High-frequency cavity modes: efficient computation and applications

NJIT, February 7, 2005

Alex Barnett

Courant Institute, NYU

Thanks to J. Goodman, L. Greengard, P. Deift, P. Sarnak (NYU), H. Tureci (Yale), ...

Dirichlet eigenproblem

Normal modes of elastic membrane or 'drum' (Germain, Helmholtz, 19thC) Eigenfunctions ϕ_i of Laplacian Δ in bounded domain $\Omega \subset \mathbb{R}^d$

$$-\Delta\phi_j = E_j\phi_j, \qquad \phi_j|_{\partial\Omega} = 0 \qquad \int_{\Omega}\phi_i\phi_j = \delta_{ij}$$

$$\left.\phi_j\right|_{\partial\Omega}=0$$

$$\int_{\Omega}\phi_i\phi_j=\delta_{ij}$$

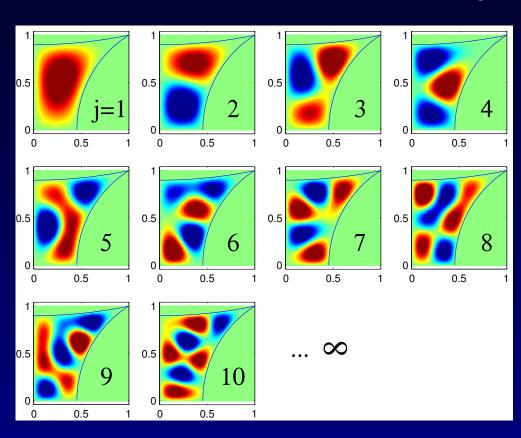
Dirichlet eigenproblem

Normal modes of elastic membrane or 'drum' (Germain, Helmholtz, 19thC) Eigenfunctions ϕ_j of Laplacian Δ in bounded domain $\Omega \subset \mathbb{R}^d$

$$-\Delta\phi_j = E_j\phi_j,$$

$$\phi_j|_{\partial\Omega} = 0$$

$$\int_{\Omega} \phi_i \phi_j = \delta_{ij}$$



'level'
$$j=1\cdots\infty$$

'energy' eigenvalue E_j
wavenumber $k_j=E_j^{1/2}$
wavelength $=2\pi/k_j$

focus on d=2

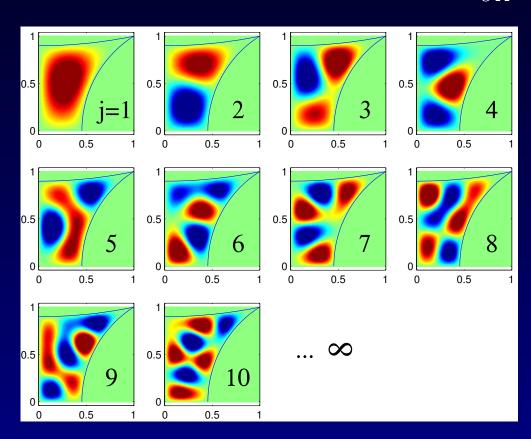
Dirichlet eigenproblem

Normal modes of elastic membrane or 'drum' (Germain, Helmholtz, 19thC) Eigenfunctions ϕ_j of Laplacian Δ in bounded domain $\Omega \subset \mathbb{R}^d$

$$-\Delta\phi_j = E_j\phi_j,$$

$$|\phi_j|_{\partial\Omega} = 0$$

$$\int_{\Omega} \phi_i \phi_j = \delta_{ij}$$



'level'
$$j=1\cdots\infty$$

'energy' eigenvalue E_j
wavenumber $k_j=E_j^{1/2}$
wavelength $=2\pi/k_j$

focus on d=2

- Analytic solutions only when Δ separable (rectangle, ellipse...)
- How numerically compute large numbers of E_i & ϕ_i efficiently?

Motivation

- electromagnetic waveguides (TM modes: Dirichlet BC)
- eigenstates of quantum particles trapped in a cavity
- acoustic resonances and duct transmission (Neumann BC)
- paradigm for more general trapped wave problems *e.g.* full Maxwell for microwave, optical resonators

Motivation

- electromagnetic waveguides (TM modes: Dirichlet BC)
- eigenstates of quantum particles trapped in a cavity
- acoustic resonances and duct transmission (Neumann BC)
- paradigm for more general trapped wave problems *e.g.* full Maxwell for microwave, optical resonators

Modern questions & applications involve...

- 1. Complex geometry: corners, 3D structures
- 2. Higher frequencies: *multiscale* problem, $\lambda \ll$ system size

VIEW $j \sim 3000$, 45 wavelengths across

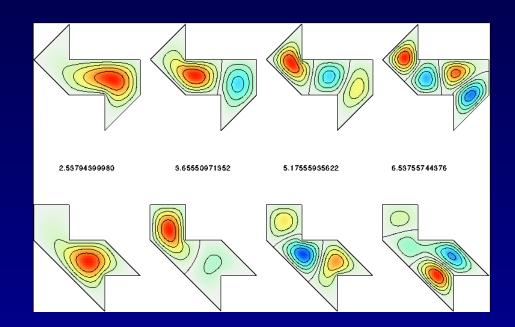
Mathematical questions

- 1. 'Quantum chaos': what happens in $E \to \infty$ (high freq) limit?
 - depends on classical (ray) dynamics ... what if chaotic?
 - arose in quantum physics (Einstein 1917, Gutzwiller, Berry '80s)
 - eigenvalue E_i statistics \rightarrow Random Matrix Theory
 - physics/chemistry impact: atomic, molecular...

Mathematical questions

- 1. 'Quantum chaos': what happens in $E \to \infty$ (high freq) limit?
 - depends on classical (ray) dynamics ... what if chaotic?
 - arose in quantum physics (Einstein 1917, Gutzwiller, Berry '80s)
 - eigenvalue E_i statistics \rightarrow Random Matrix Theory
 - physics/chemistry impact: atomic, molecular...
- 2. Spectral geometry, Riemann surfaces
 - can one hear the shape of a drum?

