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Fast Integral Equation Solver for Variable Coefficient
Elliptic PDEs in Complex Geometries

by

Dhairya Malhotra, Ph.D.
The University of Texas at Austin, 2017

Supervisor: George Biros

This dissertation presents new numerical algorithms and related software for the nu-
merical solution of elliptic boundary value problems with variable coefficients on certain
classes of geometries. The target applications are problems in electrostatics, fluid me-
chanics, low-frequency electromagnetic and acoustic scattering. We present discretiza-
tions based on integral equation formulations which are founded in potential theory and
Green'’s functions. Advantages of our methods include high-order discretization, optimal
algorithmic complexity, mesh-independent convergence rate, high-performance and par-
allel scalability.

First, we present a parallel software framework based on kernel independent fast mul-
tipole method (FMM) for computing particle and volume potentials in 3D. Our software is
applicable to a wide range of elliptic problems such as Poisson, Stokes and low-frequency
Helmholtz. It includes new parallel algorithms and performance optimizations which
make our volume FMM one of the fastest constant-coefficient elliptic PDE solver on cu-
bic domains. We show that our method is orders of magnitude faster than other N-body
codes and PDE solvers. We have scaled our method to half-trillion unknowns on 229K
CPU cores.

Second, we develop a high-order, adaptive and scalable solver for volume integral
equation (VIE) formulations of variable coefficient elliptic PDEs on cubic domains. We
use our volume FMM to compute integrals and use GMRES to solve the discretized linear
system. We apply our method to compute incompressible Stokes flow in porous media
geometries using a penalty function to enforce no-slip boundary conditions on the solid
walls. In our largest run, we achieved 0.66PFLOP/s on 2K compute nodes of the Stampede
system (TACC).



Third, we develop novel VIE formulations for problems on geometries that can be
smoothly mapped to a cube. We convert problems on non-regular geometries to variable
coefficient problems on cubic domains which are then solved efficiently using our volume
FMM and GMRES. We show that our solver converges quickly even for highly irregular
geometries and that the convergence rates are independent of mesh refinement.

Fourth, we present a parallel boundary integral equation solver for simulating the
flow of concentrated vesicle suspensions in 3D. Such simulations provide useful insights
on the dynamics of blood flow and other complex fluids. We present new algorithmic im-
provements and performance optimizations which allow us to efficiently simulate highly

concentrated vesicle suspensions in parallel.

vi



Table of Contents

List of Tables xi
List of Figures xiii
1 Introduction 1
1.1 Overviewof Methods . . . .. ... ... .. ... ... .. ... ... ..., 1
1.2 Related Work . . . . . . . . . 5
1.3 Contributions . . . . . ... . 6
14 OrganizationoftheThesis . . . . .. .. .......... .. .. ....... 7
2 A Parallel Fast Multipole Algorithm for Particle and Volume Potentials
2.1 Introduction . . . . . . . . . . .. e
22 KernelIndependent FMM . . . . ... .. ... .. ... .. L 12
2.2.1 Far-field Interactions in KIFMM . . . . .. ... ... ... ...... 15
222 Outlineof FMM . . . . . . ... e 17
2.2.3 Backward Stable Pseudo-inverse . . . . . ... ... .. .. ...... 18
23 Volume FMM . . . . . . . e 19
2.3.1 Octree Construction . . . . . ... ... ... ... ... 19
232 Interaction Operators . .. ... ..................... 20
2.3.3 Evaluating Singular Integrals . . . . .. ... ... ... ... ... .. 21
234 21 BalanceConstraint . . . . . ... ... ... ... . ... 22
235 Summaryof Volume FMM . . ... ... ... ... .. .. ..... 23
23.6 Gradients . . . .. . . ... e 24
2.3.7 Selecting Optimal Parameter Values . . . . . ... ... ... ..... 24
2.3.8 Reducing Memory Requirement . . . . ... ... ... ........ 25
24 Intra-node Parallelism . . . .. ... ... ... ... ... 26
241 Asynchronous Execution on Coprocessor . . . . .. ... ....... 26
242 Near Interaction Optimizations for Volume FMM . . . . . ... ... 27

