BIEST: A High-Order Boundary Integral Equation Solver for Computing Taylor States in Stellarators Dhairya Malhotra[†], Antoine Cerfon[†], Lise-Marie Imbert-Gérardi[‡], Michael O'Neil[†]

Introduction

Computing Taylor states or force-free fields is an essential component in computing ideal magnetohydrodynamic (MHD) equilibrium. We present BIEST (Boundary Integral Equation Solver for Taylor states), a new numerical solver for the fast and accurate computation of Taylor states in toroidal geometries. Our boundary integral equation formulation has several advantages,

- unknowns only on the boundary leading to significant savings in work
- well-conditioned system due to second-kind integral equation formulation
- high-order accurate due to spectral discretization and special quadratures

Taylor States in Toroidal Geometries

In a bounded domain Ω , for a given value of the Beltrami parameter λ , the magnetic field **B** for Taylor states is described by the equations,

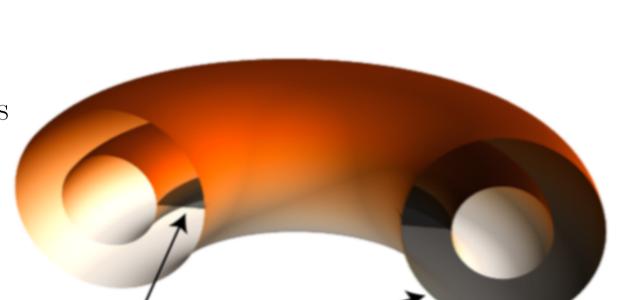
$$\nabla \times \mathbf{B} = \lambda \mathbf{B} \quad \text{in } \Omega$$

$$\mathbf{B} \cdot \mathbf{n} = 0$$
 on Γ

In addition, the toroidal and poloidal flux conditions must be specified,

$$\int_{S_t} \mathbf{B} \cdot da = \phi^{tor}$$

$$\int_{S_n} \mathbf{B} \cdot da = \phi^{pol}.$$



Generalized Debye Formulation

We represent magnetic field \mathbf{B} using the generalized Debye source representation of [1],

$$\mathbf{B} = i\lambda \mathbf{Q} - \nabla v + i\nabla \times \mathbf{Q}$$

where, \mathbf{Q} and v are vector and scalar potentials given by the surface convolutions,

$$\mathbf{Q}(\mathbf{x}) = \int_{\Gamma} \frac{e^{ik|\mathbf{x} - \mathbf{x}'|}}{4\pi|\mathbf{x} - \mathbf{x}'|} \mathbf{m}(\mathbf{x}') da', \qquad v(\mathbf{x}) = \int_{\Gamma} \frac{e^{ik|\mathbf{x} - \mathbf{x}'|}}{4\pi|\mathbf{x} - \mathbf{x}'|} \sigma(\mathbf{x}') da'.$$

$$v(\mathbf{x}) = \int_{\Gamma} \frac{e^{ik|\mathbf{x}-\mathbf{x'}|}}{4\pi|\mathbf{x}-\mathbf{x'}|} \sigma(\mathbf{x'}) da'.$$

For the Taylor state condition $(\nabla \times \mathbf{B} = \lambda \mathbf{B})$ to hold, we require the consistency conditions,

$$\nabla_{\Gamma} \cdot \mathbf{m} = i\lambda \sigma,$$

$$\mathbf{n} \times \mathbf{m} = i \ \mathbf{m}.$$

Then, from the consistency conditions,

$$\mathbf{m} = i\lambda \left(\nabla_{\Gamma} \Delta_{\Gamma}^{-1} \sigma - i \, \mathbf{n} \times \nabla_{\Gamma} \Delta_{\Gamma}^{-1} \sigma \right) + \alpha \, \mathbf{m}_{H}$$

where,

 ∇_{Γ} : surface gradient operator

 Δ_{Γ}^{-1} : inverse of surface Laplacian (restricted to mean-zero functions)

 \mathbf{m}_H are tangential harmonic vector field such that $\nabla_{\Gamma} \cdot \mathbf{m}_H = 0$, $\mathbf{n} \times \mathbf{m}_H = i \ \mathbf{m}_H$.