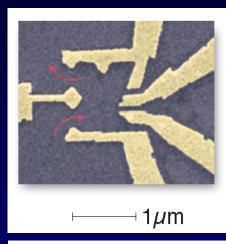
(Kac '66, Gordon *et al.* '92)

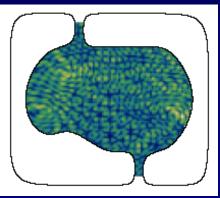


isospectral drums, accurate numerics (Driscoll '97)

Modern applications

- 'quantum dots': $\sim 1 \mu \text{m}$ semiconductor labs for cold electrons
 - —candidates for *quantum computers*
 - —quantum chaos vital for statistics of resonances, conduction
- waveguide scattering via transverse modes (e.g. radar from jet inlets)

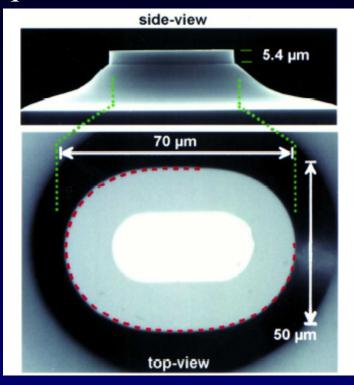




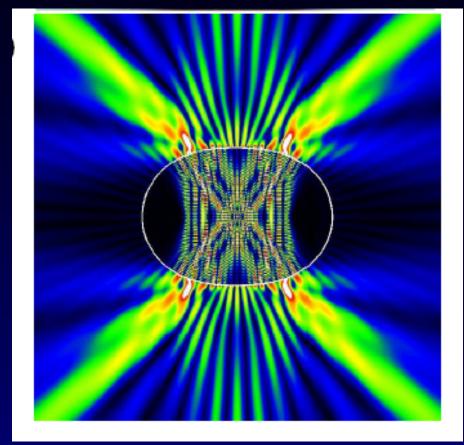
quantum dots (Marcus)

Dielectric micro-cavity lasers

quantum-cascade laser



mode and emission pattern



- 2D cavity confinement due to total internal reflection, n = 3.3.
- asymmetric cavity, 'scarred' modes $\rightarrow 10^3$ more power (Gmachl '98)
- design is hard: compute many modes for many shapes (Tureci '03)

Outline

- I. modified Method of Particular Solutions
- II. eigenvalue inclusion bounds & rigorous analysis
- III. acceleration by scaling
- IV. application to
 - quantum chaos: high-frequency mode asymptotics
 - micro-cavity lasers

(B '00)

Task: find ϕ_j and E_j such that $(\Delta + E_j)\phi_j = 0$ and $\phi_j|_{\partial\Omega} = 0$

(B '00)

Task: find ϕ_j and E_j such that $(\Delta + E_j)\phi_j = 0$ and $\phi_j|_{\partial\Omega} = 0$ Given trial energy parameter E...

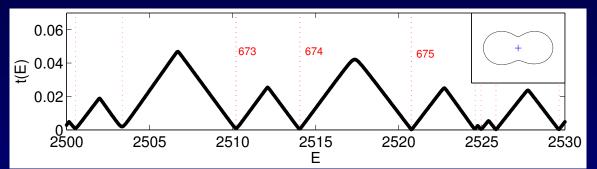
- build $u = \sum_{i=1}^{N} x_i \xi_i$ where basis functions obey $(\Delta + E)\xi_i = 0$ in Ω
- if can find coeff vector $\mathbf{x} \in \mathbb{R}^N$ giving $u|_{\partial\Omega} = 0$, but $u \neq 0$ in Ω ... then u is a mode ϕ_i and E is its eigenvalue E_i

(B '00)

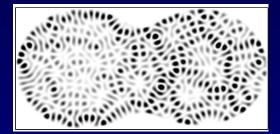
Task: find ϕ_j and E_j such that $(\Delta + E_j)\phi_j = 0$ and $\phi_j|_{\partial\Omega} = 0$ Given trial energy parameter E...

- build $u = \sum_{i=1}^{N} x_i \xi_i$ where basis functions obey $(\Delta + E)\xi_i = 0$ in Ω
- if can find coeff vector $\mathbf{x} \in \mathbb{R}^N$ giving $u|_{\partial\Omega} = 0$, but $u \neq 0$ in Ω ... then u is a mode ϕ_j and E is its eigenvalue E_j

Define 'boundary error'
$$t(E) := \min_{u \neq 0} \frac{||u||_{L^2(\partial\Omega)}}{||u||_{L^2(\Omega)}}$$



'peanut' cavity, $j \approx 700$

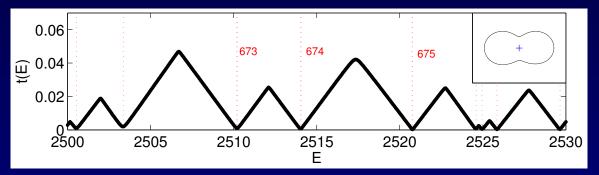


(B '00)

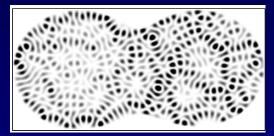
Task: find ϕ_j and E_j such that $(\Delta + E_j)\phi_j = 0$ and $\phi_j|_{\partial\Omega} = 0$ Given trial energy parameter E...

- build $u = \sum_{i=1}^{N} x_i \xi_i$ where basis functions obey $(\Delta + E) \xi_i = 0$ in Ω
- if can find coeff vector $\mathbf{x} \in \mathbb{R}^N$ giving $u|_{\partial\Omega} = 0$, but $u \neq 0$ in Ω ... then u is a mode ϕ_j and E is its eigenvalue E_j

Define 'boundary error'
$$t(E):=\min_{u\neq 0}\frac{||u||_{L^2(\partial\Omega)}}{||u||_{L^2(\Omega)}}$$



'peanut' cavity, $j \approx 700$



Search (Newton) in E for minima of t(E)

• Cures normalization problem plaguing original MPS (Fox '67, etc) similar cure also recently found (Betcke & Trefethen '04)

At each E, how is t(E) computed?

defining bilinear forms $\begin{array}{c} f(u,v) := \int_{\partial\Omega} uv & \text{boundary} \\ g(u,v) := \int_{\Omega} uv & \text{interior} \end{array}$

Rayleigh quotient
$$t(E) := \min_{u \neq 0} \sqrt{\frac{f(u, u)}{g(u, u)}} = \min_{\mathbf{x} \neq \mathbf{0}} \sqrt{\frac{\mathbf{x}^T F \mathbf{x}}{\mathbf{x}^T G \mathbf{x}}} = \hat{\lambda}_1$$

 $\hat{\lambda}_1$ = lowest generalized eigenvalue of order-N matrix eigenproblem

$$F\mathbf{x} = \hat{\lambda}G\mathbf{x}$$

elements
$$F_{ij} := \int_{\partial\Omega} \xi_i \xi_j$$

 $G_{ij} := \int_{\Omega} \xi_i \xi_j$

quadrature on boundary (trapezium)

oscillatory integrals over interior...