vii



243 Near Interaction Optimizations for Particle FMM . . . ... ... .. 28

244 V-List Optimizations . . . ... .. ... . ... ... .......... 28
2.5 Distributed-Memory Parallelism . . . ... ... ... ............. 31
251 Tree Construction . . . . . ... ... ... 31
25.2 2:1Balance Refinement . . .. ... ... ....... . ........ 32
2.5.3 Distributed-Memory FMM . . . .. .. ... ... .. ... . ... 33
2.6 Convergence Analysis . . . .. .. .. ... ... .. .. .. ... 35
2.6.1 Convergence Results for Particle FMM . . . ... ... ... ..... 35
2.6.2 Convergence Results for Volume FMM . . . ... ... .. ...... 38
2.7 Single-Node Performance Results . . . .. ... ... ............. 40
2.7.1 Performance of M2L Translation . . . .. ... ... ... ....... 40
2.7.2  Performance of Volume FMM . ... .. ... ... .. ........ 41
2.8 Distributed Memory Performance Results . . . . .. ... ........... 42
2.8.1 Strong Scalability of Particle FMM . . . . ... ............. 43
2.8.2 Strong Scalability of Volume FMM . . . . . .. ... ... ... ... .. 44
2.8.3 Weak Scalability of Volume FMM . . . .. ............... 46
2.84 Performance with GPU Accelerators. . . . .. ... ... ....... 47
2.8.5 Scalability of 2:1 Balance Refinement . . .. ... ... ........ 47
2.9 Comparison with Other Methods . . . . . . ... ... ... ... ... .... 49
210 Conclusions . . . . . . . . e e 50

A Volume Integral Equation Solver for Stokes Flow in Porous Media Geometries 52

3.1

3.2

3.3
34

Introduction . . . . . ... 52
3.1.1 Contributions . . . . . . . ... 53
312 RelatedWork . . . . . ... ... 55
3.1.3 Limitations . . . . .. . .. .. 56
3.14 Organization of the Chapter . . . ... ... .. ... .. ....... 56
Methodology and Algorithms . . . . . ... ...... ... ... ... ... 57
3.2.1 Discretization . . . . . . ... L L 58
322 ErrorAnalysis .. ... ... ... .. ... L o 60
3.2.3 Formulation for Porous MediaFlow . . . . .. ... ... ....... 60
Numerical Results . . . . . . . . ... .. . e 61
Performance Analysis . . .. ... ... ... ... .. . oo 63
3.4.1 Single Node Performance . . . ... ... ................ 64
342 WeakScalability . ... ... ... .. ... .. . 0 000 65



343 Strong Scalability . . . . ... ... ... o o oo

3.5 Conclusions . . . . . ... e

Volume Integral Equation Solver for Stokes Flow in Complex Geometries

41 Introduction . . . . . . . . . . .. e
411 Contributions . . . . . . . ...
412 RelatedWork . . . . . ...
41.3 Limitations . .. ... .. ... e
414 Organizationof theChapter . . .. ... ... ... ... .. .....
42 Formulation . . . . . . . . .. .. e
421 Integral Equation Formulations . ... ... ... ...........
4.2.2 Coordinate Transformations . . ... ... .. ... .. ........
4.2.3 Weak-Formulation for Poisson Problem . . . . . ... ... ......
424 Formulation for StokesFlow . ... ... ... .............
425 Dirichlet Boundary ConditionsonCube . . ... ... ........
4.2.6 Overall Formulation for Stokes Flow . . ... ... ... .......
4.3 Numerical Methods . . . . . ... ... ...
4.3.1 Discretization . . . . . . . .. L
432 Convolution Operators . .. ... ... .................
43.3 Boundary Integral EquationSolver . .. ... ... ..........
434 Volume Integral EquationSolver . . . . ... ... . ... ... ... ..
44 Numerical Results . . . ... ... ... .. .. .. ...
45 Conclusions . . . . . . . . .. e