Boundary Integral Equation Formulation

Applying the boundary conditions ($\mathbf{B} \cdot \mathbf{n} = 0$ on Γ), results in a **second-kind** integral equation,

$$\sigma/2 + i\lambda \mathbf{n} \cdot \mathcal{S}_{\lambda}[\mathbf{m}] - \mathbf{n} \cdot \nabla \mathcal{S}_{\lambda}[\sigma] + i\mathbf{n} \cdot \nabla \times \mathcal{S}_{\lambda}[\mathbf{m}] = 0.$$

Flux conditions: computed from circulation on the boundary of a cross-section,

$$\int_{S} \mathbf{B} \cdot d\mathbf{a} = \frac{1}{\lambda} \oint_{\partial S} \mathbf{B} \cdot d\mathbf{l} \qquad (\nabla \times \mathbf{B} = \lambda \mathbf{B}, \text{ Stokes' theorem}).$$

Discretize and solve for the unknowns σ and $\{\alpha_1, \alpha_2\}$ using GMRES,

$$\begin{bmatrix} \mathbf{A} & \mathbf{u_1} & \mathbf{u_2} \\ \mathbf{v_1^T} & c_{11} & c_{12} \\ \mathbf{v_2^T} & c_{21} & c_{22} \end{bmatrix} \begin{bmatrix} \sigma \\ \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} 0 \\ \phi^{tor} \\ \phi^{pol} \end{bmatrix}$$

Boundary Integral Equation Solver

A boundary integral solver of axisymmetric toroidal geometries was presented in [2]. We extend this to a fully three-dimensional solver. This required efficient discretization of the surface, a fast Laplace-Beltrami solver (to apply Δ_{Γ}^{-1}) and high-order singular quadratures (to apply \mathcal{S}_{λ}) in 3D.

Surface Discretization

Each toroidal surface is parameterized by toroidal angle (θ) and the poloidal angle (ϕ) . We use Fourier discretization for the surface position and density functions.

$$f(\theta,\phi) \approx \sum_{n=0}^{N_{\theta}-1} \sum_{m=0}^{N_{\phi}-1} \widehat{\mathsf{f}}_{nm} e^{i(n\theta+m\phi)} \qquad \text{where,} \quad \widehat{\mathsf{f}}_{nm} = \frac{1}{2\pi N_{\theta} N_{\phi}} \sum_{i=0}^{N_{\theta}-1} \sum_{j=0}^{N_{\phi}-1} \mathsf{f}_{ij} e^{i(n\theta_i+m\phi_j)}$$

Laplace Beltrami Solver

We use spectral differentiation in Fourier space to evaluate derivatives,

$$\mathbf{f}_{\theta} = \mathbf{D}_{\theta}\mathbf{f} = \mathcal{F}^{-1}\widehat{\mathbf{D}_{\theta}}\mathcal{F}\mathbf{f}, \qquad \mathbf{f}_{\phi} = \mathbf{D}_{\phi}\mathbf{f} = \mathcal{F}^{-1}\widehat{\mathbf{D}_{\phi}}\mathcal{F}\mathbf{f}.$$

Operators \mathcal{F} and \mathcal{F}^{-1} are accelerated using the **Fast Fourier Transform (FFT)**. The discrete Laplace Beltrami operator (Δ_{Γ_h}) is then defined as,

$$\nabla_{\Gamma_h} \mathbf{u} = \begin{bmatrix} \mathbf{x}_{\theta} \mathbf{x}_{\phi} \end{bmatrix} \mathbf{G}^{-1} \begin{bmatrix} \mathbf{D}_{\theta} \\ \mathbf{D}_{\phi} \end{bmatrix} \mathbf{u}, \qquad \nabla_{\Gamma_h} \cdot \mathbf{v} = \frac{1}{\sqrt{|\mathbf{G}|}} \begin{bmatrix} \mathbf{D}_{\theta} \mathbf{D}_{\phi} \end{bmatrix} \sqrt{|\mathbf{G}|} \ \mathbf{v}, \qquad \Delta_{\Gamma_h} \mathbf{u} = \nabla_{\Gamma_h} \cdot \nabla_{\Gamma_h} \mathbf{u}$$

where, **G** is the metric tensor.

• Spectral Preconditioner: exact inverse $\Delta_{\Gamma_h}^{-1}$ for flat surface (from [3]).

