High-frequency cavity modes: efficient computation and applications

Oxford University Computing Laboratory, 9 June, 2005

Alex Barnett

Courant Institute, NYU

Thanks to J. Goodman, L. Greengard, P. Deift, P. Sarnak (NYU), H. Tureci (Yale), N. Trefethen, T. Betcke (Oxford), ...

Dirichlet eigenproblem

Normal modes of elastic membrane or 'drum' (Helmholtz, Germain, 19^{th} C) Eigenfunctions ϕ_i of Laplacian Δ in bounded domain $\Omega \subset \mathbb{R}^d$

$$-\Delta\phi_j = E_j\phi_j,$$

$$-\Delta\phi_j = E_j\phi_j, \qquad \phi_j|_{\partial\Omega} = 0$$
 Dirichlet BC

$$\int_{\Omega} \phi_i \phi_j = \delta_{ij}$$

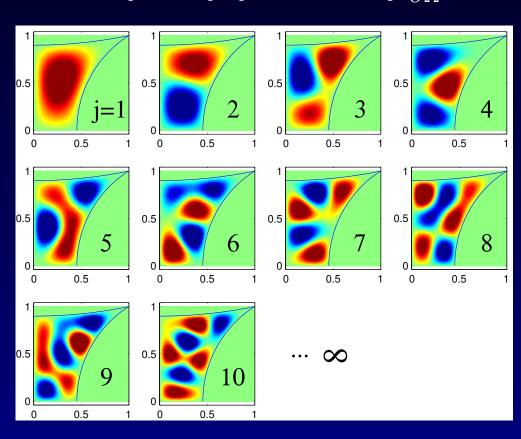
Dirichlet eigenproblem

Normal modes of elastic membrane or 'drum' (Helmholtz, Germain, 19thC) Eigenfunctions ϕ_j of Laplacian Δ in bounded domain $\Omega \subset \mathbb{R}^d$

$$-\Delta \phi_j = E_j \phi_j,$$

$$\phi_j|_{\partial\Omega}=0$$
 Dirichlet BC

$$\int_{\Omega} \phi_i \phi_j = \delta_{ij}$$



mode
$$j=1\cdots\infty$$

'energy' eigenvalue E_j
wavenumber $k_j=E_j^{1/2}$
wavelength $=2\pi/k_j$

focus on d=2

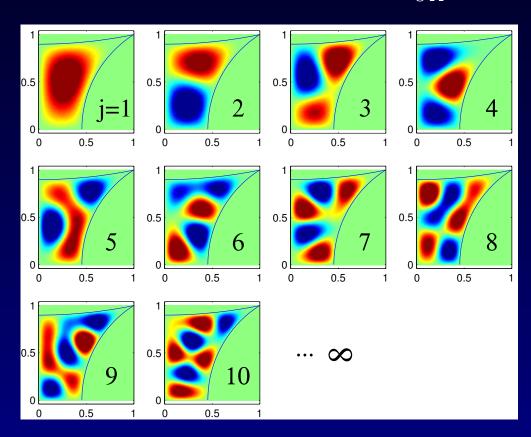
Dirichlet eigenproblem

Normal modes of elastic membrane or 'drum' (Helmholtz, Germain, 19thC) Eigenfunctions ϕ_j of Laplacian Δ in bounded domain $\Omega \subset \mathbb{R}^d$

$$-\Delta\phi_j = E_j\phi_j,$$

$$\phi_j|_{\partial\Omega}=0$$
 Dirichlet BC

$$\int_{\Omega} \phi_i \phi_j = \delta_{ij}$$



mode
$$j=1\cdots\infty$$

'energy' eigenvalue E_j
wavenumber $k_j=E_j^{1/2}$
wavelength $=2\pi/k_j$

focus on d=2

- Analytic solutions only if Δ separable (rectangle, ellipse...)
- How numerically compute large numbers of E_i & ϕ_i efficiently?

Motivation

- electromagnetic waveguides (TM modes: Dirichlet BC)
- eigenstates of quantum particles trapped in a cavity
- acoustic resonances and duct transmission (Neumann BC)
- paradigm for more general trapped wave problems

e.g. full Maxwell for microwave, optical resonators

Motivation

- electromagnetic waveguides (TM modes: Dirichlet BC)
- eigenstates of quantum particles trapped in a cavity
- acoustic resonances and duct transmission (Neumann BC)
- paradigm for more general trapped wave problems

 e.g. full Maxwell for microwave, optical resonators

Modern questions & applications involve...

- 1. Complex geometry: corners, 3D structures
- 2. Higher frequencies: *multiscale* problem, $\lambda \ll$ system size

VIEW $j \sim 3000$: 45 wavelengths across

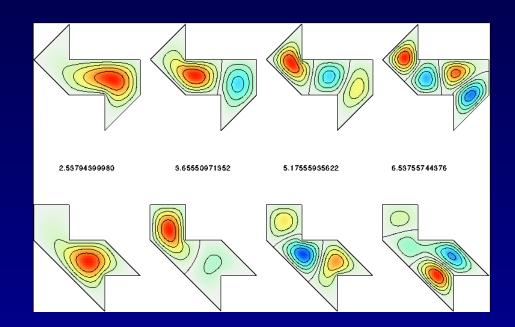
Mathematical questions

- 1. 'Quantum chaos': what happens in $E \to \infty$ (high freq) limit?
 - depends on classical (ray) dynamics ... what if chaotic?
 - arose in quantum physics (Einstein 1917; Gutzwiller, Berry '80s)
 - eigenvalue E_i statistics \leftrightarrow Random Matrix Theory
 - impact: atomic, molecular, electronic, chemical physics

Mathematical questions

- 1. 'Quantum chaos': what happens in $E \to \infty$ (high freq) limit?
 - depends on classical (ray) dynamics ... what if chaotic?
 - arose in quantum physics (Einstein 1917; Gutzwiller, Berry '80s)
 - eigenvalue E_i statistics \leftrightarrow Random Matrix Theory
 - impact: atomic, molecular, electronic, chemical physics
- 2. Spectral geometry, Riemann surfaces
 - can one hear the shape of a drum?

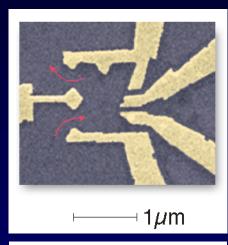
(Kac '66, Gordon *et al.* '92)

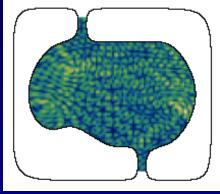


isospectral drums, numerics to 14 digits (Driscoll '97)

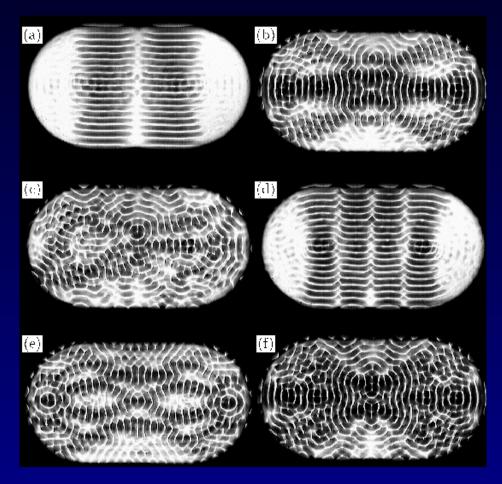
Modern applications

- 'quantum dots': $\sim 1\mu$ m semiconductor labs for cold electrons
 - —candidates for quantum computers
 - —quantum chaos vital for statistics of resonances, conduction





quantum dots (Marcus)