Parallel Simulation of Concentrated Vesicle Suspensions

5.1 Introduction . . . . . . . . . . . .
51.1 Contributions . . . . . . . . ... e
5.1.2 Limitations . . . . . . . .. .. e
513 RelatedWork . . . ... ... . .. ...
514 Organization of the Chapter . . . . ... ... .............
52 Formulation . . . ... . .. ... e
5.3 Numerical Algorithms . . . . .. ... ... ... L oo
53.1 Spatial Discretization . . ... ... ... ..... .. .. .. .....
5.3.2 Stokes Layer Potentials . . ... .....................
533 CollisionHandling . . . .. ....... ... ... ... .. ...,

iX



53.4 Areaand Volume Correction . . . . . . . . . . . v v v v i i i 113

5.3.5 Reparameterization . . ... ... ... ... ... ... ... 114

53.6  Semi-Implicit Time-Stepping . . . . ... ... ... ... ... .... 117

53.7 Adaptive Time-Stepping . . . . .. ... ... ... ... ... 117

5.3.8 Algorithm Summary and Computational Cost . . . . ... ... ... 119

54 Results . . ... ... 120
541 SingleNodeResults . . ... ... ... ... ... .......... 120

542 StrongScaling . .. ... ... ... . o oo 125

543 WeakScaling . .. ... ... ... ... ... . . o . 127

55 Conclusions . . .. .. ... ... 129

6 Conclusions 130
6.1 Summary of Contributions . . ... ... ... .. .. ... ... 0. 130

6.2 FutureWork . . . . ... . 131
Bibliography 132



List of Tables

21
2.2
2.3
24
2.5

2.6
27

2.8
29
2.10

211
2.12
2.13
2.14
2.15
2.16
217
2.18

3.1
32
3.3
34
3.5

Index of frequently used symbols in Chapter2. . . . ... ... ... ..... 13
List of FMM translation operator abbreviations. . . ... ... ... ... .. 13
Arithmetic intensity and cache size for different V-list block sizes. . . . . . . 30
Convergence with m for Laplace kernel with uniform particle distribution. ~ 36

Convergence results for Laplace kernel with a highly non-uniform particle

distribution. . . . ... ... 36
Convergence results for particle FMM with Stokes kernel. . . . . ... ... 37
Convergence results for particle FMM with Helmholtz kernel with

wavenumber 10. . . . ... Lo L 37
Convergence with multipole order m for a Poisson problem. . . . . .. ... 38
Convergence with multipole order m for a Stokes problem. . . . . . . .. .. 39

Convergence with multipole order m for a Helmholtz problem with

wavenumber 10. . . . ... 40
Performance of M2L translations for uniform trees. . . ... ... ... ... 40
Performance of M2L translations for non-uniform trees. . . . . . . ... ... 41
Single-node performance of volume FMM for a Stokes problem. . . . . . . . 42
Single-node performance of volume FMM for a Poisson problem. . . . . . . 43
Performance of volume FMM using GPUs. . . . . .. ... .. ... ..... 47
Scalability of 2:1 balance refinement compared to original algorithm. . . . . 49
Comparison of volume FMM with MADNESS. . . ... ... ... ..... 49
Comparison of particle FMM with EXAFMM. . ... ... .. ... ..... 50
Index of frequently used symbols in Chapter3. . . . . ... ... ... .... 57
Convergence for Stokes flow with smooth cofficients. . . . .. ... ... .. 62
Convergence results for Stokes flow around a sphere. . . . . ... ... ... 62
Single node timing results for different discretization orders. . . . . . . . .. 63

Performance comparison: uniform vs. adaptive mesh; high vs. low-order;

with vs. without coprocessor. . . . . . ... ... ... ... oL 64

xi



3.6
3.7
3.8
3.9

4.1
4.2
4.3

44

4.5
4.6

51
52
53

Weak scaling results for low-order discretization. . . ... ... ... . ... 66

Weak scaling results for high-order discretization. . . . . ... ... ... .. 67
Strong scaling results for high-order discretization. . . ... ... ... ... 68
Strong scaling results for low-order discretization. . . . . . ... ... .. .. 69
Index of frequently used symbols in Chapter5. . . . . .. ... ... ... .. 73
Summary of free-space kernel functions. . . . . ... ... ... 0L 74