... can convert to boundary integrals via new identities

At each E, how is t(E) computed?

defining bilinear forms $\begin{array}{ll} f(u,v) := \int_{\partial\Omega} uv & \text{boundary} \\ g(u,v) := \int_{\Omega} uv & \text{interior} \end{array}$

Rayleigh quotient
$$t(E) := \min_{u \neq 0} \sqrt{\frac{f(u, u)}{g(u, u)}} = \min_{\mathbf{x} \neq \mathbf{0}} \sqrt{\frac{\mathbf{x}^T F \mathbf{x}}{\mathbf{x}^T G \mathbf{x}}} = \hat{\lambda}_1$$

 $\hat{\lambda}_1 = ext{lowest generalized eigenvalue of order-}N$ matrix eigenproblem

$$F\mathbf{x} = \hat{\lambda}G\mathbf{x}$$

elements $F_{ij}:=\int_{\partial\Omega}\xi_i\xi_j$ quadrature on boundary (trapezium) $G_{ij}:=\int_{\Omega}\xi_i\xi_j$ oscillatory integrals over interior...

... can convert to boundary integrals via new identities

F, G dense symm positive-definite, numerically singular as N large

- F, G share common nullspace \rightarrow both stable and unstable $\hat{\lambda}$'s
- Cholesky and QZ fail: use regularized (truncated) inverse of G

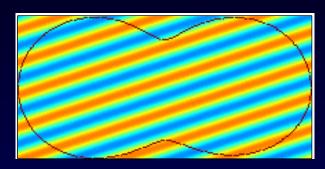
Basis sets: *global* solutions in Ω

(cf direct discretization, finite elements: *local* methods)

Basis sets: *global* solutions in Ω

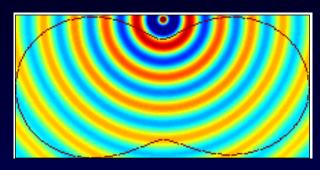
(cf direct discretization, finite elements: *local* methods)

PLANE WAVES



 $\xi_i(\mathbf{r}) = \sin(k\mathbf{n}_i \cdot \mathbf{r})$ physics community (Heller '84)

FUNDAMENTAL SOLUTIONS



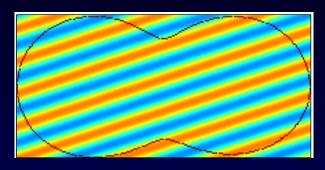
$$\xi_i(\mathbf{r}) = Y_0(k|\mathbf{r} - \mathbf{y}_i|)$$

 \mathbf{y}_i on exterior curve (B '02)

Basis sets: *global* solutions in Ω

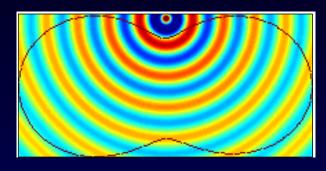
(cf direct discretization, finite elements: *local* methods)

PLANE WAVES



 $\xi_i(\mathbf{r}) = \sin(k\mathbf{n}_i \cdot \mathbf{r})$ physics community (Heller '84)

FUNDAMENTAL SOLUTIONS



$$\xi_i(\mathbf{r}) = Y_0(k|\mathbf{r} - \mathbf{y}_i|)$$

 \mathbf{y}_i on exterior curve (B '02)

- Direct discretization: $N \sim \#$ wavelengths in volume $\sim k^{d}$
- We have much smaller $N \sim \#$ wavelengths on boundary $\sim k^{d-1}$

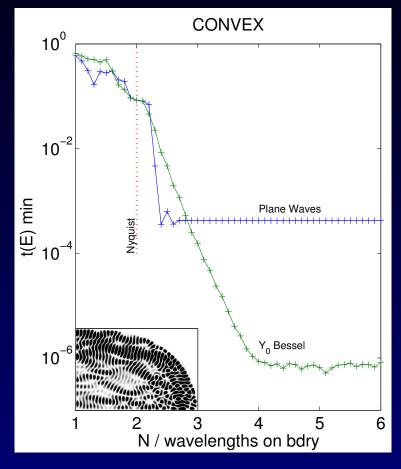
⇒ high frequency : huge advantage (even with loss of sparsity)

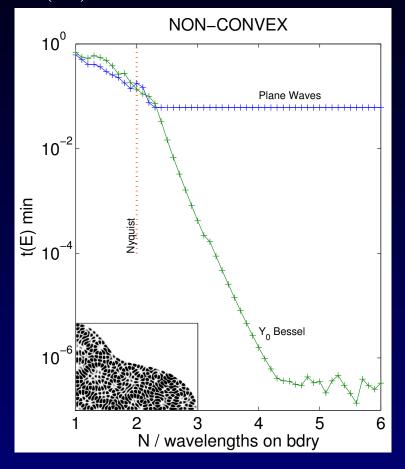
Recall all ξ_i need to be recomputed at each E during search

How compares to boundary integral equation methods / BEM?

Convergence with basis size ${\cal N}$

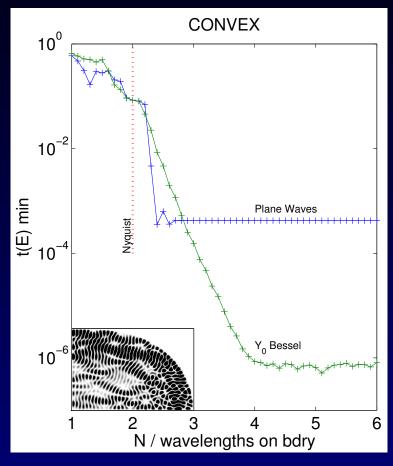
How small can we make boundary error t(E)?

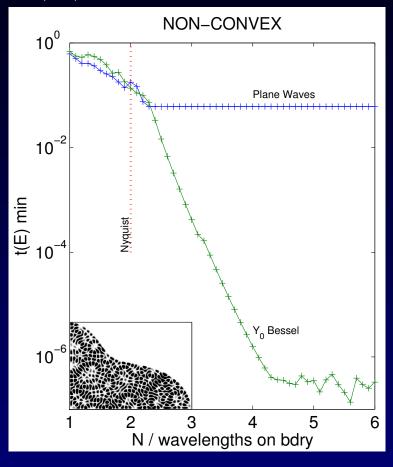




Convergence with basis size ${\cal N}$

How small can we make boundary error t(E)?





- 3-4 points per wavelength, beats 10 common for integral eqns / BEM
- 'semiclassical' basis size N_{sc} = Nyquist limit at spatial frequency k
- plane waves useless for non-convex Ω
- Bessels give exponential convergence beyond N_{sc} (down to $\sqrt{\epsilon_{
 m mach}}$) -p. 11

II. Eigenvalue inclusion bounds

Recall $t(E) = \frac{||u||_{L^2(\partial\Omega)}}{||u||_{L^2(\Omega)}}$ for u some global solution $(\Delta + E)u = 0$ in Ω When t(E) small, we have $E \approx E_j$, but can we bound this error?