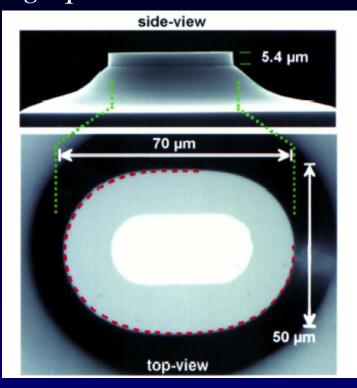


resonant liquid surfaces (Kudrolli)

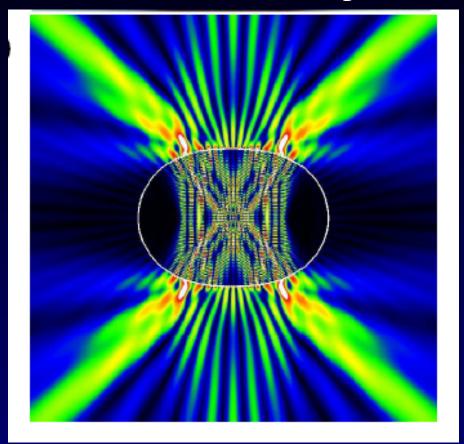
Dielectric micro-cavity lasers

leaky resonant cavities

e.g. quantum-cascade laser



'bowtie' mode, emission pattern



- 2D cavity confinement due to total internal reflection (n = 3.3)
- asymmetric cavity, 'scarred' modes $\rightarrow 10^3$ more power (Gmachl '98)
- design is hard: compute many modes for many shapes (Tureci '03)

Outline

- I. variant of Method of Particular Solutions
- II. basis sets
- III. eigenvalue inclusion bounds & rigorous analysis
- IV. acceleration by scaling
 - V. application to quantum chaos: high-frequency mode asymptotics

Task: find ϕ_j and E_j such that $(\Delta + E_j)\phi_j = 0$ and $\phi_j|_{\partial\Omega} = 0$

Task: find ϕ_j and E_j such that $(\Delta + E_j)\phi_j = 0$ and $\phi_j|_{\partial\Omega} = 0$ Given trial energy parameter E...

• $u = \sum_{i=1}^{N} x_i \xi_i$ where each basis function obeys $(\Delta + E)\xi_i = 0$ in Ω

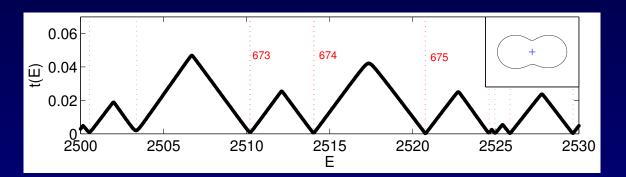
Task: find ϕ_j and E_j such that $(\Delta + E_j)\phi_j = 0$ and $\phi_j|_{\partial\Omega} = 0$ Given trial energy parameter E...

- $u = \sum_{i=1}^{N} x_i \xi_i$ where each basis function obeys $(\Delta + E)\xi_i = 0$ in Ω
- if can find coeff vector $\mathbf{x} \in \mathbb{R}^N$ giving $u|_{\partial\Omega} = 0$, but $u \neq 0$ in Ω ... then u is a mode ϕ_j and E is its eigenvalue E_j

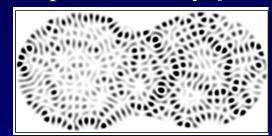
Task: find ϕ_j and E_j such that $(\Delta + E_j)\phi_j = 0$ and $\phi_j|_{\partial\Omega} = 0$ Given trial energy parameter E...

- $u = \sum_{i=1}^{N} x_i \xi_i$ where each basis function obeys $(\Delta + E)\xi_i = 0$ in Ω
- if can find coeff vector $\mathbf{x} \in \mathbb{R}^N$ giving $u|_{\partial\Omega} = 0$, but $u \neq 0$ in Ω ... then u is a mode ϕ_j and E is its eigenvalue E_j

Define 'boundary error'
$$t(E) := \min_{u \in \operatorname{Span}\{\xi_i\}, u \neq 0} \frac{||u||_{L^2(\partial\Omega)}}{||u||_{L^2(\Omega)}}$$



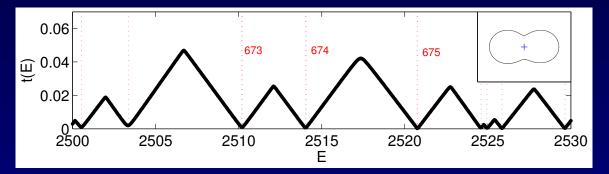
'peanut' cavity, $j \approx 700$



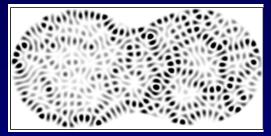
Task: find ϕ_j and E_j such that $(\Delta + E_j)\phi_j = 0$ and $\phi_j|_{\partial\Omega} = 0$ Given trial energy parameter E...

- $u = \sum_{i=1}^{N} x_i \xi_i$ where each basis function obeys $(\Delta + E)\xi_i = 0$ in Ω
- if can find coeff vector $\mathbf{x} \in \mathbb{R}^N$ giving $u|_{\partial\Omega} = 0$, but $u \neq 0$ in Ω ... then u is a mode ϕ_j and E is its eigenvalue E_j

Define 'boundary error'
$$t(E) := \min_{u \in \operatorname{Span}\{\xi_i\}, u \neq 0} \frac{||u||_{L^2(\partial\Omega)}}{||u||_{L^2(\Omega)}}$$



'peanut' cavity, $j \approx 700$



Search (Newton) in E for minima of t(E)

• Cures normalization problem plaguing original MPS (Fox '67, etc) similar cure independently found (Betcke & Trefethen '04)_{p.8}

At each E, how is t(E) computed?

defining bilinear forms $\begin{array}{c} f(u,v) := \int_{\partial\Omega} uv & \text{boundary} \\ g(u,v) := \int_{\Omega} uv & \text{interior} \end{array}$

At each E, how is t(E) computed?

defining bilinear forms $f(u,v) := \int_{\partial\Omega} uv$ boundary $g(u,v) := \int_{\Omega} uv$ interior

Rayleigh quotient
$$t(E) := \min_{u \neq 0} \sqrt{\frac{f(u, u)}{g(u, u)}} = \min_{\mathbf{x}^T G \mathbf{x} \neq \mathbf{0}} \sqrt{\frac{\mathbf{x}^T F \mathbf{x}}{\mathbf{x}^T G \mathbf{x}}} = \sqrt{\hat{\lambda}_1}$$

 $\hat{\lambda}_1 = \text{lowest generalized eigenvalue of order-}N \text{ matrix eigenproblem}$

$$F\mathbf{x} = \hat{\lambda}G\mathbf{x}$$

elements
$$F_{ij} := \int_{\partial\Omega} \xi_i \xi_j$$

 $G_{ij} := \int_{\Omega} \xi_i \xi_j$

quadrature on boundary (trapezium)

oscillatory integrals over interior...(yuk)

... can convert to boundary integrals via new identities

At each E, how is t(E) computed?

defining bilinear forms
$$\begin{array}{ll} f(u,v) := \int_{\partial\Omega} uv & \text{boundary} \\ g(u,v) := \int_{\Omega} uv & \text{interior} \end{array}$$

Rayleigh quotient
$$t(E) := \min_{u \neq 0} \sqrt{\frac{f(u, u)}{g(u, u)}} = \min_{\mathbf{x}^T G \mathbf{x} \neq \mathbf{0}} \sqrt{\frac{\mathbf{x}^T F \mathbf{x}}{\mathbf{x}^T G \mathbf{x}}} = \sqrt{\hat{\lambda}_1}$$

