (D\tau)(\mathbf{x})$
 $\Phi_{\omega}(\mathbf{x}, \mathbf{y}) := \Phi_{\omega}(\mathbf{x} - \mathbf{y}) = \frac{i}{4} H_0^{(1)}(\omega |\mathbf{x} - \mathbf{y}|)$
Helmholtz fundamental soln
a.k.a. free space Greens func

Potential theory (review)

Single-, double-layer,
$$\mathbf{x} \in \mathbb{R}^2$$
, curve Γ :
 $v(\mathbf{x}) = \int_{\Gamma} \Phi_{\omega}(\mathbf{x}, \mathbf{y})\sigma(\mathbf{y})ds_{\mathbf{y}} := (S\sigma)(\mathbf{x})$
 $u(\mathbf{x}) = \int_{\Gamma} \frac{\partial \Phi_{\omega}}{\partial n_{\mathbf{y}}}(\mathbf{x}, \mathbf{y})\tau(\mathbf{y})ds_{\mathbf{y}} := (D\tau)(\mathbf{x})$
 $\Phi_{\omega}(\mathbf{x}, \mathbf{y}) := \Phi_{\omega}(\mathbf{x} - \mathbf{y}) = \frac{i}{4}H_0^{(1)}(\omega|\mathbf{x} - \mathbf{y}|)$
Helmholtz fundamental soln
a.k.a. free space Greens func

Jump relations: limit as $\mathbf{x} \to \Gamma$ may depend on which side (±):

 $v^{\pm} = S\sigma$ $v_n^{\pm} = D^*\sigma \mp \frac{1}{2}\sigma$ $u^{\pm} = D\tau \pm \frac{1}{2}\tau$ $u_n^{\pm} = T\tau$

S,D are integral ops with above kernels but defined on $C(\Gamma) \to C(\Gamma)$

T has kernel $\frac{\partial^2 \Phi_{\omega}(\mathbf{x}, \mathbf{y})}{\partial n_{\mathbf{x}} \partial n_{\mathbf{y}}}$, hypersingular

represent scattered field $u = (\mathcal{D} - i\omega \mathcal{S})\tau$ indirect CFIE on $\partial\Omega$

represent scattered field $u = (\mathcal{D} - i\omega \mathcal{S})\tau$ indirect CFIE on $\partial \Omega$

BC & JR1,3: $A\tau := (\frac{1}{2}I + D - i\omega S)\tau = -u^{i}|_{\partial\Omega}$

2nd-kind IE on $\partial \Omega$, *D*, *S* cpt so *A* sing. vals. $\not\rightarrow 0$

• why important? large scale problems... condition # bnded, iterative solvers (GMRES) fast

represent scattered field $u = (\mathcal{D} - i\omega \mathcal{S})\tau$ indirect CFIE on $\partial \Omega$

BC & JR1,3: $A\tau := (\frac{1}{2}I + D - i\omega S)\tau = -u^i|_{\partial\Omega}$

2nd-kind IE on ∂Ω, D, S cpt so A sing. vals. → 0
why important? large scale problems... condition # bnded, iterative solvers (GMRES) fast

Quadrature: nodes $\mathbf{y}_j \in \partial \Omega$, weights w_j , j = 1, ..., NNyström discretization: N-by-N linear system,

 $A \boldsymbol{\tau} = \boldsymbol{b}$ unknown density vector $\boldsymbol{\tau} \approx \{\tau(\mathbf{y}_i)\}_{i=1}^N$

• kernel weakly singular. E.g. for $\partial\Omega$ analytic, have spectral scheme for $f(s) + \log(4\sin^2 \frac{s}{2})g(s)$, f, g analytic 2π -periodic (Kress '91)

represent scattered field $u = (\mathcal{D} - i\omega \mathcal{S})\tau$ indirect CFIE on $\partial \Omega$