II. Eigenvalue inclusion bounds

Recall $t(E) = \frac{||u||_{L^2(\partial\Omega)}}{||u||_{L^2(\Omega)}}$ for u some global solution $(\Delta + E)u = 0$ in Ω When t(E) small, we have $E \approx E_j$, but can we bound this error?

Thm (Fox '67, Kuttler-Sigillito '84): $\min_{j} \frac{|E - E_{j}|}{E_{j}} \leq C_{\Omega} t(E)$

- $t(E) = 10^{-6}$ means $E \approx E_j$ to 6-digit accuracy
- classical result, used for high-accuracy MPS (Betcke & Trefethen '04)

II. Eigenvalue inclusion bounds

Recall $t(E) = \frac{||u||_{L^2(\partial\Omega)}}{||u||_{L^2(\Omega)}}$ for u some global solution $(\Delta + E)u = 0$ in Ω When t(E) small, we have $E \approx E_j$, but can we bound this error?

Thm (Fox '67, Kuttler-Sigillito '84): $\min_{j} \frac{|E - E_{j}|}{E_{j}} \leq C_{\Omega} t(E)$

- $t(E) = 10^{-6}$ means $E \approx E_j$ to 6-digit accuracy
- classical result, used for high-accuracy MPS (Betcke & Trefethen '04)

Actually can do much better...

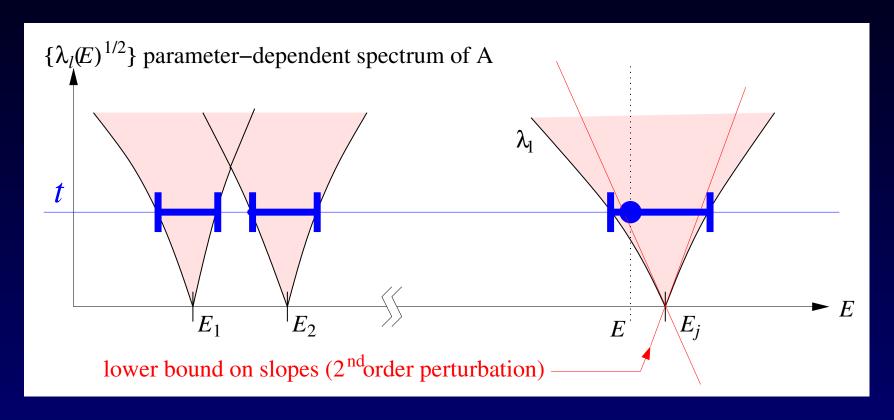
Thm (B '04): For some δ which vanishes as $t(E) \to 0$,

$$\min_{j} \frac{|E - E_j|}{E_j^{1/2}} \le C_{\Omega}'(1 + \delta)t(E)$$

- In practise δ is tiny and can be ignored
- High freq $E \sim 10^6$: now $t(E) = 10^{-6}$ means 9-digit accuracy!

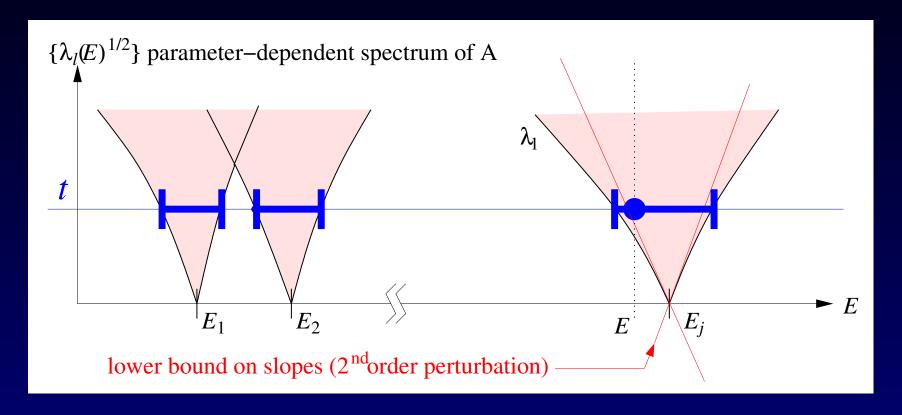
Mechanism for improved inclusion

For all E: $t(E)^2$ exceeds lowest eigenvalue $\lambda_1(E)$ of an operator A(E)



Mechanism for improved inclusion

For all E: $t(E)^2$ exceeds lowest eigenvalue $\lambda_1(E)$ of an operator A(E)



prove analytic perturbation series $\lambda_1(E) = c_j(E - E_j)^2 + O(E - E_j)^4$

- so as $t \to 0$, error $|E E_j|$ must vanish like $c_j^{-1/2} t^{-1/2}$
- 'slope' coefficients c_j bounded from below by $c/\overline{E_j}$, for all j

(w/ Deift, Goodman)

Work in ∞ -dim space $\mathcal{H}_{\Omega}(E) := \{(\Delta + E)u = 0 \text{ in } \Omega, \ u|_{\partial\Omega} \in L^2(\partial\Omega)\}$

(w/ Deift, Goodman)

Work in ∞ -dim space $\mathcal{H}_{\Omega}(E) := \{(\Delta + E)u = 0 \text{ in } \Omega, u|_{\partial\Omega} \in L^{2}(\partial\Omega)\}$

• write boundary funcs $U = u|_{\partial\Omega}$. Choose f as inner product:

$$f(u,v) = \int_{\partial\Omega} w \, uv =: \langle U,V \rangle \qquad \text{fixed weight func } w \in L^{\infty}(\partial\Omega), w > 0$$

$$g(u,v) = \int_{\Omega} uv = \langle U,AV \rangle \qquad \text{defines } A(E) : L^{2}(\partial\Omega) \to L^{2}(\partial\Omega)$$

(w/ Deift, Goodman)

Work in ∞ -dim space $\mathcal{H}_{\Omega}(E) := \{(\Delta + E)u = 0 \text{ in } \Omega, u|_{\partial\Omega} \in L^2(\partial\Omega)\}$

• write boundary funcs $U = u|_{\partial\Omega}$. Choose f as inner product:

$$f(u,v) = \int_{\partial\Omega} w \, uv =: \langle U, V \rangle$$

$$g(u,v) = \int_{\Omega} uv = \langle U, AV \rangle$$

fixed weight func
$$w \in L^{\infty}(\partial\Omega), w > 0$$

defines $A(E): L^{2}(\partial\Omega) \to L^{2}(\partial\Omega)$

A compact for $E \neq E_j$ Spectral problem $V = \lambda AV$

proof: Poisson kernel for Helmholtz eqn discrete spectrum $\lambda_1 \leq \lambda_2 \leq \cdots \rightarrow \infty$

(w/ Deift, Goodman)