Convergence results for homogeneous Stokes equation with Dirichlet

boundary conditions. . . . ... ... Lo oL Lo 90
Convergence results for Stokes equation with non-zero body force and

Dirichlet boundary conditions. . . . ... ... ... ..... .. .. ..... 91
Convergence results for Stokes flow in complex geometries. . . . ... ... 94
Convergence results for flow in a duct with square cross section. . . . . .. 95
Index of frequently used symbols in Chapter5. . . . . .. ... ... ..... 101
Time complexity of different stages in the algorithm. . ... ... ... ... 120
Convergence results for two vesicles in shear flow. . . . . ... ... ... .. 123

xii



List of Figures

1.1

21

2.2
23

24
2.5
2.6
2.7
2.8
29
2.10
211
2.12
2.13
2.14
2.15
2.16
217

3.1
3.2
3.3
34
3.5
3.6

Visualizations of porous media flow, wave scatterting and vesicle flows. . . 2

Vorticity field for a vortex ring and the velocity field computed by the con-

volution with Biot-Savertkernel. . . . .. ... ... . ... ... ... ... 11
Near N (B) and far F(B) interaction nodes for a targetnode B. . . . . . . .. 14
Far interactions broken into parts evaluated hierarchically at different levels

inthetree. . . . ... . ... ... 14
Computation of multipole expansion using S2M and M2M translations. . . 15
Computation of local expansion using M2L and L2L translations. . . . . . . 16
Upward and downward pass in fast multipole method. . . . ... ... .. 18
Adaptive refinement of a Chebyshev quadtree . . . . ... ... ... .. .. 20
Singular integration using Duffy transform. . . . . . ... ... ... ... .. 22
Asynchronous execution of volume FMM on coprocessor and CPU. . . . . . 26
V-list interactions between two sets of sibling octants. . . . .. .. ... ... 29
Blocking of V-list interactions and optimal block size. . . . .. .. ... ... 29
Strong scalability of particle FMM for Laplace kernel. . . . . . ... ... .. 44
Strong scalability of particle FMM for Helmholtz kernel. . . . . .. ... .. 45
Strong scalability of volume FMM for Laplace kernel. . . . . ... ... ... 46
Strong scalability of volume FMM for Helmholtz kernel. . . . . .. ... .. 47
Weak scalability of volume FMM on Stampede and Titan. . . . . . . .. ... 48
Weak scalability of volume FMM for Laplace and Helmholtz kernels. . . . . 48
Visialization of porous media flow. . . . . ... ... ... ... ... . ... 55
Visualization of Stokes flow around a random distribution of spheres. . .. 65
Weak scaling results for low-order discretization. . . ... ... ... .. .. 66
Weak scaling results for high-order discretization. . . . . ... ... ..... 67
Strong scaling results for high-order discretization. . . . ... ... ... .. 68
Strong scaling results for low-order discretization. . . . . . ... ... . ... 69

xiii



4.1
4.2
4.3
4.4

51
52
53
54
55
5.6
5.7
58

Diffeomorphic map between a complex geometry and a cubic domain. . . .
GMRES convergence for BIE solver with block-diagonal preconditioner. . .
Complex geometry shapes . . . . ... ......................

Flow in a curved duct with square cross section. . . . ... ... .......

Near-singular integration algorithm. . . . . .. ... ... ... ... ... ..

Collision detection and repulsion force between vesicles. . . . . . ... ...

Strong scalability for periodic Taylor-vortex flow. . ... ... ... .....
Simulation showing sedimentation of vesicles under gravitational force. . .

Weak scalability results for polydisperse sedimentation. . .. ... ... ..

xiv

75
91
94
95

108
112
115
122
125
126
127



1 Introduction

In this dissertation, we present new numerical algorithms and related software that find
applications in electrostatics, acoustic scattering, incompressible Stokes flow, porous me-
dia flow, particulate flows and complex fluids. Exemplary results from simulations ob-
tained with software in this thesis are shown in Fig. 1.1. The mathematical models that de-
scribe these applications can be expressed as a set of partial differential equations (PDEs).
Several methods based on direct discretization of the PDEs already exist; however, these
discretizations are often ill-conditioned and the conditioning worsens with mesh refine-
ment. One way to circumvent this problem is to use integral equation formulations based
on potential theory.