BC & JR1,3: $A\tau := (\frac{1}{2}I + D - i\omega S)\tau = -u^{i}|_{\partial\Omega}$

2nd-kind IE on ∂Ω, D, S cpt so A sing. vals. → 0
why important? large scale problems... condition # bnded, iterative solvers (GMRES) fast

Quadrature: nodes $\mathbf{y}_j \in \partial \Omega$, weights w_j , j = 1, ..., NNyström discretization: N-by-N linear system,

 $A \boldsymbol{\tau} = \boldsymbol{b}$ unknown density vector $\boldsymbol{\tau} \approx \{\tau(\mathbf{y}_i)\}_{i=1}^N$

• kernel weakly singular. E.g. for $\partial\Omega$ analytic, have spectral scheme for $f(s) + \log(4\sin^2 \frac{s}{2})g(s)$, f, g analytic 2π -periodic (Kress '91)

How turn this into a *periodic* solver, compatible with modern IE tools?
large-scale technology: corner and 3D quadratures, FMM accel...

replace kernel $\Phi_{\omega}(\mathbf{x})$ by $\Phi_{\omega,\text{QP}}(\mathbf{x}) := \sum_{m \in \mathbb{Z}} \alpha^m \Phi_{\omega}(\mathbf{x} - m\mathbf{d})$

thus integral operator A becomes A_{QP} (is still 2nd kind)

replace kernel $\Phi_{\omega}(\mathbf{x})$ by $\Phi_{\omega,QP}(\mathbf{x}) := \sum_{m \in \mathbb{Z}} \alpha^m \Phi_{\omega}(\mathbf{x} - md)$ thus integral operator A becomes A_{QP} (is still 2nd kind) Three problems

not robust: Φ_{ω,QP} does not exist for Wood's anomaly params (ω, θⁱ) blows up ~ (ω – ω_{Wood})^{-1/2}, round-off error too ... yet soln u well-behaved! can't fix as for surfaces via half-space Φ_{ω,QP} (Chandler-Wilde, Arens)

replace kernel $\Phi_{\omega}(\mathbf{x})$ by $\Phi_{\omega,QP}(\mathbf{x}) := \sum_{m \in \mathbb{Z}} \alpha^m \Phi_{\omega}(\mathbf{x} - md)$ thus integral operator A becomes A_{QP} (is still 2nd kind) Three problems

- not robust: Φ_{ω,QP} does not exist for Wood's anomaly params (ω, θⁱ) blows up ~ (ω ω_{Wood})^{-1/2}, round-off error too ... yet soln u well-behaved! can't fix as for surfaces via half-space Φ_{ω,QP} (Chandler-Wilde, Arens)
- $\Phi_{\omega,QP}(\mathbf{x})$ hard to evaluate accurately (McPhedran, Linton, Kurkcu–Reitich) e.g. by lattice sums: Fourier-Bessel coeffs s_l of regular part,

$$\Phi_{\omega,\mathbf{QP}}(\mathbf{x}) - \Phi_{\omega}(\mathbf{x}) = \sum_{l \in \mathbb{Z}} s_l J_l(\omega r) e^{il\theta}, \qquad \mathbf{x} = (r,\theta) \qquad (*)$$

slow; messy rotation algebra in 3D

replace kernel $\Phi_{\omega}(\mathbf{x})$ by $\Phi_{\omega,QP}(\mathbf{x}) := \sum_{m \in \mathbb{Z}} \alpha^m \Phi_{\omega}(\mathbf{x} - md)$ thus integral operator A becomes A_{QP} (is still 2nd kind) Three problems