 $\hat{\lambda}_1 = \text{lowest generalized eigenvalue of order-}N$ matrix eigenproblem

$$F\mathbf{x} = \hat{\lambda}G\mathbf{x}$$

elements
$$F_{ij}:=\int_{\partial\Omega}\xi_i\xi_j$$
 quadrature on boundary (trapezium) $G_{ij}:=\int_{\Omega}\xi_i\xi_j$ oscillatory integrals over interior...(yuk) ... can convert to boundary integrals via new identities

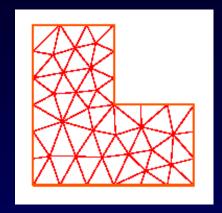
F,G dense symm positive-definite, numerically singular as N large

- F, G share common nullspace $\rightarrow \exists$ both stable and unstable $\hat{\lambda}$'s
- Cholesky, QZ fail: use regularized (ϵ_{mach} -truncated) inverse of G

Compare to direct methods

Direct discretization (mesh)

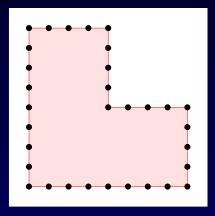
finite differencing finite element method (FEM)



- local basis representation
- basis satisfies BC
- find basis coeffs to solve PDE

Boundary methods

integral equation methods (BEM) method of particular solutions (MPS)

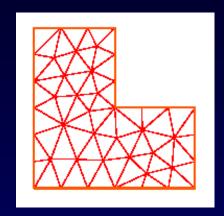


- global basis representation
- basis satisfies PDE
- find basis coeffs to match BC

Compare to direct methods

Direct discretization (mesh)

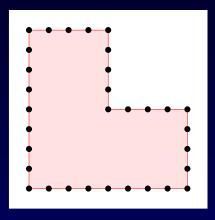
finite differencing finite element method (FEM)



- local basis representation
- basis satisfies BC
- find basis coeffs to solve PDE

Boundary methods

integral equation methods (BEM) method of particular solutions (MPS)



- global basis representation
- basis satisfies PDE
- find basis coeffs to match BC

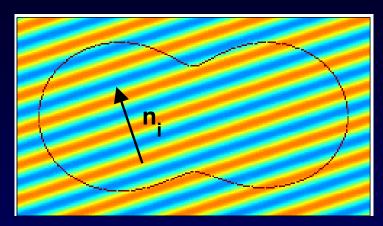
Direct discretization: $N\sim$ # wavelengths in volume $\sim k^d$ MPS has much smaller $N\sim$ # wavelengths on boundary $\sim k^{d-1}$

 \Rightarrow short wavelengths : huge advantage (even with loss of sparsity)_{-p. 10}

II. Types of MPS basis sets

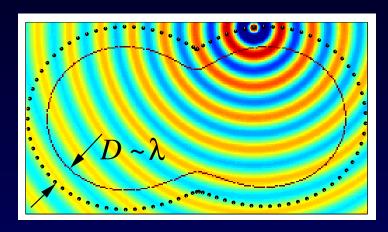
Each ξ_i is global Helmholtz soln at energy E in the cavity...

PLANE WAVES



 $\xi_i(\mathbf{r}) = \sin(k\mathbf{n}_i \cdot \mathbf{r}), \quad k^2 = E$ physics community (Heller '84)

FUNDAMENTAL SOLUTIONS

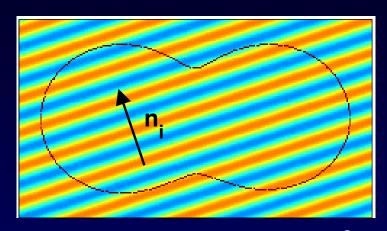


 $\xi_i(\mathbf{r}) = Y_0(k|\mathbf{r} - \mathbf{y}_i|)$ Neumann \mathbf{y}_i lie on exterior curve (B '02)

II. Types of MPS basis sets

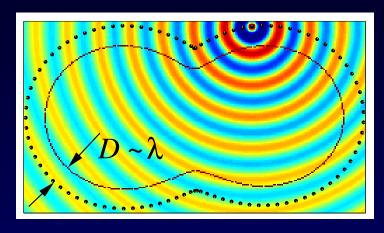
Each ξ_i is global Helmholtz soln at energy E in the cavity...

PLANE WAVES



 $\xi_i(\mathbf{r}) = \sin(k\mathbf{n}_i \cdot \mathbf{r}), \quad k^2 = E$ physics community (Heller '84)

FUNDAMENTAL SOLUTIONS



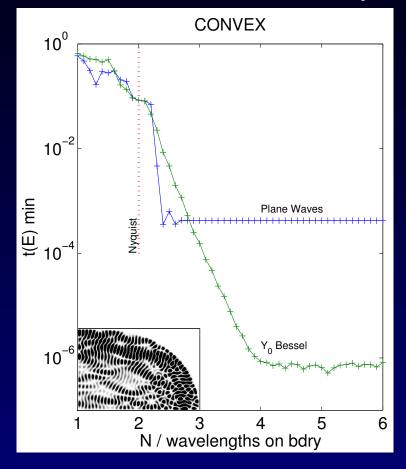
 $\xi_i(\mathbf{r}) = Y_0(k|\mathbf{r} - \mathbf{y}_i|)$ Neumann \mathbf{y}_i lie on exterior curve (B '02)

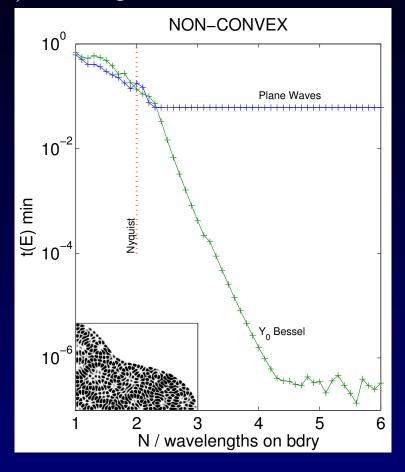
Note: set of $\{\xi_i\}$ recomputed, F,G refilled, at each E during search This is $O(N^2)$, dwarfed by $O(N^3)$ dense eigensolve

How well do these basis sets perform for different cavity shapes?

Convergence with basis size N

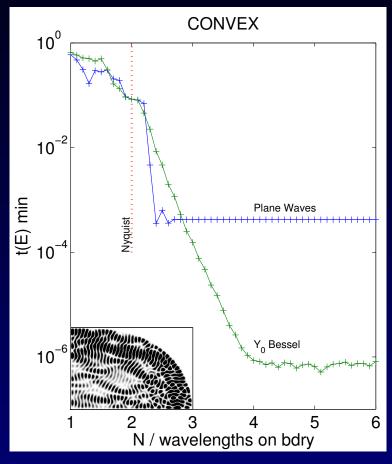
How small can we make bdry error t(E), for a given mode?

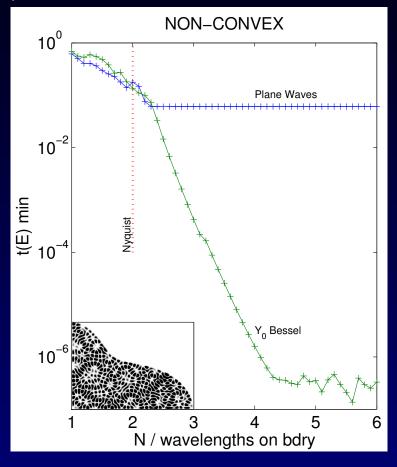




Convergence with basis size ${\cal N}$

How small can we make bdry error t(E), for a given mode ?