Our work focuses on developing a new class of methods which are based on integral
equation formulations. In such formulations, the resulting linear systems have bounded
and mesh-independent condition numbers; they work well with high-order discretizations
and are amenable to parallelization. However, integral equation formulations present a
new set challenges: they require costly singular and near-singular integration and result
in dense linear systems which are expensive to evaluate directly. Integral equation meth-
ods would not be practical without significant technological breakthroughs in the develop-
ment of efficient quadratures and scalable numerical algorithms. In the following sections

we discuss our contributions towards overcoming some of these challenges.

1.1 Overview of Methods

Here we summarize our contributions to numerical methods for elliptic PDEs, with a focus
on Stokesian flows and their application to the simulations of complex fluids and porous
media. The main contributions of this thesis can be briefly summarized as follows: (1)
in Chapter 2, we developed a distributed-memory, high-order accurate solver for volume
potentials — to our knowledge, the only one of its kind; we compared it with other state-

of-the-art solvers for the Poisson problem; (2) in Chapter 3, we applied this solver to flows



(a) Stokes flow in complex geometry (b) Wave scattering (c) Cellular scale blood flow

Figure 1.1 (1) Simulation of Stokes flow in a porous media geometry. The geometry is resolved on
an adaptive volumetric mesh by recursive refinement at the solid boundary (depicted in gray). We
compute the solution using our volume integral equation (VIE) solver, which uses GMRES together
with our parallel volume FMM (PVEMM ) framework. (b) A cross section of the solution of variable
coefficient Helmholtz problem in three dimensions with a Gaussian source near the right edge of
the domain and a spherical scatterer at the center of the domain. We solve the Lipmann-Schwinger
formulation using our fast VIE solver. (c) Simulation of blood flow with 1500 red blood cells and
35% hematocrit driven by a periodic Taylor-Green vortex flow. We discretize the surface of the cells
using a 16-th order spherical harmonic basis. Our boundary integral solver uses novel singular-
and near-singular quadrature schemes along with fast multipole acceleration.

in porous media; (3) in Chapter 4, we developed a solver for problems on irregular ge-
ometries with Dirichlet and Neumann conditions; and (4) in Chapter 5, we developed a

distributed-memory high-order accurate method for vesicle suspensions.

Constant-Coefficient Elliptic PDEs in the Unit Cube. For a general second order ellip-
tic PDE, denoted by Lu = f, the solution u can be obtained by convolving f with the
GreenaAZs function, G, of £. The result of the convolution u = G| f] is also called the vol-
ume potential induced by the density f through the kernel function G. GreenaAZs func-
tions depend on boundary conditions and are rarely available. For constant-coefficient
elliptic operators, the Green’s function with free-space boundary conditions (also known
as the fundamental solution) can be derived analytically. However, evaluating the vol-
ume potential u = G/[f] directly requires expensive quadratures and O (N?) work for N
unknowns. This has limited the applicability of integral equation based methods to very
simple problems.

An efficient algorithm for computing volume potentials in three dimensions was pro-



posed by [65]. In Chapter 2, we have extended this volume fast multipole method (FMM)
by building a parallel, high-order and adaptive method for computing solutions to ellip-
tic PDEs with free-space and periodic boundary conditions on cubic domains. We have
made our method freely available in the form of the PVFMM software library!. Our library
can compute potentials from both continuous as well as particle source density distribu-
tions. To our knowledge, this is the first and only highly parallel volume potential li-
brary currently available. Our library uses high-order piecewise polynomial discretization
on adaptive octrees and is efficient up to 16-th order discretization. It uses precomputed
quadratures to efficiently compute singular and near-singular integrals; has linear cost in
the number of unknowns; and is applicable to several elliptic PDEs such as Poisson, Stokes
and low-frequency Helmholtz.