Work in ∞ -dim space $\mathcal{H}_{\Omega}(E) := \{(\Delta + E)u = 0 \text{ in } \Omega, u|_{\partial\Omega} \in L^2(\partial\Omega)\}$

• write boundary funcs $U = u|_{\partial\Omega}$. Choose f as inner product:

$$f(u, v) = \int_{\partial \Omega} w \, uv =: \langle U, V \rangle$$

$$g(u, v) = \int_{\Omega} uv = \langle U, AV \rangle$$

fixed weight func
$$w \in L^{\infty}(\partial\Omega), w > 0$$

defines $A(E): L^{2}(\partial\Omega) \to L^{2}(\partial\Omega)$

A compact for $E \neq E_j$ Spectral problem $V = \lambda AV$

proof: Poisson kernel for Helmholtz eqn discrete spectrum $\lambda_1 \leq \lambda_2 \leq \cdots \rightarrow \infty$

For E in neighborhood of E_j , isolate unbounded part of A: $A(E) = (\text{compact analytic}) + \frac{1}{(E-E_j)^2}(\text{constant rank-1})$

- perturbation details: analyticity & Cauchy interlacing
- get $c_j^{-1} = \int_{\partial\Omega} w^{-1} (\partial_n \phi_j)^2$ has upper bound $O(E_j)$ in wide class of Ω

(w/ Deift, Goodman)

Work in ∞ -dim space $\mathcal{H}_{\Omega}(E) := \{(\Delta + E)u = 0 \text{ in } \Omega, u|_{\partial\Omega} \in L^2(\partial\Omega)\}$

• write boundary funcs $U = u|_{\partial\Omega}$. Choose f as inner product:

$$f(u,v) = \int_{\partial\Omega} w \, uv =: \langle U, V \rangle$$

$$g(u,v) = \int_{\Omega} uv = \langle U, AV \rangle$$

fixed weight func
$$w \in L^{\infty}(\partial\Omega), w > 0$$
 defines $A(E): L^{2}(\partial\Omega) \to L^{2}(\partial\Omega)$

A compact for $E \neq E_j$ Spectral problem $V = \lambda AV$ proof: Poisson kernel for Helmholtz eqn discrete spectrum $\lambda_1 \leq \lambda_2 \leq \cdots \rightarrow \infty$

For E in neighborhood of E_j , isolate unbounded part of A: $A(E) = (\text{compact analytic}) + \frac{1}{(E-E_j)^2}(\text{constant rank-1})$

- perturbation details: analyticity & Cauchy interlacing
- get $c_j^{-1} = \int_{\partial\Omega} w^{-1} (\partial_n \phi_j)^2$ has upper bound $O(E_j)$ in wide class of Ω

Finally, note $t(E)^2 = \hat{\lambda}_1 \ge \lambda_1$ since $\mathrm{Span}\{\xi_i\} \subset \mathcal{H}_{\Omega}(E)$

RESULT: new inclusion bounds, tighter by factor $E^{1/2}$

III. Acceleration by scaling

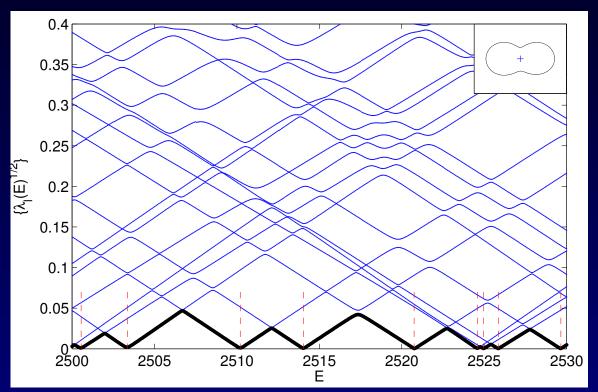
(back to numerical method, N-dim Span $\{\xi_i\}$)

Root search slow, close levels easily missed — can we do better? We used $t(E) = \hat{\lambda}_1(E)^{1/2}$. Plot higher generalized eigenvalues...

III. Acceleration by scaling

(back to numerical method, N-dim Span $\{\xi_i\}$)

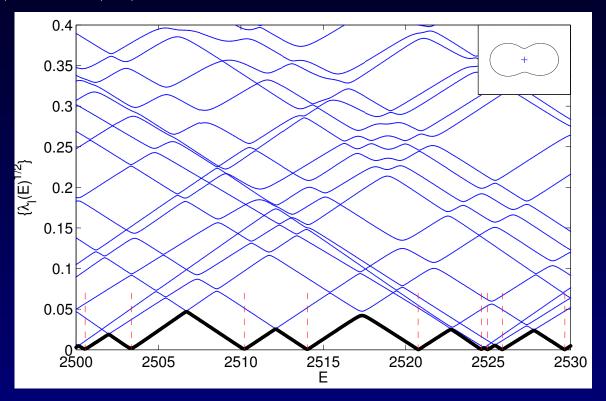
Root search slow, close levels easily missed — can we do better? We used $t(E) = \hat{\lambda}_1(E)^{1/2}$. Plot higher generalized eigenvalues...



III. Acceleration by scaling

(back to numerical method, N-dim Span $\{\xi_i\}$)

Root search slow, close levels easily missed — can we do better? We used $t(E) = \hat{\lambda}_1(E)^{1/2}$. Plot higher generalized eigenvalues...



• Idea: spectrum at single E has info about many nearby $\hat{\lambda}_1$ minima

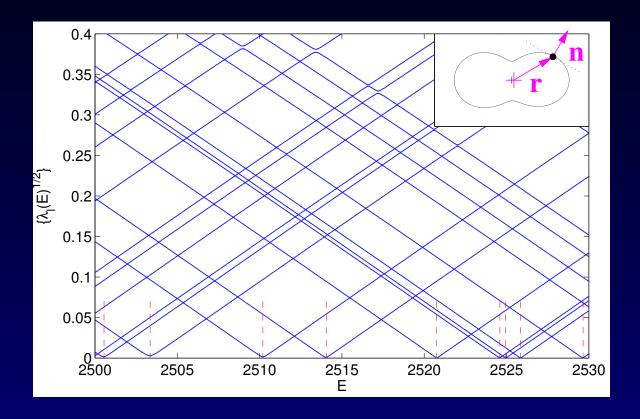
Special boundary weighting w

For f, change from w = 1 to $w = (\mathbf{r} \cdot \mathbf{n})^{-1}$ (requires Ω star-shaped)

Special boundary weighting w

For f, change from w = 1 to $w = (\mathbf{r} \cdot \mathbf{n})^{-1}$

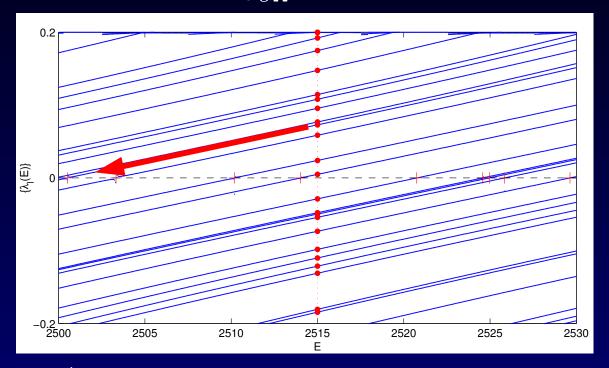
(requires Ω star-shaped)



- spectacular: beautiful quadratic structure, tiny avoided crossings
- no variation in 2^{nd} -order coeffs \rightarrow accurate predictive power!