• Solve: $(\Delta_{\Gamma_b} + \mathbf{1}\mathbf{w^T})\mathbf{u} = \mathbf{f}$ using BiCG-stab or GMRES

High-Order Singular Quadratures on Surfaces

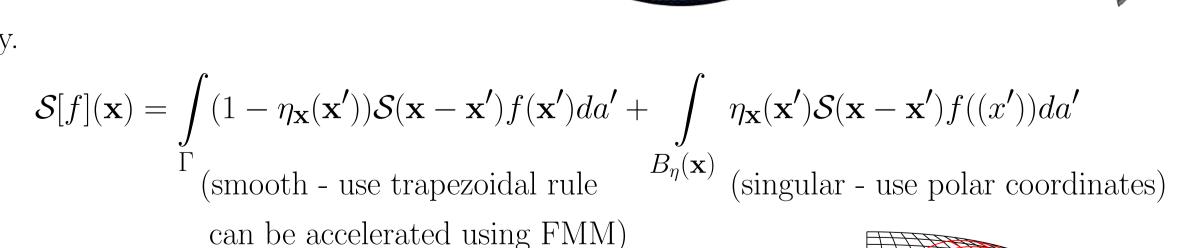
Evaluating layer potential due to singular kernel functions $\mathcal{S}(\mathbf{r})$ requires special quadratures.

$$S[f](\mathbf{x}) = \int_{\Gamma} S(\mathbf{x} - \mathbf{x'}) f(\mathbf{x'}) da', \qquad S(\mathbf{r}) = \frac{e^{ik|\mathbf{r}|}}{4\pi |\mathbf{r}|} =$$

We present a **fast**, **high-order accurate** scheme for computing such integrals.

Partition of unity function

Split the integral into a smooth integral over the entire surface Γ and a local singular integral using a smooth partition of unity function $\eta_{\mathbf{x}}$. The singular integral is computed in polar coordinates since the Jacobian of the transformation cancels the kernel singularity.



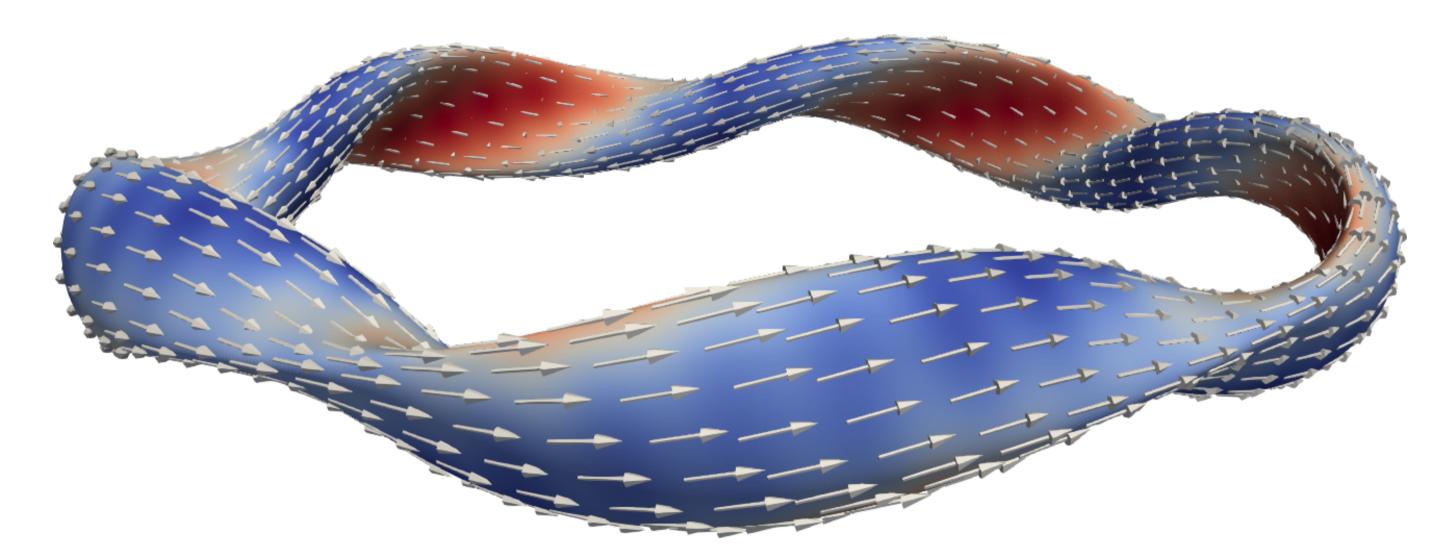
++++

Polar quadrature scheme

- Interpolate from $M \times M$ grid to a polar grid using Lagrange interpolation.
- Use q-th order Gauss-Legendre quadrature in radial direction, 2q-th order trapezoidal rule in angular direction.
- Pre-compute target-specific weights on the original $M \times M$ grid.