To achieve high performance, we have developed a new cache-optimized algorithm
for the multipole-to-local translation operator in kernel independent FMM. This increased
the arithmetic intensity of the computation and improved performance by nearly an or-
der of magnitude. We have also developed a new blocking algorithm for computing near
interactions in volume FMM, which significantly improves performance, particularly on
accelerators such as NVIDIA GPUs and Intel Xeon Phi co-processors. These novel algo-
rithms together with vectorization and multi-threading allow us to achieve up to 60% of
the peak theoretical performance on x86 architectures. Our distributed memory parallel
algorithms use space-filling curves for partitioning data, a state-of-the-art parallel sorting
algorithm [97, 96] and a scalable hypercube communication scheme. We present results
to show that our scheme outperforms other particle fast multipole methods. Similarly, we
show that our volume FMM is over an order of magnitude faster compared to a wavelet
based approach. In [40], we compared our method to other parallel fast solvers for the
constant-coefficient Poisson’s equation. Our volume FMM was an order of magnitude
faster than a high-order geometric multigrid (GMG) method for the same accuracy. In that
work, we solved a Poisson problem with over half-trillion unknowns in 92s on 229K CPU

cores.

Variable Coefficient Elliptic PDEs. In general, for variable coefficient elliptic PDEs, the
Green’s function is not known analytically. For such problems, we treat the variable coeffi-
cient as perturbations around a constant value and use the Green’s function corresponding

to this constant-coefficient value. The convolution of this Green’s function with the PDE

'pvFMM (Parallel Volume Fast Multipole Method) software available at pvfmm.org


pvfmm.org

results in a volume integral equation (VIE). A classic example of such a formulation is the
Lippmann-Schwinger equation. One property of such formulation is that, with appropri-
ate discretization schemes, it results in linear systems with mesh-independent condition-
number. However, the condition-number does depend on the magnitude of the variation
in the variable coefficients of the PDE. We solve these VIEs using our volume FMM to-
gether with iterative linear solvers like GMRES. For mildly varying coefficients, accurate
solutions can be obtained in only a few dozen GMRES iterations.

In Chapter 3, we use this approach to compute solutions for Stokes flow in porous
media geometries (Fig. 1.1a). Such problems are difficult to tackle with boundary inte-
gral formulations due to the complexity of the solid-fluid interface and even harder with
stencil-based methods due to the ill-conditioning of the underlying Stokes operator. We
discretized this problem by generating a volume mesh, which was adaptively refined at
the boundary between the solid phase and the fluid phase. To enforce no-slip at the solid
boundary, we used a penalty formulation to force the fluid velocity to be zero in the solid
phase. For the flow visualized in Fig. 1.1a, we solved a problem with 20-billion unknowns
in 8 minutes on 2K compute nodes of the Stampede system at TACC and achieved nearly
0.66PFLOP/s of performance with 88% weak-scaling efficiency.

We have solved similar VIE formulations for Stokes flow with variable viscosity and
for low frequency scattering problems using the Lippmann-Schwinger formulation for the
Helmholtz equation as shown in Fig. 1.1b.

All the fast solvers described above are designed for elliptic PDEs defined on the unit
box with either free-space or periodic boundary conditions. But what if we have more
general geometries and boundary conditions? One possible solution that has appeared
in the literature is to combine a volume integral formulation with a boundary integral
formulation. This is a mathematically valid approach but can be computationally very
expensive due to the online evaluation of nearly-singular integrals. As an alternative, in
Chapter 4, we have developed a novel formulation for domains that are diffeomorphic to
a cube. The methodology can be summarized as follows. We map the inhomogeneous
(either constant or variable coefficient) elliptic boundary value problem (BVP) to a unit
cube. This transforms the problem to a variable coefficient elliptic BVP problem on a cube.
Dirichlet or Neumann boundary conditions on the cube are enforced using either method
of images for scalar problems (like the Poisson equation) or boundary integrals for vector
problems (like the Stokes equation). This formulation has the advantage that the quadra-
tures for singular and near singular boundary integrals can be precomputed in the same

way as we have done for volume integrals. In addition, the boundary solve can be signif-
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icantly accelerated by using preconditioners constructed from precomputed factorization
of boundary integral operator. We present convergence results for incompressible Stokes
flow with Dirichlet boundary conditions. We show that high-order accurate solutions can

be computed efficiently even for highly anisotropic geometries.