But we can do even better...

Invented in physics community... a correct explanation was sorely lacking! Use f as before, but $g(u, v) = \int_{\partial\Omega} (\mathbf{r} \cdot \mathbf{n})^{-1} (u\mathbf{r} \cdot \nabla v + v\mathbf{r} \cdot \nabla u)$



- solving $F\mathbf{x} = \hat{\lambda}G\mathbf{x}$ at single E value gives all nearest O(N) modes
- no root search, no missing levels, efficiency gain $O(E^{\frac{d-1}{2}})$, in 3D too
- eigenvectors x give dilated (scaled) approximations to modes ϕ_j
- errors grow like $t \sim |E_j E|^3$ (3rd-order convergence with effort)

Scaling relies on quasi-orthogonality

modes exactly orthogonal in interior $\int_{\Omega} \phi_i \phi_j = \delta_{ij}$ approx orthogonality on boundary $Q_{ij} := \int_{\partial \Omega} \mathbf{r} \cdot \mathbf{n} \ \partial_n \phi_i \ \partial_n \phi_j$

It's known $Q_{ij} = 2\delta_{ij}E_j + q_{ij}$ with $q_{jj} = 0$ (Rellich '40)

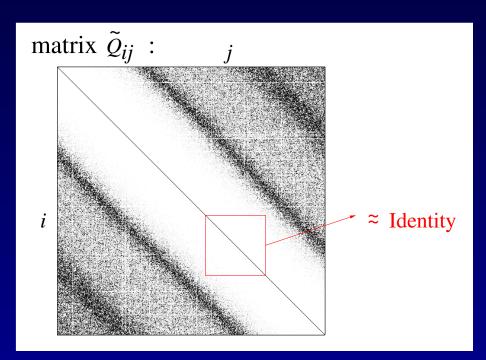
- conjecture (Vergini '94): off-diag terms grow $|q_{ij}| \sim |E_i E_j|$
- semiclassics (B-Cohen-Heller '00): for Ω ergodic, $|q_{ij}| \sim (E_i E_j)^2$

Scaling relies on quasi-orthogonality

modes exactly orthogonal in interior $\int_{\Omega} \phi_i \phi_j = \delta_{ij}$ approx orthogonality on boundary $Q_{ij} := \int_{\partial \Omega} \mathbf{r} \cdot \mathbf{n} \ \partial_n \phi_i \ \partial_n \phi_j$

It's known $Q_{ij} = 2\delta_{ij}E_j + q_{ij}$ with $q_{jj} = 0$ (Rellich '40)

- conjecture (Vergini '94): off-diag terms grow $|q_{ij}| \sim |E_i E_j|$
- semiclassics (B-Cohen-Heller '00): for Ω ergodic, $|q_{ij}| \sim (E_i E_j)^2$
- Thm (B '04): for all Ω , ergodic or not, $|q_{ij}| \leq C_{\Omega}(E_i E_j)^2$



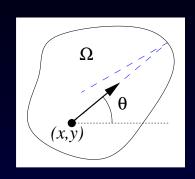
Now can show dilated ϕ_j approx diagonalize f and g \Rightarrow scaling works

VI. Applications

- 'quantum chaos': asymptotics of modes in chaotic cavities
- laser cavity modeling

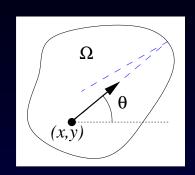
Quantum chaos & cavity shape

Drum problem is *quantized* equivalent of 'billiards' dynamical system: point particle, elastic reflection from $\partial\Omega$ phase space $=(x,y,\theta)$

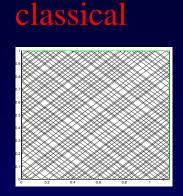


Quantum chaos & cavity shape

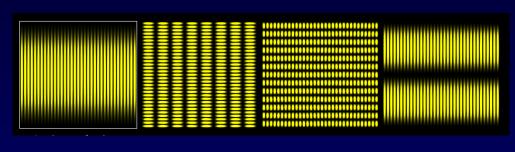
Drum problem is *quantized* equivalent of 'billiards' dynamical system: point particle, elastic reflection from $\partial\Omega$ phase space = (x, y, θ)



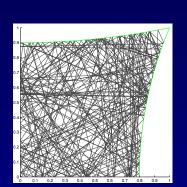
Integrable: conserved quantities



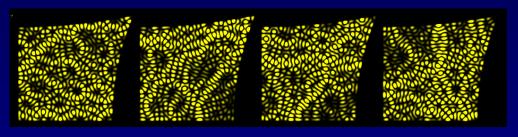
eigenfunctions ϕ_j : 'quantum'



Ergodic: covers all phase space



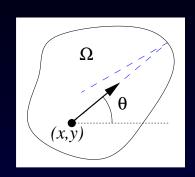
localization (tori in phase space: EBK)



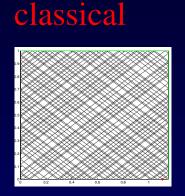
'quantum chaos'

Quantum chaos & cavity shape

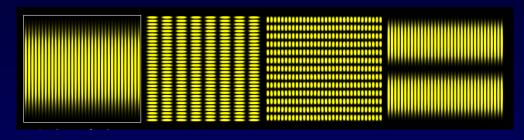
Drum problem is *quantized* equivalent of 'billiards' dynamical system: point particle, elastic reflection from $\partial\Omega$ phase space $=(x,y,\theta)$



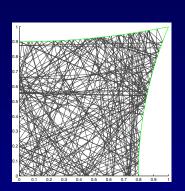
Integrable: conserved quantities



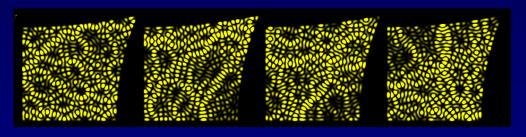
eigenfunctions ϕ_j : 'quantum'



Ergodic: covers all phase space



localization (tori in phase space: EBK)



'quantum chaos'

• We examine mode intensity ϕ_i^2 for ergodic Ω in $E \to \infty$ limit

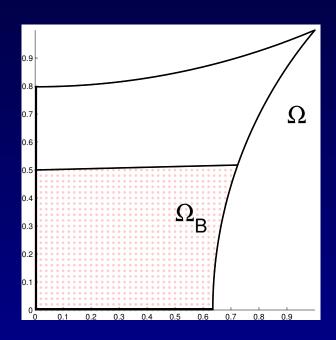
Do modes become spatially uniform?

