BIEST: A Fast High-Order BIE Solver for Computing Stepped Pressure Equilibria in Stellarators


$$
\begin{array}{rc}
(\nabla \times \mathbf{B}) \times \mathbf{B} & =0 \Longleftrightarrow \nabla \times \mathbf{B}=\lambda \mathbf{B} \\
\mathbf{B} \cdot \mathbf{n} & =0 \quad \text { (on flux surface) } \\
\left\langle p+\mathbf{B}^{2} / 2\right\rangle & =0 \quad \text { (force balance) }
\end{array}
$$

Relation to Time Harmonic Maxwell's Equations

$$
\mathbf{H}=\mathbf{B} \quad \text { and } \quad \mathbf{E}=i \mathbf{B}
$$

$$
\nabla \times \mathbf{H}=-i k \mathbf{E}, \quad \nabla \times \mathbf{E}=i k \mathbf{H}
$$

Generalized Debye representation for time harmonic Maxwell's equations C. Epstein, L. Greengard, M. O'Neil

## Boundary Integral Solver

.Unknowns only on boundary.
-Well conditioned linear system.
.Fast and parallelizable.
.High order accurate.
High-Order Singular Quadratures

$$
\begin{array}{r}
\phi(\mathbf{x})=\int_{S} K\left(\mathbf{x}-\mathbf{x}^{\prime}\right) f\left(\mathbf{x}^{\prime}\right) d a^{\prime} \\
K(\mathbf{r})=\frac{1}{4 \pi|\mathbf{r}|}
\end{array}
$$



## Numerical Results



Equilibrium Calculation


- Move boundary in normal direction by distance proportional to pressure jump.
- Ongoing work: compute true gradient using adjoint formulation.


## Temporary page!

LATEX was unable to guess the total number of pages correctly. As there was some unprocessed data that should have been added to the final page this extra page has been added to receive it.