- not robust: Φ_{ω,QP} does not exist for Wood's anomaly params (ω, θⁱ) blows up ~ (ω ω_{Wood})^{-1/2}, round-off error too ... yet soln u well-behaved! can't fix as for surfaces via half-space Φ_{ω,QP} (Chandler-Wilde, Arens)
- $\Phi_{\omega,QP}(\mathbf{x})$ hard to evaluate accurately (McPhedran, Linton, Kurkcu–Reitich) e.g. by lattice sums: Fourier-Bessel coeffs s_l of regular part,

$$\Phi_{\omega,\mathbf{QP}}(\mathbf{x}) - \Phi_{\omega}(\mathbf{x}) = \sum_{l \in \mathbb{Z}} s_l J_l(\omega r) e^{il\theta}, \qquad \mathbf{x} = (r,\theta) \qquad (*)$$

slow; messy rotation algebra in 3D

• (*) converges in disc \Rightarrow high aspect ratio Ω is bad: FMM based on cubes, tricky (Otani–Nishimura '08)

use only free-space Φ_{ω} , add densities on unit cell walls, enforce QP fixes 3 problems: robust (no blow-up), no lattice sums, no aspect ratio issue

use only free-space Φ_{ω} , add densities on unit cell walls, enforce QP fixes 3 problems: robust (no blow-up), no lattice sums, no aspect ratio issue

$$u = (\mathcal{D} - i\omega \mathcal{S})\tau + u_{QP}[\xi]$$

as before densities ξ on L and R
BC $u = -u^i$ on $\partial\Omega$ as before

use only free-space Φ_{ω} , add densities on unit cell walls, enforce QP fixes 3 problems: robust (no blow-up), no lattice sums, no aspect ratio issue

 $u = (\mathcal{D} - i\omega \mathcal{S})\tau + u_{QP}[\xi]$ as before densities ξ on L and RBC $u = -u^i$ on $\partial\Omega$ as before new condition: vanishing 'discrepancy' $\forall y \begin{cases} f := u_L - \alpha^{-1}u_R = 0\\ f_n := u_{nL} - \alpha^{-1}u_{nR} = 0 \end{cases}$

2 unknowns $[\tau; \xi]$, 2 conditions \Rightarrow solve 2 \times 2 linear operator system

use only free-space Φ_{ω} , add densities on unit cell walls, enforce QP fixes 3 problems: robust (no blow-up), no lattice sums, no aspect ratio issue

 $u = (\mathcal{D} - i\omega \mathcal{S})\tau + u_{QP}[\xi]$ as before densities ξ on L and RBC $u = -u^i$ on $\partial\Omega$ as before new condition: vanishing 'discrepancy' $\forall y \begin{cases} f := u_L - \alpha^{-1}u_R = 0\\ f_n := u_{nL} - \alpha^{-1}u_{nR} = 0 \end{cases}$

2 unknowns $[\tau; \xi]$, 2 conditions \Rightarrow solve 2 \times 2 linear operator system Major issues (1) How choose rep. at $[\xi]$ so effect of ξ or $[f, f_{i}]$ is 'pice' 2 (2) this

- (1) How choose rep. $u_{QP}[\xi]$ so effect of ξ on $[f; f_n]$ is 'nice'? (2nd-kind)
- (2) How handle densities on ∞ -long L, R? (no decay as $|y| \to \infty$!)

Trick (1): choose a good $u_{\mathbf{QP}}[\xi]$ representation

Consider ξ one SLP:

effect on discrep: $f = (S_{LL} - \alpha^{-1}S_{RL})\mu$ self-interaction, bad

Trick (1): choose a good $u_{oP}[\xi]$ representation

Consider ξ μ \sim effect on discrep: $f = (S_{LL} - \alpha^{-1}S_{RL})\mu$ one SLP:LRself-interaction, bad \checkmark

$$f = (S_{LL} - \alpha^{-1} S_{RL})\mu + \alpha (S_{LR} - \alpha^{-1} S_{RR})\mu$$

= $(-\alpha^{-1} S_{RL} + \alpha S_{LR})\mu$ distant only

Trick (1): choose a good $u_{oP}[\xi]$ representation

Consider ξ μ \sim effect on discrep: $f = (S_{LL} - \alpha^{-1}S_{RL})\mu$ one SLP:LRself-interaction, bad \checkmark