Quantum Ergodicity Theorem: For ergodic cavity $\Omega \supset \Omega_B$,

$$\lim_{E_j \to \infty} \int_{\Omega_B} \phi_j^2 = \frac{\operatorname{vol}(\Omega_B)}{\operatorname{vol}(\Omega)} \qquad \text{for 'almost all' } j$$

(Schnirelman '74, Colin de Verdière '85, Zelditch '87, Z-Zworski '96)

But no prediction of convergence rate or density of exceptional set



Do modes become spatially uniform?

Quantum Ergodicity Theorem: For ergodic cavity $\Omega \supset \Omega_B$,

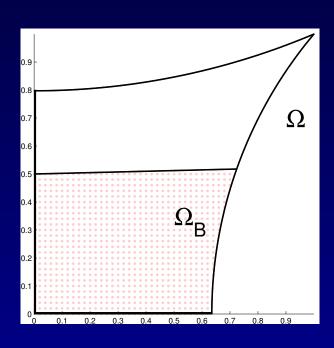
$$\lim_{E_j \to \infty} \int_{\Omega_B} \phi_j^2 = \frac{\operatorname{vol}(\Omega_B)}{\operatorname{vol}(\Omega)} \qquad \text{for 'almost all' } j$$

(Schnirelman '74, Colin de Verdière '85, Zelditch '87, Z-Zworski '96)

But no prediction of convergence rate or density of exceptional set

Study $\int_{\Omega_B} \phi_j^2 - \text{vol}(\Omega_B)/\text{vol}(\Omega)$ numerically:

- Sinai-type cavity (uniformly hyperbolic)
- 30,000 modes, level numbers $j \sim 10^4$ to 10^6 ... 100 times higher than other studies
- only a few CPU-days total (B '04)



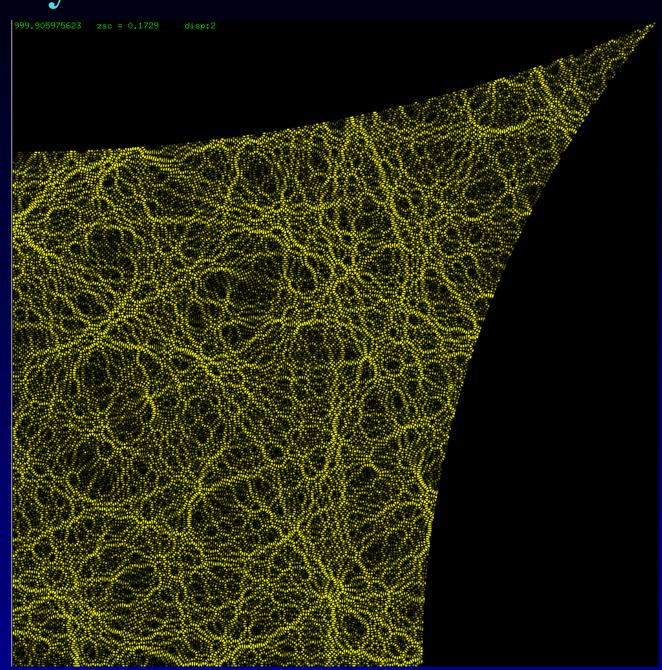
High-frequency mode

225 wavelengths across system

level number $j \approx 5 \times 10^4$

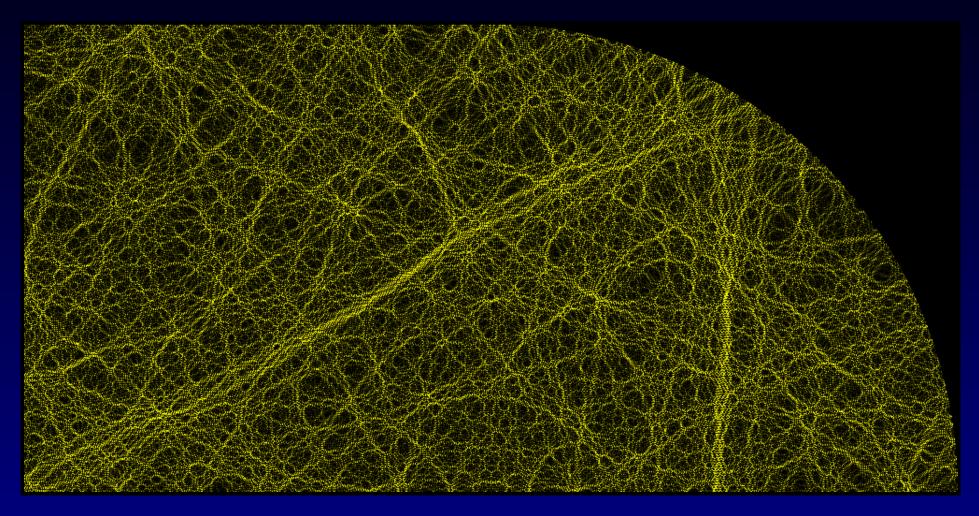
 $E \approx 10^6$

here scaling method is 10^3 times faster than MPS! (or BEM)



Scarred mode (stadium cavity)

'Scar' is: enhanced intensity ϕ_j^2 on unstable periodic (ray) orbit



• discovered in physics, predict width dies $E \sim E^{-1/4}$

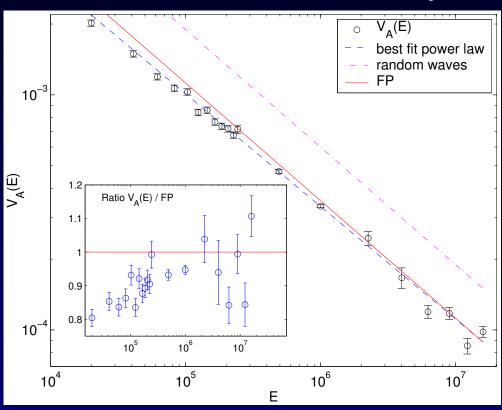
(Heller '84)

Result: asymptotic convergence rate with ${\cal E}$

local variance
$$V_B(E) := \frac{1}{E^{1/2}} \sum_{E_j \in [E, E + E^{1/2}]} \left(\int_{\Omega_B} \phi_j^2 - \frac{\operatorname{vol}(\Omega_B)}{\operatorname{vol}(\Omega)} \right)^2$$