- 2 points per wavelength: $N_{sc} = Nyquist$ sampling limit at spatial freq k
- plane waves useless (fail to converge) for non-convex Ω
- Y_0 's give exponential convergence, beyond N_{sc} (down to $\sqrt{\epsilon_{\text{mach}}}$)
- 3-4 points per wavelength, beats 10 usual for integral eqns, BEM

Mysteries of basis sets

Plane waves poor in practise (basis coeffs x too big), even though...

- Fourier-Bessels $J_l(kr)$ $\begin{cases} \sin l\theta \\ \cos l\theta \end{cases}$ complete in simply-connected Ω (Schryer '72)
- Map from Fourier-Bessel to plane-wave coeffs is well-conditioned (Discrete FT)
- Paradox! Nonconvex Ω , high freq: plane waves proven incomplete (Gutkin '03)

Mysteries of basis sets

Plane waves poor in practise (basis coeffs x too big), even though...

- Fourier-Bessels $J_l(kr)$ $\begin{cases} \sin l\theta \\ \cos l\theta \end{cases}$ complete in simply-connected Ω (Schryer '72)
- Map from Fourier-Bessel to plane-wave coeffs is well-conditioned (Discrete FT)
- Paradox! Nonconvex Ω , high freq: plane waves proven incomplete (Gutkin '03)

Expect closed, closely-spaced wall of Y_0 's to be good since...

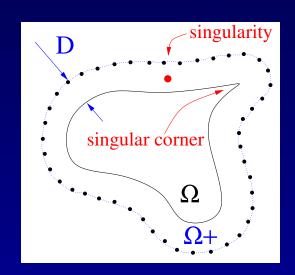
- single layer potential on $\partial \Omega^+$ complete when $E \neq \text{Dir.}$ eigenvalue of Ω^+
- Helmholtz solns regular in Ω^+ form dense subspace of those regular in Ω

(Lax '56, Runge approx property)

How big will Y_0 coeffs x be?

What if mode ϕ_j cannot be analytically continued to Ω^+ ? (Eckmann-Pillet '95)

In practise, coeffs not too big: MOVIE



III. New eigenvalue inclusion bounds

Recall $t(E) = \frac{||u||_{L^2(\partial\Omega)}}{||u||_{L^2(\Omega)}}$ for u some trial global Helmholtz soln at E. When t(E) small, intuitively $E \approx E_j$, but can we bound this error?

III. New eigenvalue inclusion bounds

Recall $t(E) = \frac{||u||_{L^2(\partial\Omega)}}{||u||_{L^2(\Omega)}}$ for u some trial global Helmholtz soln at E

When t(E) small, intuitively $E \approx E_j$, but can we bound this error?

Thm (Fox '67, Moler-Payne '68):
$$\min_{j} \frac{|E - E_{j}|}{E_{j}} \leq C_{\Omega} t(E)$$

- $t(E) = 10^{-6}$ means $E \approx E_j$ to 6-digit relative accuracy
- classical result; used for high-accuracy MPS (Betcke & Trefethen '04)

III. New eigenvalue inclusion bounds

Recall $t(E) = \frac{||u||_{L^2(\partial\Omega)}}{||u||_{L^2(\Omega)}}$ for u some trial global Helmholtz soln at E

When t(E) small, intuitively $E \approx E_j$, but can we bound this error?

Thm (Fox '67, Moler-Payne '68):
$$\min_{j} \frac{|E - E_{j}|}{E_{j}} \leq C_{\Omega} t(E)$$

- $t(E) = 10^{-6}$ means $E \approx E_j$ to 6-digit relative accuracy
- classical result; used for high-accuracy MPS (Betcke & Trefethen '04)

Actually can do better...

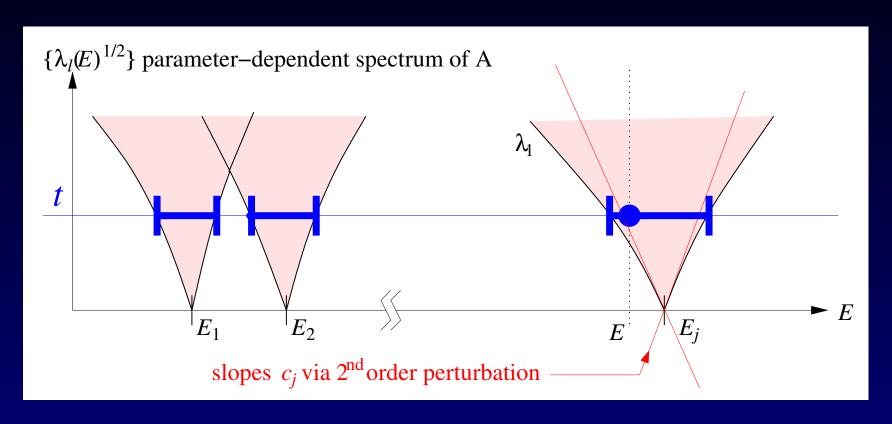
Thm (B '04): For some δ which vanishes as $t(E) \to 0$,

$$\min_{j} \frac{|E - E_j|}{E_j^{1/2}} \le C_{\Omega}'(1 + \delta)t(E)$$

- In practise δ is tiny and can be ignored
- At high freq $E \sim 10^6$: now $t(E) = 10^{-6}$ means 9-digit accuracy

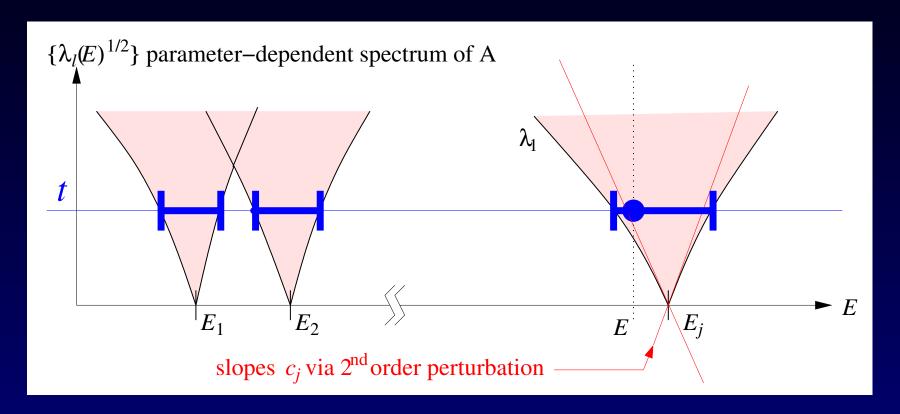
Mechanism for improved inclusion

 $\forall E : t(E)$ exceeds lowest eigenvalue $\sqrt{\lambda_1(E)}$ of some operator A(E)



Mechanism for improved inclusion

 $\forall E : t(E)$ exceeds lowest eigenvalue $\sqrt{\lambda_1(E)}$ of some operator A(E)



prove analytic perturbation series $\lambda_1(E) = c_j(E - E_j)^2 + O(E - E_j)^4$

- so as $t \to 0$, error $|E E_j|$ must vanish linearly in t
- prove 'slope coeffs' $\overline{c_j}$ bounded from below by c/E_j , for all j

(thanks: Deift, Goodman)

Work in ∞ -dim space $\mathcal{H}_{\Omega}(E) := \{(\Delta + E)u = 0 \text{ in } \Omega, u|_{\partial\Omega} \in L^2(\partial\Omega)\}$

(thanks: Deift, Goodman)

Work in ∞ -dim space $\mathcal{H}_{\Omega}(E) := \{(\Delta + E)u = 0 \text{ in } \Omega, u|_{\partial\Omega} \in L^2(\partial\Omega)\}$