Add phased copy on R:

$$\begin{array}{c}
\mu \\
L
\end{array}$$

 $f = (S_{LL} - \alpha^{-1}S_{RL})\mu + \alpha(S_{LR} - \alpha^{-1}S_{RR})\mu$ = $(-\alpha^{-1}S_{RL} + \alpha S_{LR})\mu$ distant only $f_n = (-I - \alpha^{-1}D_{RL}^* + \alpha D_{LR}^*)\mu$ I/2's add

Trick (1): choose a good $u_{OP}[\xi]$ representation

Consider ξ one SLP:

$$\begin{array}{c} \mu \\ f \\ L \\ \end{array} \\ R \\ \end{array}$$

effect on discrep: $f = (S_{LL} - \alpha^{-1}S_{RL})\mu$ self-interaction, bad */*

Add phased copy on R:

 $\int \alpha \mu = (S_{LL} - \alpha^{-1} S_{RL}) \mu + \alpha (S_{LR} - \alpha^{-1} S_{RR}) \mu$ $= (-\alpha^{-1} S_{RL} + \alpha S_{LR}) \mu \qquad \text{distant only}$ $f_n = (-I - \alpha^{-1} D_{RL}^* + \alpha D_{LR}^*) \mu \quad I/2\text{'s add}$

Similarly need to control f via JRs, so...

Add DLP ν on *L*, *R*,:

$$\begin{array}{c}
\mu \\
\nu \\
L
\end{array}$$

$$\begin{bmatrix} f \\ f_n \end{bmatrix} = Q \begin{bmatrix} \nu \\ -\mu \end{bmatrix} =: Q$$

block operator Q = I + (interactions of distance $\geq d)$

• If L, R bounded segments: $Q\xi = g$ is 2nd kind, rapidly convergent

Trick (2): handle densities on $y \in (-\infty, \infty)$

Fourier transform in y-direction: handle $\hat{\mu}$, $\hat{\nu}$, \hat{f} , \hat{f}_n

Trick (2): handle densities on $y \in (-\infty, \infty)$

Fourier transform in y-direction: handle $\hat{\mu}$, $\hat{\nu}$, \hat{f} , \hat{f}_n , use spectral rep,

$$\Phi_{\omega}(x,y) = \frac{i}{4\pi} \int_{-\infty}^{\infty} e^{iky} \frac{e^{i\sqrt{\omega^2 - k^2} |x|}}{\sqrt{\omega^2 - k^2}} dk$$

exponential tails for $|k| > \omega$ decay rate prop. to |x|

Trick (2): handle densities on $y \in (-\infty, \infty)$

Fourier transform in y-direction: handle $\hat{\mu}$, $\hat{\nu}$, \hat{f} , \hat{f}_n , use spectral rep,

$$\Phi_{\omega}(x,y) = \frac{i}{4\pi} \int_{-\infty}^{\infty} e^{iky} \frac{e^{i\sqrt{\omega^2 - k^2}|x|}}{\sqrt{\omega^2 - k^2}} dk$$

exponential tails for $|k| > \omega$ decay rate prop. to |x|

Gives FT-y densities on L (or R) wall at $x = x_0$:

$$(\hat{\mathcal{S}}_{L}\hat{\mu})(x,y) = \frac{i}{2} \int_{-\infty}^{\infty} e^{iky} \frac{e^{i\sqrt{\omega^{2}-k^{2}}|x-x_{0}|}}{\sqrt{\omega^{2}-k^{2}}} \hat{\mu}(k) dk (\hat{\mathcal{D}}_{L}\hat{\nu})(x,y) = \frac{\operatorname{sign}(x-x_{0})}{2} \int_{-\infty}^{\infty} e^{iky} e^{i\sqrt{\omega^{2}-k^{2}}|x-x_{0}|} \hat{\nu}(k) dk$$

