Fast and accurate evaluation of close-to-touching rigid body interactions

Motivation

Dense colloidal suspensions have numerous industrial and biomedical applications

- Exhibit interesting non-linear behaviors not fully understood.
- Numerical simulations challenging due to close-to-touching interactions / collision.
Require: high-resolution, large iteration counts in linear solve, and small time-steps.

Related work

- Collision handling: repulsion, LCP (linear complementarity problem). Unclear if the dynamics are physical.
- RCIP (recursively compresed inverse preconditioning) expensive for moving geometries

Boundary integral equations

For N_{Ω} non-overlapping discs, $\Omega=\bigcup_{k=1}^{N_{\Omega}} \Omega_{k}$, the BIE formulation is:
where:
$\mathcal{K} \sigma=g$
on $\partial \Omega$.
\mathcal{K} is the boundary integral operator
g are the boundary conditions

Close-to-touching interactions

When the distance d between two discs gets small, σ becomes highly peaked. This requires a fine discretization of the boundary in the close-to-touching region.

Compressing close-to-touching interactions

Let Γ_{2} be the close-to-touching region and $\Gamma_{1}=\partial \Omega \backslash \Gamma_{2}$ The BIE can be written as a block linear system,

$$
\left(\begin{array}{ll}
\mathcal{K}_{11} & \mathcal{K}_{12} \\
\mathcal{K}_{21} & \mathcal{K}_{22}
\end{array}\right)\binom{\sigma_{1}}{\sigma_{2}}=\binom{g_{1}}{g_{2}}
$$

First we use the following right preconditioner

$$
\left(\begin{array}{cc}
\mathcal{I} & 0 \\
0 & \mathcal{K}_{22}^{-1}
\end{array}\right)
$$

Then we compute an L^{2} projection from the fine discretization to the coarse discretization with $W_{c}^{-1} P^{T} W_{f}$ where:

- W_{c} and W_{f} are diagonal matrices with weights for smooth integration on the coarse and fine discretizations
- P is the prolongation matrix

The discretized BIE can be written as:

$$
\left[I+\left(\begin{array}{cc}
K_{11}-I & K_{12}^{c} \\
K_{21}^{c} & 0
\end{array}\right)\left(\begin{array}{cc}
I & 0 \\
0 & R_{2}
\end{array}\right)\right]\binom{\sigma_{1}}{\sigma_{2}^{*}}=\binom{g_{1}}{g_{2}^{*}},
$$

where $R_{2}=W_{c}^{-1} P^{T} W_{f} K_{22}^{-1} P$. After solving this BIE formulation, we construct an approximate solution density:

$$
\sigma=\left(\begin{array}{cc}
I & 0 \\
0 & R_{2}
\end{array}\right)\binom{\sigma_{1}}{\sigma_{2}^{*}}
$$

Interpolation for different distances We precompute $R_{2}(d)$ for $d \in\left[d_{\min }, d_{\max }\right]$. Then we construct a piecewise polynomial interpolant for $R_{2}(d)$ and then interpolate to any value of d in the interval.

Capacitance and elastance problems We test our approach with the capacitance and elastance problems, where each disc is a "perfect electrical conductor". The BIE formulation for the capacitance problem is:

$$
(\mathcal{I} / 2+\mathcal{D}+\mathcal{S})[\sigma]=\sum_{k=1}^{N_{\Omega}} u_{k} 1_{\partial \Omega_{k}}
$$

While the BIE formulation for the elastance problem is:

$$
(\mathcal{I} / 2+\mathcal{D})[\sigma]+\sum_{k=1}^{N_{\Omega}} 1_{\partial \Omega_{k}} \int_{\partial \Omega} 1_{\partial \Omega_{k}} \sigma=-\mathcal{S}[\nu] \quad \text { on } \partial \Omega,
$$

where

$$
\nu=\sum_{k=1}^{N_{\Omega}} 1_{\partial \Omega_{k}} \frac{q_{k}}{\partial \Omega_{k} \mid} .
$$

Numerical Results
For $d=10^{-8}$ we were able to get 6 digits of accuracy.

Future work
Consider more discs, use different interpolation nodes for distances, solve the Stokes mobility problem

References

[1] J. Helsing, Solving integral equations on piecewise smooth boundaries using the
Ind Singuarty Methods for Linearized
[2] C. Pozrikidis, Boundary Integral and Singularity Me
[3] M. Rachh and L. Greengard, Integral equation methods for elastance and mobility problems in two dimensions, SIAM Journal on Numerical Analysis, 54