• write boundary funcs $U = u|_{\partial\Omega}$. Choose f as inner product:

$$f(u,v) = \int_{\partial\Omega} w \, uv =: \langle U, V \rangle \qquad \text{fixed weight func } w \in L^{\infty}(\partial\Omega), w > 0$$

$$g(u,v) = \int_{\Omega} uv =: \langle U, AV \rangle \qquad \text{defines } A(E) : L^{2}(\partial\Omega) \to L^{2}(\partial\Omega)$$

(thanks: Deift, Goodman)

Work in ∞ -dim space $\mathcal{H}_{\Omega}(E) := \{(\Delta + E)u = 0 \text{ in } \Omega, u|_{\partial\Omega} \in L^2(\partial\Omega)\}$

• write boundary funcs $U = u|_{\partial\Omega}$. Choose f as inner product:

$$f(u,v) = \int_{\partial\Omega} w \, uv =: \langle U, V \rangle$$

$$g(u,v) = \int_{\Omega} uv =: \langle U, AV \rangle$$

fixed weight func
$$w \in L^{\infty}(\partial\Omega), w > 0$$

defines $A(E): L^{2}(\partial\Omega) \to L^{2}(\partial\Omega)$

A compact for $E \neq E_j$ Spectral problem $V = \lambda AV$

proof: Poisson kernel for Helmholtz eqn discrete spectrum $\lambda_1 \leq \lambda_2 \leq \cdots \rightarrow \infty$

(thanks: Deift, Goodman)

Work in ∞ -dim space $\mathcal{H}_{\Omega}(E) := \{(\Delta + E)u = 0 \text{ in } \Omega, u|_{\partial\Omega} \in L^2(\partial\Omega)\}$

• write boundary funcs $U = u|_{\partial\Omega}$. Choose f as inner product:

$$f(u, v) = \int_{\partial \Omega} w \, uv =: \langle U, V \rangle$$

$$g(u, v) = \int_{\Omega} uv =: \langle U, AV \rangle$$

fixed weight func
$$w \in L^{\infty}(\partial\Omega), w > 0$$
 defines $A(E): L^2(\partial\Omega) \to L^2(\partial\Omega)$

A compact for $E \neq E_j$ Spectral problem $V = \lambda AV$ proof: Poisson kernel for Helmholtz eqn discrete spectrum $\lambda_1 \leq \lambda_2 \leq \cdots \rightarrow \infty$

For E in neighborhood of E_j , isolate unbounded part of A: $A(E) = (\text{compact analytic}) + \frac{1}{(E-E_j)^2}(\text{constant rank-1})$

- perturbation details: analyticity & Cauchy eigenvalue interlacing
- get $c_j^{-1} = \int_{\partial\Omega} w^{-1} (\partial_n \phi_j)^2$ has u

has upper bound $O(E_j)$ in wide class of Ω

Rigorous analysis (sketch)

(thanks: Deift, Goodman)

Work in ∞ -dim space $\mathcal{H}_{\Omega}(E) := \{(\Delta + E)u = 0 \text{ in } \Omega, u|_{\partial\Omega} \in L^2(\partial\Omega)\}$

• write boundary funcs $U = u|_{\partial\Omega}$. Choose f as inner product:

$$f(u,v) = \int_{\partial\Omega} w \, uv =: \langle U, V \rangle$$

$$g(u,v) = \int_{\Omega} uv =: \langle U, AV \rangle$$

fixed weight func
$$w\in L^\infty(\partial\Omega), w>0$$
 defines $A(E):L^2(\partial\Omega)\to L^2(\partial\Omega)$

A compact for $E \neq E_j$ Spectral problem $V = \lambda AV$

proof: Poisson kernel for Helmholtz eqn discrete spectrum $\lambda_1 \leq \lambda_2 \leq \cdots \rightarrow \infty$

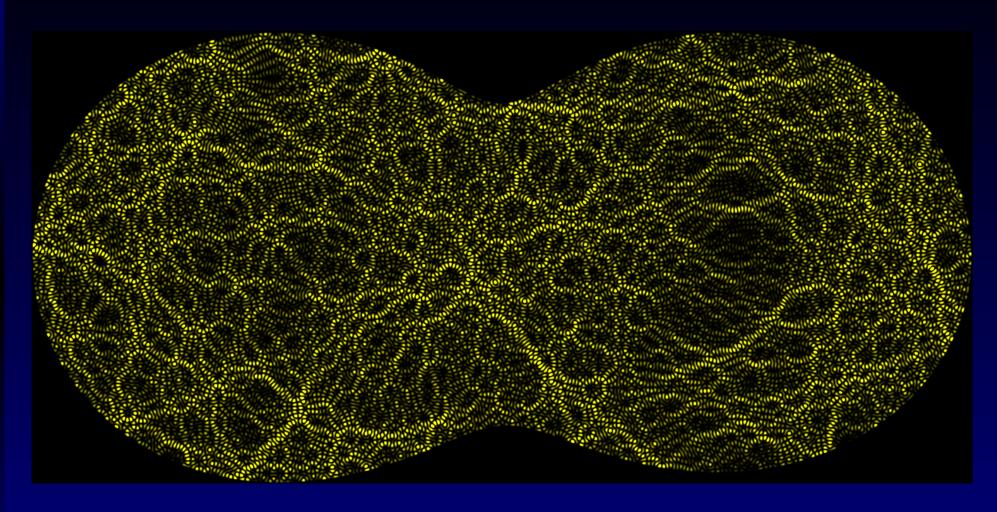
For E in neighborhood of E_j , isolate unbounded part of A: $A(E) = (\text{compact analytic}) + \frac{1}{(E-E_j)^2}(\text{constant rank-1})$

- perturbation details: analyticity & Cauchy eigenvalue interlacing
- get $c_j^{-1} = \int_{\partial\Omega} w^{-1} (\partial_n \phi_j)^2$ has upper bound $O(E_j)$ in wide class of Ω

Finally, note $t(E)^2 = \hat{\lambda}_1 \ge \lambda_1$ since $\mathrm{Span}\{\xi_i\} \subset \mathcal{H}_{\Omega}(E)$

RESULT: optimal symmetric bounds, tighter by factor $E^{1/2} = O(N)$

High-frequency peanut inclusion



Mode $j \approx 27000$. Given typical boundary error norm $t(E) = 1.2 \times 10^{-5}$, get...

Moler-Payne bounds: $10000_{0.5}^{6.1}$

New bounds: 100003.3_{17}^{32}

2.5 extra digits, no extra work!

IV. Acceleration by scaling

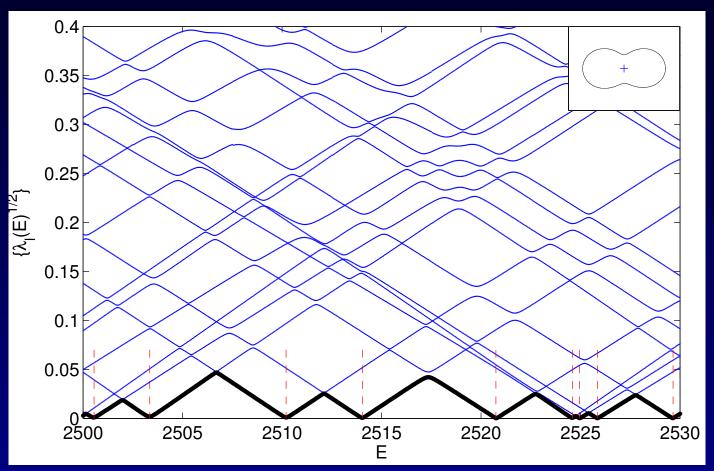
(back to numerical method, N-dim Span $\{\xi_i\}$)

Root search slow, close levels easily missed — can we do better? We used $t(E) = \hat{\lambda}_1(E)^{1/2}$. Plot higher generalized eigenvalues. . .