• same JRs as before; $\hat{\mu}(k), \hat{\nu}(k)$ affect only $f(k), f_n(k)$ diagonal in

k-space quadrature on Sommerfeld contour

nodes k_j weights w_j $j = 1, \dots, M$

sample Re k with periodic trapezoid rule, Im k is scaled tanh curve • exponentially convergent as $h \to 0, K \to \infty$ (beats nodes on real axis!)

k-space quadrature on Sommerfeld contour

sample Re k with periodic trapezoid rule, Im k is scaled tanh curve • exponentially convergent as $h \to 0, K \to \infty$ (beats nodes on real axis!)

Unknowns $\hat{\sigma}(k_j)$, $\hat{\tau}(k_j)$; enforce $\hat{f}(k_j) = \hat{f}'(k_j) = 0$: $\hat{Q} = I + \text{block diag.}$

k-space quadrature on Sommerfeld contour

nodes k_j weights w_j $j = 1, \dots, M$

sample Re k with periodic trapezoid rule, Im k is scaled tanh curve • exponentially convergent as $h \to 0$, $K \to \infty$ (beats nodes on real axis!) Unknowns $\hat{\sigma}(k_j)$, $\hat{\tau}(k_j)$; enforce $\hat{f}(k_j)=\hat{f}'(k_j)=0$: $\hat{Q} = I+$ block diag. Solve full (N+2M)-by-(N+2M) linear system:

$$\begin{bmatrix} A & \hat{B} \\ \hat{C} & \hat{Q} \end{bmatrix} \begin{bmatrix} \tau \\ \hat{\xi} \end{bmatrix} = \begin{bmatrix} b \\ 0 \end{bmatrix} \qquad \begin{array}{c} \leftarrow \text{BC on } \partial \Omega \\ \leftarrow \text{FT-}y \text{ of discrep} \end{bmatrix}$$

fill by evaluating Ŝ, D Sommerfeld integrals at nodes y_j ∈ ∂Ω
fill Ĉ by spectral rep. of each source y_i ∈ ∂Ω at walls L, R

Results (10-line code in Matlab toolbox MPSpack by B–Betcke '09)

 $t_{\rm fill} = 0.13 \, {\rm s}$ $t_{\rm solve} = 0.04 \, {\rm s}$

Results (10-line code in Matlab toolbox MPSpack by B–Betcke '09)

 $d = 1.6\lambda$ N = 70 M = 80 error 10^{-14} $t_{\text{fill}} = 0.13$ s $t_{\text{solve}} = 0.04$ s

Results (10-line code in Matlab toolbox MPSpack by B–Betcke '09)

 $d = 1.6\lambda$ N = 70 M = 80 error 10^{-14} $t_{\text{fill}} = 0.13$ s $t_{\text{solve}} = 0.04$ s

• improved convergence rate by summing 1 or 2 $\partial \Omega$ neighbors directly

• low condition $\# \sim 10^2$: solved to 14 digits in 55 GMRES iters.

recall k_n are Rayleigh-Bloch y-wavenumbers: $+k_n$ travels upwards, $-k_n$ downwards

recall k_n are Rayleigh–Bloch y-wavenumbers: $+k_n$ travels upwards, $-k_n$ downwards

Sommerfeld FT-*y* densities $\hat{\mu}(k)$, $\hat{\nu}(k)$ have poles at $\pm k_n$:

Why?

recall k_n are Rayleigh–Bloch y-wavenumbers: $+k_n$ travels upwards, $-k_n$ downwards

recall k_n are Rayleigh–Bloch y-wavenumbers: $+k_n$ travels upwards, $-k_n$ downwards

Crude fix: as $k_n \to 0$, grade nodes geometrically (sinh map) near 0 ? • not robust: log blow-up of M, cond. # and $\|\hat{\xi}\|$ diverge!