Result: asymptotic convergence rate with ${\cal E}$

local variance
$$V_B(E) := \frac{1}{E^{1/2}} \sum_{E_j \in [E, E + E^{1/2}]} \left(\int_{\Omega_B} \phi_j^2 - \frac{\operatorname{vol}(\Omega_B)}{\operatorname{vol}(\Omega)} \right)^2$$



consistent with power law model

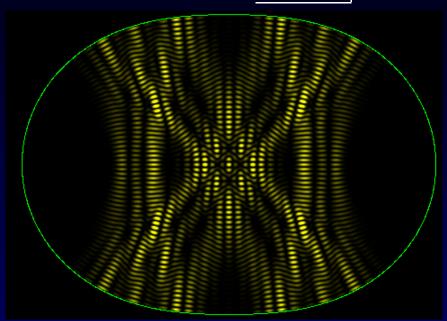
$$V_B(E) = aE^{-\gamma}$$

fit
$$\gamma = 0.48 \pm 0.01$$

- large numbers of modes \rightarrow highly accurate statistics (< 1%)
- rate agrees with semiclassical results and scar theory $\gamma=1/2$
- no exceptional modes: supports Quantum Unique Ergodicity (Sarnak et al.)

Laser results: closed cavity modes

$$E = 16417.2$$
 MODES

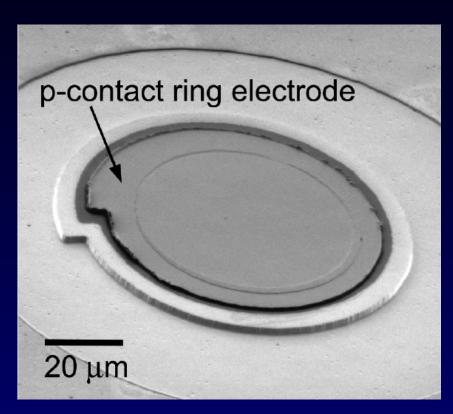


CPU	
/ mode	method
60 s	MPS, root search
10 s	scaling, ϕ_j across Ω
0.6 s	scaling, ϕ_j bdry only

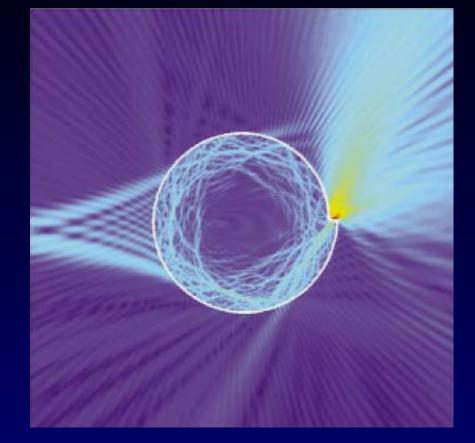
Ongoing with Hakan Tureci (Yale):

- mode evolution equations need integrals $\int_{\Omega} \phi_i^2 \phi_j^2$
- ullet open mode lifetime and emission via perturbation theory in 1/n

Future laser plans: spiral cavity



micrograph (Kneissl et al. '04)

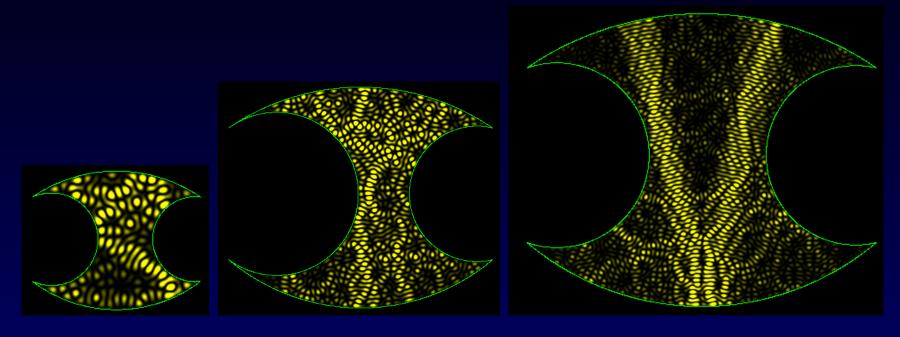


numerics (Chern et al. '03)

- what optimal shapes?
- where best to pump (spatially)?
- so far computations hard & limited in wavenumber

Non-star-shaped domains: initial results

Boundary weight $w = 1/(\mathbf{r} \cdot \mathbf{n})$ no longer bounded nor positive



- scaling method *still works*: not great accuracy, $t \sim 10^{-2}$.
- promising for complex geometries...

Conclusions

Dirichlet eigenproblem: global (meshless) methods excel

At high frequencies e.g. ~ 100 wavelengths across...

- made eigenvalue inclusion 10^3 times more accurate
- scaling: 10^3 faster computation than any other known method

Future:

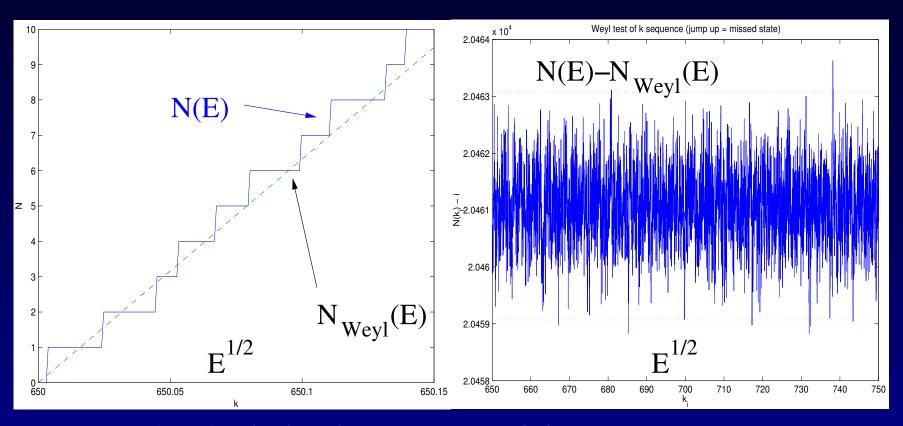
- wider class of cavity shapes, boundary conditions
- rigorous analysis of scaling errors
- accelerate integral equation methods: open problems

Preprints/talks: http://www.cims.nyu.edu/~barnett

Missing levels?

Weyl's estimate for N(E), the # eigenvalues $\overline{E_j < E}$:

$$N_{\text{Weyl}}(E) = \frac{\text{vol}(\Omega)}{4\pi}E - \frac{L}{4\pi}\sqrt{E} + O(1)\cdots$$



• not one level missing in sequence of 6812