IV. Acceleration by scaling

(back to numerical method, N-dim Span $\{\xi_i\}$)

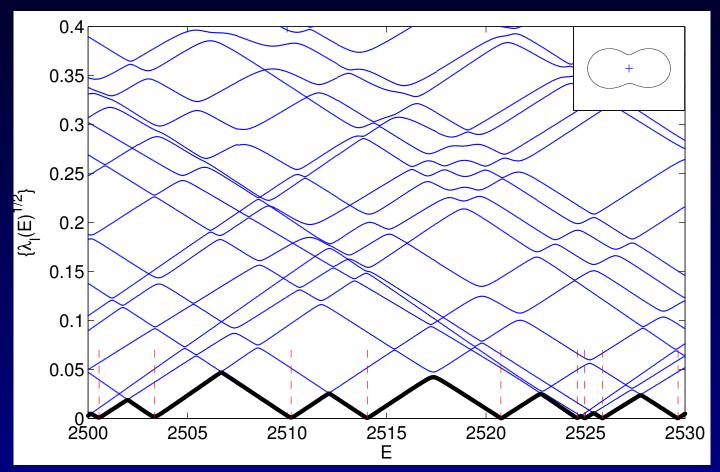
Root search slow, close levels easily missed — can we do better? We used $t(E) = \hat{\lambda}_1(E)^{1/2}$. Plot higher generalized eigenvalues...



IV. Acceleration by scaling

(back to numerical method, N-dim $Span\{\xi_i\}$)

Root search slow, close levels easily missed — can we do better? We used $t(E) = \hat{\lambda}_1(E)^{1/2}$. Plot higher generalized eigenvalues...



• Idea: spectrum at single E has info about many nearby λ_1 minima

Special boundary weighting w

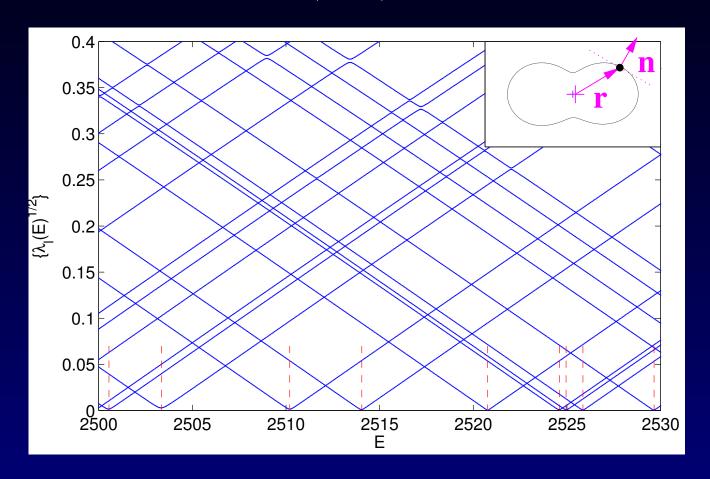
For f, change from w=1 to $w=(\mathbf{r} \cdot \mathbf{n})^{-1}$

(requires Ω star-shaped)

Special boundary weighting w

For f, change from w=1 to $w=(\mathbf{r} \cdot \mathbf{n})^{-1}$

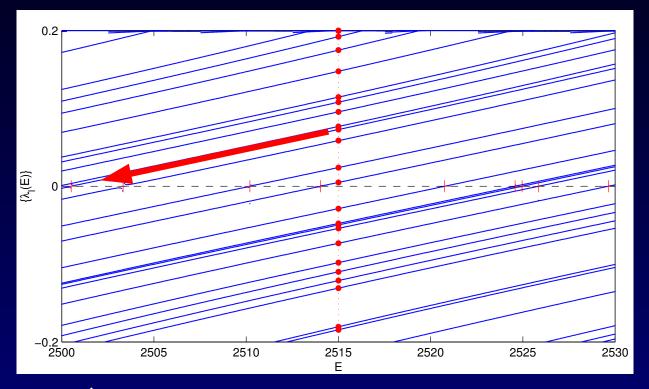
(requires Ω star-shaped)



- beautiful clean quadratic structure, tiny avoided crossings
- no 'slope' variation: prove $c_j E_j = \frac{1}{2}$, $\forall j \rightarrow$ accurate prediction!

Can do even better...

Invented in physics community... a correct explanation was lacking! Use f as before, but new $g(u,v)=\int_{\partial\Omega}(\mathbf{r}\cdot\mathbf{n})^{-1}(u\mathbf{r}\cdot\nabla v+v\mathbf{r}\cdot\nabla u)$



- solving $F\mathbf{x} = \hat{\lambda}G\mathbf{x}$ at single E value gives all nearest O(N) modes
- no root search, no missing levels, efficiency gain $O(E^{\frac{d-1}{2}})$, in 3D too
- eigenvectors ${\bf x}$ give dilated (scaled) approximations to modes ϕ_j
- errors grow like $t \sim |E_j E|^3$ (3rd-order convergence with effort)_{p.20}

Scaling relies on quasi-orthogonality

modes exactly orthogonal in interior $\int_{\Omega} \phi_i \phi_j = \delta_{ij}$ approx orthogonality on boundary $Q_{ij} := \int_{\partial \Omega} \mathbf{r} \cdot \mathbf{n} \, \partial_n \phi_i \, \partial_n \phi_j$

It's known $Q_{ij} = 2\delta_{ij}E_j + q_{ij}$ with $q_{jj} = 0$ (Rellich '40)

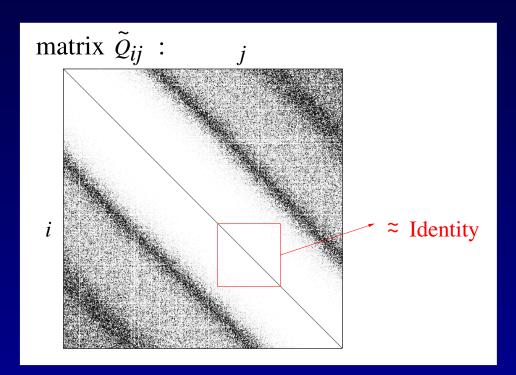
- conjecture (Vergini '94): off-diag terms grow $|q_{ij}| \sim |E_i E_j|$
- semiclassics (B-Cohen-Heller '00): for Ω ergodic, $|q_{ij}| \sim (E_i E_j)^2$

Scaling relies on quasi-orthogonality

modes exactly orthogonal in interior $\int_{\Omega} \phi_i \phi_j = \delta_{ij}$ approx orthogonality on boundary $Q_{ij} := \int_{\partial \Omega} \mathbf{r} \cdot \mathbf{n} \ \partial_n \phi_i \ \partial_n \phi_j$

It's known $Q_{ij} = 2\delta_{ij}E_j + q_{ij}$ with $q_{jj} = 0$ (Rellich '40)

- conjecture (Vergini '94): off-diag terms grow $|q_{ij}| \sim |E_i E_j|$
- semiclassics (B-Cohen-Heller '00): for Ω ergodic, $|q_{ij}| \sim (E_i E_j)^2$
- Thm (B '04): for all Ω , ergodic or not, $|q_{ij}| \leq C_{\Omega}(E_i E_j)^2$

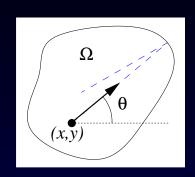


Algebra shows the set of dilated ϕ_j with E_j near E approx diagonalize f and g

 \Rightarrow scaling works

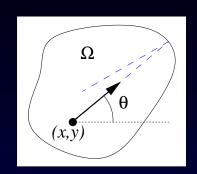
V. Application: Quantum chaos & cavity shape

Drum problem is *quantized* equivalent of 'billiards' dynamical system: point particle, elastic reflection from $\partial\Omega$ phase space $=(x,y,\theta)$