Well-conditioned robust scheme near Wood's

deform contour to be safe O(1) dist from all poles:

Now solves BVP with wrong radiation condition! enforces n^{th} R–B mode incoming below instead of outgoing above

Well-conditioned robust scheme near Wood's

deform contour to be safe O(1) dist from all poles:

Now solves BVP with wrong radiation condition! enforces nth R–B mode incoming below instead of outgoing above The fix: (inspiration: Mikhlin '57)

- add plane-wave $ae^{i\kappa_n x}e^{ik_n y}$ to the u(x, y) rep.
- add new linear condition: n^{th} amplitude incoming below = 0 implement by projection of $u(\cdot, -y_0)$ onto n^{th} Fourier mode

System now has extra row and column, solve for unknowns $[\tau; \hat{\xi}; a]$ at Wood $k_n = 0$: replace $\{e^{ik_n y}, e^{-ik_n y}\}$ by $\{1, y\}$, enforce "y" amplitude = 0

• result: cond. # and error bounded uniformly in params $(\omega, \theta^i) \dots$

Results precisely at Wood's anomaly

 $d = 1.6\lambda$ N = 70 M = 90 error 10^{-13} $t_{\text{fill+solve}} = 0.26$ s cond. # 10^3 • previously impossible to solve this via integral equations! MOVIES

$$\begin{aligned} &(\Delta + \omega^2)u &= 0 & \text{in } \mathbb{R}^2 \setminus \overline{\Omega_{\mathbb{Z}}} \\ &(\Delta + n^2 \omega^2)u &= 0 & \text{in } \Omega_{\mathbb{Z}} \end{aligned} \\ \begin{aligned} &u^+ - u^- &= -u^i \\ &u^+_n - u^-_n &= -u^i_n \end{aligned} \right\} \text{ on } \partial \Omega_{\mathbb{Z}} \end{aligned} \qquad \begin{aligned} & \text{matching} \\ &\text{(TM Maxwell)} \end{aligned}$$

$$(\Delta + \omega^2)u = 0 \quad \text{in } \mathbb{R}^2 \setminus \overline{\Omega_{\mathbb{Z}}}$$

$$(\Delta + n^2 \omega^2)u = 0 \quad \text{in } \Omega_{\mathbb{Z}}$$

$$u^+ - u^- = -u^i \\ u^+_n - u^-_n = -u^i_n \end{cases} \text{on } \partial \Omega_{\mathbb{Z}} \quad \begin{array}{l} \text{matching} \\ \text{(TM Maxwell)} \end{array}$$

non-periodic rep: (Müller '69, Rokhlin '83) $u = \begin{cases} \mathcal{D}\tau + \mathcal{S}\sigma & \text{in } \mathbb{R}^2 \setminus \overline{\Omega_{\mathbb{Z}}} \\ \mathcal{D}_i \tau + \mathcal{S}_i \sigma & \text{in } \Omega_{\mathbb{Z}} \end{cases}$

2nd kind Fredholm
$$A\eta = b, \ \eta = \begin{bmatrix} -\tau \\ \sigma \end{bmatrix}, \ A = I + \begin{bmatrix} D - D_i & S_i - S \\ T - T_i & D_i^* - D^* \end{bmatrix}$$

$$(\Delta + \omega^{2})u = 0 \quad \text{in } \mathbb{R}^{2} \setminus \overline{\Omega_{\mathbb{Z}}}$$
$$(\Delta + n^{2}\omega^{2})u = 0 \quad \text{in } \Omega_{\mathbb{Z}}$$
$$u^{+} - u^{-} = -u^{i} \\ u^{+}_{n} - u^{-}_{n} = -u^{i}_{n} \end{cases} \text{ on } \partial \Omega_{\mathbb{Z}} \quad \begin{array}{l} \text{matching} \\ \text{(TM Maxwell)} \end{array}$$
$$\text{on-periodic rep:} \quad (\text{Müller '69 Rokhlin '83})$$

non-periodic rep: (Müller '69, Rokhlin '83) $u = \begin{cases} \mathcal{D}\tau + \mathcal{S}\sigma & \text{in } \mathbb{R}^2 \setminus \overline{\Omega_{\mathbb{Z}}} \\ \mathcal{D}_i \tau + \mathcal{S}_i \sigma & \text{in } \Omega_{\mathbb{Z}} \end{cases}$

