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Motivation

Dense colloidal suspensions have numerous industrial
and biomedical applications.

= Exhibit interesting non-linear behaviors not fully
understood.

= Numerical simulations challenging due to
close-to-touching interactions / collision.

= Require: high-resolution, large iteration counts in linear
solve, and small time-steps.

Related work

= Collision handling: repulsion, LCP (linear
complementarity problem). Unclear if the dynamics are
physical.

= RCIP (recursively compresed inverse preconditioning),
expensive for moving geometries.

Boundary integral equations

For N, non-overlapping discs, Q = (%, Q& the BIE formulation is:
Ko =g on of).

where:

= Cis the boundary integral operator
" ¢ are the boundary conditions

Close-to-touching interactions

When the distance d between two discs gets small, o
becomes highly peaked. This requires a fine discretization
of the boundary in the close-to-touching region.
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Compressing close-to-touching

interactions

Let I'y be the close-to-touching region and I'y = 99\ T.
The BIE can be written as a block linear system,
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First we use the following right preconditioner:
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Then we compute an L? projection from the fine
discretization to the coarse discretization with W' P11/,
where:

= W, and W, are diagonal matrices with weights for
smooth integration on the coarse and fine
discretizations

= P is the prolongation matrix

The discretized BIE can be written as:
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where Ry = W IPTW Ky P. After solving this BIE
formulation, we construct an approximate solution
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Interpolation for different distances

We precompute Ry(d) for d € |diin, dimax]. Then we
construct a piecewise polynomial interpolant for Ry(d)
and then interpolate to any value of d in the interval.
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Capacitance and elastance problems

We test our approach with the capacitance and elastance
problems, where each disc is a "perfect electrical
conductor”. The BIE formulation for the capacitance
problem is:
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While the BIE formulation for the elastance problem is:
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Capacitance Problem - Total charge on each disc
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Elastance problem - Potential in the exterior o5

Numerical Results
For d = 107° we were able to get 6 digits of accuracy:.

Distance between discs, GMRES iterations
TrTTTTT ! T T j TTTTTT j T TTTT T T

10° ————

Solver used

—&— Full
=— Block Preconditioning
—&— Preconditioning and Compression
Interpolation, Preconditioning, and Compression | |

nGMRES
)
)]

101 1 1 IIlIII| L 1 IIIIII| | 1 IIIIII| L 1 IIIIII| 1 1 IIIII\l 1 1 IIIII\l 1 1 | I T
10 1077 10 107 107 1073 1072 107"
d
Distance between discs, time
1 1 LI 1 T 1 !!!I!! T L) LI T

AL B | ALL AL
Solver used

—e— Full

—=— Block Preconditioning

—=— Preconditioning and Compression
Interpolation, Preconditioning, and Compression | |

10°® 10°f 10°° 107 1074 1073 10°% 1077

Future work

Consider more discs, use different interpolation nodes for
distances, solve the Stokes mobility problem.
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