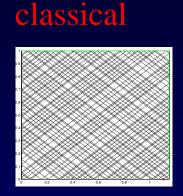


V. Application: Quantum chaos & cavity shape

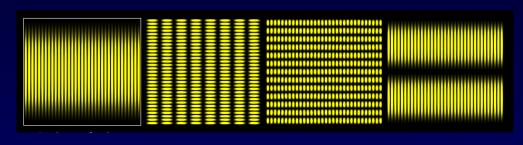
Drum problem is *quantized* equivalent of 'billiards' dynamical system: point particle, elastic reflection from $\partial\Omega$ phase space $=(x,y,\theta)$



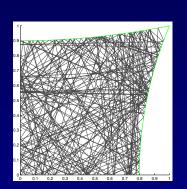
Integrable: conserved quantities



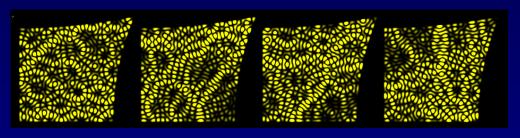
eigenfunctions ϕ_j : 'quantum'



Ergodic: covers all phase space



localization (tori in phase space: EBK)



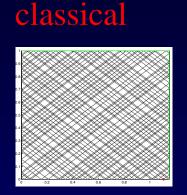
'quantum chaos'

V. Application: Quantum chaos & cavity shape

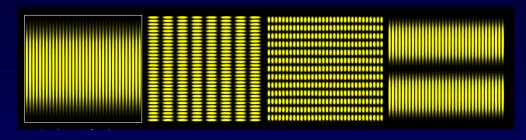
Drum problem is *quantized* equivalent of 'billiards' dynamical system: point particle, elastic reflection from $\partial\Omega$ phase space $=(x,y,\theta)$



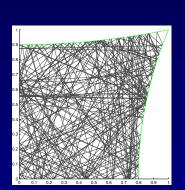
Integrable: conserved quantities



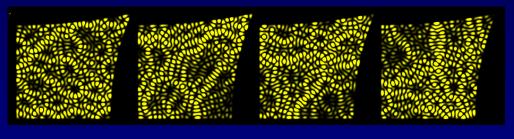
eigenfunctions ϕ_j : 'quantum'



Ergodic: covers all phase space



localization (tori in phase space: EBK)



'quantum chaos'

• We examine mode intensity ϕ_j^2 for ergodic Ω in $E \to \infty$ limit

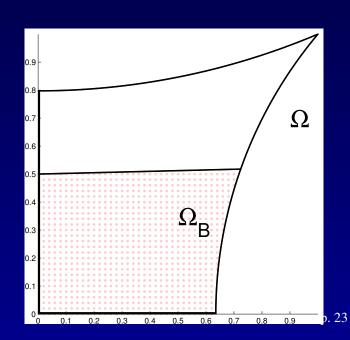
Do modes become spatially uniform?

Quantum Ergodicity Theorem: For ergodic cavity $\Omega \supset \Omega_B$,

$$\lim_{E_j \to \infty} \int_{\Omega_B} \phi_j^2 = \frac{\operatorname{vol}(\Omega_B)}{\operatorname{vol}(\Omega)} \qquad \forall j \text{ except subseq. of vanishing density}$$

(Schnirelman '74, Colin de Verdière '85, Zelditch '87, Z-Zworski '96)

Gives no prediction of convergence rate or density of subsequence



Do modes become spatially uniform?

Quantum Ergodicity Theorem: For ergodic cavity $\Omega \supset \Omega_B$,

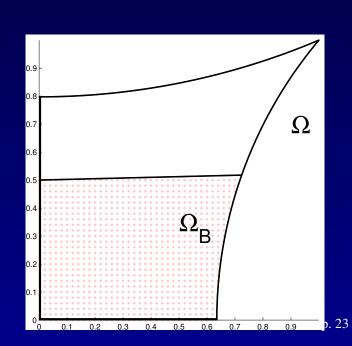
$$\lim_{E_j \to \infty} \int_{\Omega_B} \phi_j^2 = \frac{\operatorname{vol}(\Omega_B)}{\operatorname{vol}(\Omega)} \qquad \forall j \text{ except subseq. of vanishing density}$$

(Schnirelman '74, Colin de Verdière '85, Zelditch '87, Z-Zworski '96)

Gives no prediction of convergence rate or density of subsequence

Large-scale numerical study of $\int_{\Omega_B} \phi_j^2$:

- Sinai-type cavity (chaotic: uniformly hyperbolic)
- 30,000 modes, level numbers $j \sim 10^4$ to 10^6 ... 100 times higher than other studies
- only a few CPU-days total (B '04)



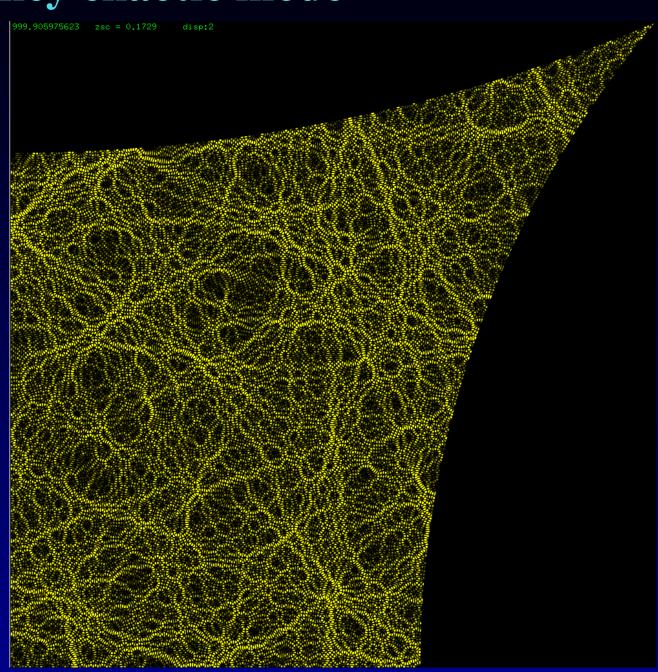
High-frequency chaotic mode

225 wavelengths across system

level number $j \approx 5 \times 10^4$

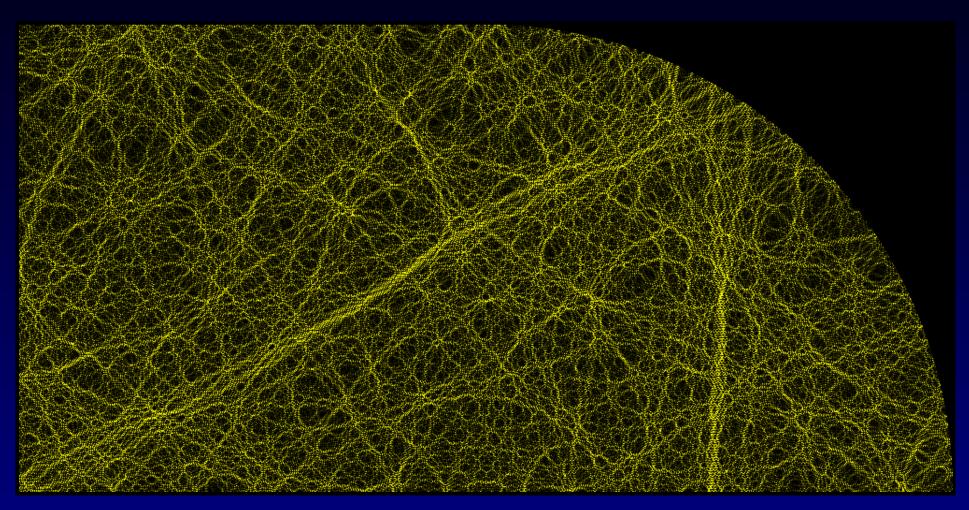
 $E \approx 10^6$

here scaling method is 10^3 times faster than MPS! (or BEM)