2nd kind Fredholm $A\eta = b, \ \eta = \begin{bmatrix} -\tau \\ \sigma \end{bmatrix}, \ A = I + \begin{bmatrix} D - D_i & S_i - S \\ T - T_i & D_i^* - D^* \end{bmatrix}$

• periodize just as before (add $u_{QP}[\xi]$ in exterior only)

$$(\Delta + \omega^{2})u = 0 \quad \text{in } \mathbb{R}^{2} \setminus \overline{\Omega_{\mathbb{Z}}}$$
$$(\Delta + n^{2}\omega^{2})u = 0 \quad \text{in } \Omega_{\mathbb{Z}}$$
$$u^{+} - u^{-} = -u^{i} \\u^{+}_{n} - u^{-}_{n} = -u^{i}_{n} \end{cases} \text{ on } \partial\Omega_{\mathbb{Z}} \quad \begin{array}{l} \text{matching} \\ \text{(TM Maxwell)} \end{array}$$

non-periodic rep: (Müller '69, Rokhlin '83) $u = \begin{cases} \mathcal{D}\tau + \mathcal{S}\sigma & \text{in } \mathbb{R}^2 \setminus \overline{\Omega_{\mathbb{Z}}} \\ \mathcal{D}_i \tau + \mathcal{S}_i \sigma & \text{in } \Omega_{\mathbb{Z}} \end{cases}$

2nd kind Fredholm
$$A\eta = b, \ \eta = \begin{bmatrix} -\tau \\ \sigma \end{bmatrix}, \ A = I + \begin{bmatrix} D - D_i & S_i - S \\ T - T_i & D_i^* - D^* \end{bmatrix}$$

• periodize just as before (add $u_{\text{QP}}[\xi]$ in exterior only) shown: $d = 8\lambda$ N = 230 M = 160 err 10^{-14} $t_{\text{fill+solve}} = 2.4$ s cond. # 10^3

Diffraction efficiencies vs inc. angle

Power fractions scattered into each transmitted/reflected Bragg order:

 $d = 1.6\lambda$ error 10^{-12} 3000 angles in 30 mins

• square-root type cusps at each Wood anomaly (dotted red)

Results: high aspect ratio dielectric

height H = 10 d (24 λ in interior)

if lattice sums were used: would need > 10 neighbor copies of $\partial \Omega$ to be summed directly (> 10² in 3D)

 $d = 1.6\lambda$ N = 500 M = 330error 10^{-13} $t_{\text{fill}} = 9$ s $t_{\text{solve}} = 4$ s

 $M = O(\omega H)$ but prefactor small

B and C blocks break

B and C blocks break directly sum $\partial \Omega$ neighbors in u rep.: cancels intersecting C terms!

L-R separation 3d, Bloch phase α³
makes walls 'invisible' in scheme
Why works? Lemma (non-Wood case): For L-R separation a whole # periods, solution density η equals that when periodizing in standard way via Φ_{ω,QP}
Pf: Schur complement of upper-left block,

 $A_{\rm QP}\eta = (A - BQ^{-1}C)\eta = b$

L-R separation 3d, Bloch phase α³
makes walls 'invisible' in scheme
Why works? Lemma (non-Wood case): For L-R separation a whole # periods, solution density η equals that when periodizing in standard way via Φ_{ω,QP}
Pf: Schur complement of upper-left block, A_{QP}η = (A - BQ⁻¹C)η = b

Preliminary results: multi-layer media

Periodic Dirichlet interface below dielectric inclusions:

 $d = 3.2\lambda$ at Wood's anomaly error 10^{-4} ... low-order open-segment quadrature • try high-order quadrature w/ endpoints (Alpert, Kapur–Rokhlin,...)