Vesicle Suspensions in Stokes Flows. Vesicles are inextensible membranes enclosing
a small volume of a fluid. Studying the flow of vesicle suspensions is essential for un-
derstanding the dynamics of red blood cells (RBCs) and artificial vesicles used in drug
delivery. We model such flows using a boundary integral formulation. In [86], we used
this formulation to perform large scale simulations of low hematocrit (volume-fraction of
RBCs) blood flow with up to 200 million RBCs and achieved a performance of 0.7PFLOP/s
on 200K CPU cores.

In Chapter 5, we extend this work to allow long time-scale simulations of highly-
concentrated vesicle suspensions. Such simulations require efficient algorithms for near-
singular boundary integrals since the inter-vesicle distance can become arbitrarily small.
To do this, we have developed an inexpensive parallel algorithm adapted from the work of
[110]. Due to discretization errors, vesicles can sometimes intersect and therefore, robust
methods for collision handling are required. We have developed a novel repulsion-based
method to prevent vesicle collisions. In long time-scale simulations, errors can accumulate
over time and this can change the area and volume of vesicles. We have developed an
efficient algorithm to correct for this drift in each time step. In addition, we have also
implemented an adaptive time-stepping scheme, made significant improvements to the
surface re-meshing scheme, developed a faster algorithm for singular integration and used
our optimized parallel kernel independent FMM implementation for computing far-field
interactions. With these algorithmic improvements, we are able to simulate the flow of
concentrated vesicle suspensions. Fig. 1.1c shows 1500 vesicles with 35% hematocrit in a
Taylor-Green vortex flow with periodic boundary conditions. For a problem with 1.1g+5

vesicles, we achieved 43% parallel weak scaling efficiency on 16 K x86 cores.

1.2 Related Work

Solutions to constant-coefficient elliptic BVPs can be represented as the potential induced
by some distribution of source terms, either discrete particles (Dirac-delta functions) or
continuous distributions. The discrete problem is solved by evaluating summations over

the particles and can be computed efficiently using fast summation algorithms such as



particle-mesh method [30], treecode [11] and fast multipole method (FMM) [52, 109]. The
continuous problem requires evaluating integrals over the domain and can be computed
efficiently using the volume FMM [33, 65]. Several parallel implementations of particle
FMM have been developed and they achieve high performance on modern supercom-
puting architectures [60, 59, 112, 67]. Optimizations for the far-field translation operator in
FMM have appeared in [27, 21, 22, 99, 98, 81]; however, they do not achieve efficiency com-
parable to our work. There is no other distributed memory volume FMM library similar to
our PVFMM framework[75, 76]. Solutions to variable coefficient PDEs can be obtained by
iteratively solving a second-kind Fredholm integral equations, where the kernel function
in the integral corresponds to a constant-coefficient elliptic PDE [89]. Such formulations
have been presented for Poisson, Stokes and Helmholtz problems [31, 77, 3].

Boundary integral methods have been used to solve homogeneous elliptic PDEs on
complex domains [6, 58]. This requires evaluating singular and near-singular integrals
using special quadratures [110]. Solutions to inhomogeneous problems can be obtained
by using embedded boundary integral methods, where, the inhomogeneous equation is
solved using FFT [110], volume FMM [66] or other fast solvers [80, 78, 13] on a regular do-
main. However, accurate representation of the density function near the domain boundary
(on the cut-cells) can be problematic with regular grids. In 2D, this has been resolved by
constructing a C? extension of the density function [5]. Our work on VIE solver for non-
regular geometries remapped to a cubic domain is completely new.

Previous work on 3D vesicle simulation in unbounded domains includes [103, 104, 86,
105, 87]. In [113], boundary elements are used to model flow in confined geometries. A
large scale simulation of blood flow in microfluidic devices is presented in [90]. Recent
work on 2D vesicle simulations introduces collision detection, near-singular integration
[83] and adaptive time-stepping [85]. Except for our own work, there is no other work on

parallel boundary integral methods for simulating concentrated vesicle suspensions.