Scarred mode (stadium cavity)

'Scar' is: enhanced intensity ϕ_j^2 on unstable periodic (ray) orbit



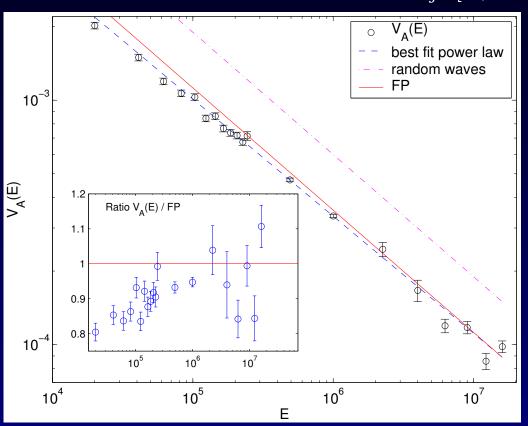
• discovered in physics, predict width dies $E \sim E^{-1/4}$ (Heller '84) But do scars die out in the $E \to \infty$ limit, or persist as subsequence?

Result: asymptotic convergence rate with ${\cal E}$

local variance
$$V_B(E) := \frac{1}{E^{1/2}} \sum_{E_j \in [E, E + E^{1/2}]} \left(\int_{\Omega_B} \phi_j^2 - \frac{\operatorname{vol}(\Omega_B)}{\operatorname{vol}(\Omega)} \right)^2$$

Result: asymptotic convergence rate with ${\cal E}$

local variance
$$V_B(E) := \frac{1}{E^{1/2}} \sum_{E_j \in [E, E + E^{1/2}]} \left(\int_{\Omega_B} \phi_j^2 - \frac{\operatorname{vol}(\Omega_B)}{\operatorname{vol}(\Omega)} \right)^2$$



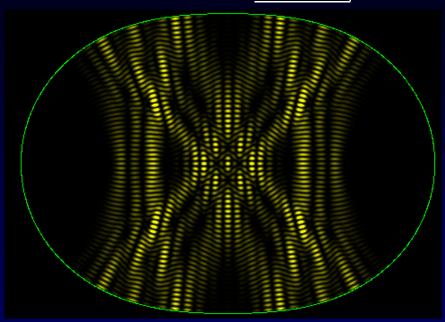
consistent with power law model $V_B(E) = aE^{-\gamma}$

fit
$$\gamma = 0.48 \pm 0.01$$

random waves, scar theory predict $\gamma = 1/2$

- large numbers of modes \rightarrow highly accurate statistics (< 1%)
- convergence slow; prefactor a **not** explained by random wave model
- no exceptional modes: supports Quantum Unique Ergodicity (Sarnak et al.)_{p. 26}

Laser results: closed cavity modes



CPU	
/ mode	method
60 s	MPS, root search
10 s	scaling, output 2d grid
0.6 s	scaling, bdry vals only

Conclusions

Dirichlet eigenmode problem: global (meshless) methods excel

At high frequencies $e.g. \sim 100$ wavelengths across...

- made eigenvalue inclusion 10^3 times more accurate
- scaling: 10^3 faster computation than any other known method

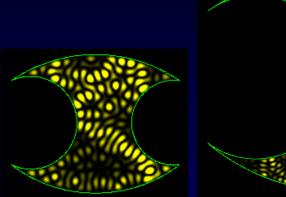
Future:

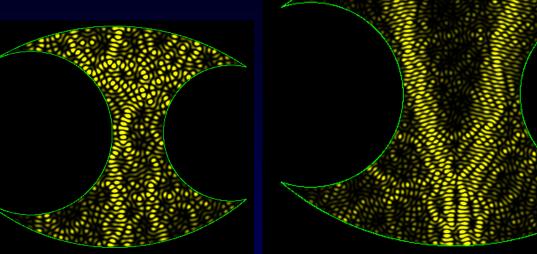
- scaling method rigorous error analysis
- basis sets for corners, mixed boundary conditions, 3D
- accelerate integral equation methods: open systems

Preprints/talks: http://www.cims.nyu.edu/~barnett

Non-star-shaped domains: initial results

Boundary weight $w = 1/(\mathbf{r} \cdot \mathbf{n})$ no least the second second



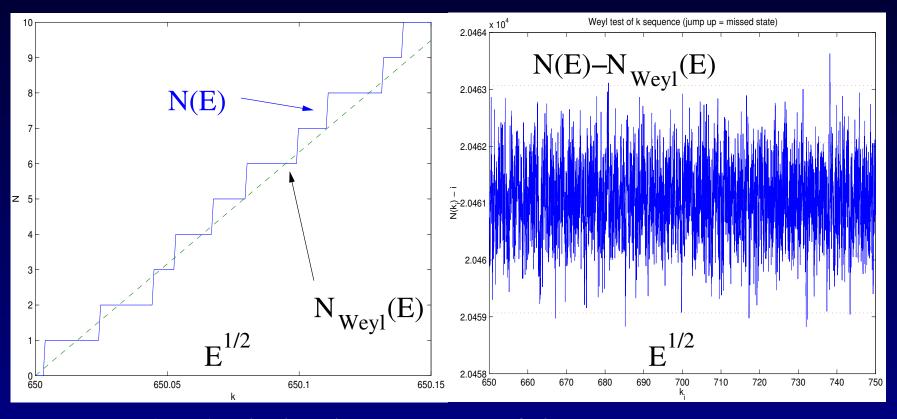


- scaling method *still works*: not great accuracy, $t \sim 10^{-2}$.
- promising for complex geometries...

Missing levels?

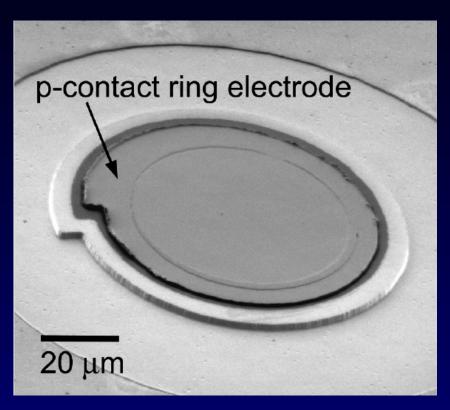
Weyl's estimate for N(E), the # eigenvalues $E_j < E$:

$$N_{\text{Weyl}}(E) = \frac{\text{vol}(\Omega)}{4\pi}E - \frac{L}{4\pi}\sqrt{E} + O(1)\cdots$$

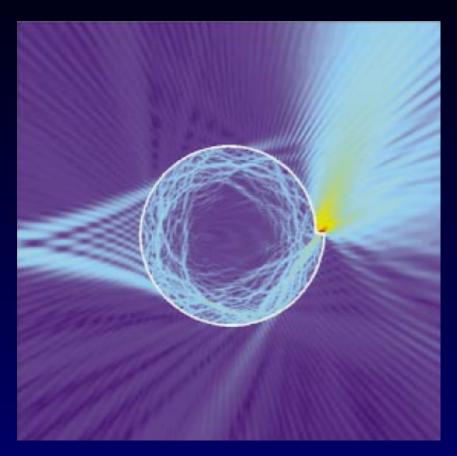


• not one level missing in sequence of 6812

Future laser plans: spiral cavity?



micrograph (Kneissl et al. '04)



numerics (Chern et al. '03)

- Optimal shape? Where best to pump (spatially)?
- So far computations hard & limited in wavenumber
- Coupled MPS inside & outside