Doubly-periodicQP phases (α, β) EVP: seek Bloch eigen-triples (ω, α, β)

• App: photonic crystal bandgap design May periodize by replacing *A* by *A*_{QP}...

Doubly-periodic QP phases (α, β)
EVP: seek Bloch eigen-triples (ω, α, β)
App: photonic crystal bandgap design

May periodize by replacing A by A_{QP} ...

Thm: if A_{QP} exists, Null $A_{QP} \neq \{0\} \iff (\omega, \alpha, \beta)$ Bloch eigenvalue proof: QP Calderón projectors, flipping inside-out to get transmission BVP

Doubly-periodic QP phases (α, β)
EVP: seek Bloch eigen-triples (ω, α, β)
App: photonic crystal bandgap design

May periodize by replacing A by A_{QP} ...

Thm: if A_{QP} exists, Null $A_{QP} \neq \{0\} \Leftrightarrow (\omega, \alpha, \beta)$ Bloch eigenvalue proof: QP Calderón projectors, flipping inside-out to get transmission BVP ... but $\Phi_{\omega,QP}$ has poles at resonances of *empty* unit cell: scheme fails

Doubly-periodicQP phases (α, β) EVP: seek Bloch eigen-triples (ω, α, β) • App: photonic crystal bandgap design

May periodize by replacing A by A_{QP} ...

Thm: if A_{QP} exists, Null $A_{QP} \neq \{0\} \Leftrightarrow (\omega, \alpha, \beta)$ Bloch eigenvalue proof: QP Calderón projectors, flipping inside-out to get transmission BVP ... but $\Phi_{\omega,QP}$ has poles at resonances of *empty* unit cell: scheme fails Fix: as before, discard A_{QP} in favor of larger system $\begin{bmatrix} A & B \\ C & Q \end{bmatrix}$

• robust for all params, 2nd kind, couples to existing $\partial\Omega$ scatt. code

2nd kind 'tic-tac-toe' scheme (B-Greengard, JCP, 2010)

sticking-out phased copies of walls & 3x3 phased copies of $\partial \Omega$:

2nd kind 'tic-tac-toe' scheme (B-Greengard, JCP, 2010)

sticking-out phased copies of walls & 3x3 phased copies of $\partial \Omega$:

Careful cancellations: B, C, Q have only interactions of distance ≥ 1
 Large dist increases convergence rate, i.e. large c in error = O(e^{-cN})

Philosophy: sum neighboring image sources directly, so fields due to remainder of lattice have distant singularities

Conclusions

- robust 2nd-kind IE spectral schemes for periodic problems
- periodize via small # extra degrees of freedom on cell walls
 - scattering: densities on unbounded walls via Fourier rep.
 - Bloch eigenvalue: kill corner interactions w/ tic-tac-toe
- more reliable and flexible than quasi-periodic Green's function:
 well-behaved at Wood's anomaly or spurious resonances
 high aspect-ratios, extends simply to 3D, unlike lattice sums

Future:

• multi-layer; insert FMM for inclusion; 3D ...

code: http://code.google.com/p/mpspack
 (B-Betcke, SIAM J. Sci. Comp. '10)
funding: NSF DMS-0811005

B–Greengard, J. Comput. Phys. '10 B–Greengard, BIT, *submitted*

http://math.dartmouth.edu/~ahb

EXTRA SLIDES

Results: small inclusion

band structure: simply plot log min sing. val. of M vs $(\omega, k_x, k_y) \dots$

Results: small inclusion

band structure: simply plot log min sing. val. of M vs $(\omega, k_x, k_y) \dots$

0.1 sec per eval pre-store α , β coeffs 30 sec per const- ω slice 24 × 24 evals

N = 40 M = 20 (160 unknowns total) err 10^{-9}

MOVIE