Numerical Results

We compare our boundary integral equation solver (BIEST) with the Galerkin code SPEC from [4] for the geometry defined by the outer surface of the Wendelstein 7-X stellarator. For both codes, we report the solve time and the L^{∞} -norm of the error compared to a reference solution. We show results for two cases: for $\lambda = 0$ (vacuum fields) and for $\lambda = 1$. All experiments were conducted on a 60-core Intel Ivy-Bridge machine.

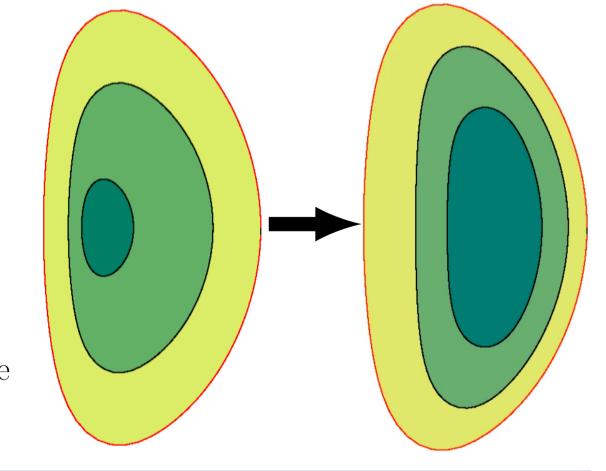


BIEST		$\lambda = 0$		$\lambda = 1$		SPEC	$\lambda = 0$		$\lambda = 1$	
N	$\epsilon_{ ext{gmres}}$	$ e _{\infty}$	T_{solve}	$ e _{\infty}$	T_{solve}	$M_{\phi} \times M_{\theta} \times L_r$	$ e _{\infty}$	T_{solve}	$ e _{\infty}$	T_{solve}
3.9E+3	1e-01	8E-1	0.1	2e-1	1.0	$11 \times 11 \times 5$	3E-1	14	3E-1	13
8.8E+3	3E-02	2E-1	0.4	6e-2	4.4	$13 \times 13 \times 5$	6E-2	38	6e-2	38
2.5E+4	3e - 03	3E-2	2.1	7e-3	29.8	$15 \times 15 \times 5$	8E-3	115	9e-3	118
3.5E+4	1e-03	7 _E -3	4.3	3E-3	61.6	$21 \times 21 \times 5$	2E-3	527	2e-3	541
9.8E+4	3e-05	2E-4	27.3	1e-4	492.1	_	_	_	_	_
1.9E+5	1e-06	9E-6	98.1	9e-6	1991.0	_	_	_	_	_
7.7E + 5	1E-09	5E-9	1309.1	2E-9	40646.2	_	_	-	_	-

- Our boundary integral scheme converges to about 9-digits while the Galerkin approach of SPEC stops converging with mesh refinement beyond 3-digit accuracy due to ill-conditioned of the system.
- For the same solution accuracy, BIEST is nearly 100× faster for the vacuum field case and about 8× faster for $\lambda > 0$. Unlike SPEC, we currently do not take advantage of the 5-fold symmetry of the W7X stellarator and this could give us another $5 \times$ speedup.

Future Work

- Adaptive meshes and surfaces with edges: to resolve sharp features close to the divertor.
- Near-singular quadratures: to efficiently compute layer-potentials when surfaces get very close.
- Estimate Hessian: to accelerate the stepped-pressure equilibrium computation.



References

- [1] C. L. Epstein, L. Greengard, and M. O'Neil: Debye Sources, Beltrami Fields, and aComplex Structure on Maxwell Fields. Commun. Pure Appl. Math., 68(12):22372280,2015
- [2] M. O'Neil, A.J. Cerfon: An integral equation-based numerical solver for Taylor states in toroidal geometries. JCP, 359:263 282, Apr 2018
- [3] L. M. Imbert-Gérard, L. Greengard: Pseudo-Spectral Methods for the Laplace-Beltrami Equation and the Hodge Decomposition on Surfaces of Genus One. NumericalMethods for Partial Differential Equations, 33(3):941 955, Feb 2017
- [4] S.R. Hudson, R.L. Dewar, G. Dennis, M.J. Hole, M. McGann, G. von Nessi, S. Lazerson: Computation of multi-region relaxed magnetohydrodynamics equilibria. Phys. Plasmas 19 (2012) 112502