1.3 Contributions

Applicable Mathematics. We present volume integral equation (VIE) formulations for
constant-coefficient elliptic PDEs with a range of boundary conditions on cubic domains.
We also present VIE formulations for variable coefficient elliptic PDEs by treating the vari-
able coefficients as perturbations around a constant value.

Our formulation for Stokes flow includes a penalty term which allows us to enforce

no-slip boundary conditions without having to explicitly define the interface between the



fluid and the solid walls. This is useful in situations where the interface boundary is too
complex to construct boundary meshes.

We have developed new VIE formulations for Poisson and Stokes equations under
coordinate transformations. It allows us to map problems on certain non-regular geome-
tries to a cubic domain; allowing us to use fast solvers for cubic geometries. The resulting
VIE has coefficients which depend on the Jacobian of the coordinate mapping. We discuss

well-posedness of this formulation.

Numerical Analysis and Scientific Computation. We have developed a new high-order
adaptive fast multipole code for computing particle and volume potentials. We have made
important contributions towards performance optimizations and developed new parallel
algorithms. Our PVFMM library is the only distributed-memory volume integral equation
solver that we know of. It is scalable to over 200K CPU cores and achieves high perfor-
mance on hybrid architectures. We have used this to build solvers for constant and variable
coefficient elliptic PDEs.

We have developed efficient numerical algorithms for computing boundary integrals
on closed surfaces that are homeomorphic to spheres. Our method uses special quadra-
tures for singular and near-singular integrals and is parallelized using our particle FMM.
We have used this to develop a scalable solver for moving boundaries embedded in a
Stokesian fluid. For such simulations, we have also developed algorithms for adaptive

times stepping, collision handling using repulsion and surface reparameterization.

Mathematical Modeling and Applications. Our solver for constant and variable coeffi-
cient elliptic PDEs has applications in electrostatics, fluid flows and electromagnetic and
acoustic scattering. We have used our solver to model incompressible Stokes flows in
porous media geometries.

We present mathematical models for the flow of vesicles in creeping flow. We simulate
highly concentrated vesicle flows with periodic and free-space boundary conditions. Such
flows are useful in studying the dynamics for blood flow and other complex fluids.

1.4 Organization of the Thesis

In Chapter 2, we describe our PVFMM software framework for computing particle and vol-
ume potentials. We discuss performance optimizations, scalability and comparison with

other codes. In Chapter 3, we discuss our solver for volume integral equation formulations



and apply it to incompressible Stokes flow in porous media geometries. In Chapter 4, we
extend this to VIE formulations under coordinate transformations and use it to compute
Stokes flow in non-regular geometries. In Chapter 5, we discuss our boundary integral
equation solver for simulating concentrated vesicle flows. Finally, in Chapter 6, we present

concluding remarks and discuss future work.



2 A Parallel Fast Multipole Algorithm for Particle and
Volume Potentials

In this chapter we describe a parallel software library which we have designed to compute
the potential from distributions of point sources and continuous source density distribu-
tions. Our method applies to a wide range of elliptic kernel functions. We discuss several
performance optimizations which make our software efficient and scalable to large dis-
tributed memory machines. This library has been a key component in the development of

other technologies discussed in later chapters.

2.1 Introduction

We consider the problem of rapidly evaluating the potential induced by a kernel function
K, due to a source density distribution f(y) defined at each point y on a domain 2 C R3.

The potential u(z) at a target point « € (2 is given by the integral,

u(z) = /Q Kz — 9)f(y). @.1)

When the source distribution is defined by a set of N particles such that f(y) = >y fid(y—
v;), then the potential u(z) can be computed by the sum,

N
u(e) =Y Kz —y;)f; (2.2)
j=1

To evaluate the potential at IV target points from a source density with N degrees-of-
freedom after discretization, both problems require O (N?) computation using direct
methods. In addition, the kernel function (such as the fundamental solution of an elliptic
partial differential equation) may be singular and therefore standard quadratures cannot
be used to compute Eq. (2.1). In this chapter, we describe our PVFMM software framework
which can efficiently compute such potentials for kernel functions corresponding to funda-

mental solutions of elliptic PDEs (such as Poisson, Stokes and low frequency Helmholtz).

This chapter is based on work that has been published in [75, 76].
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In our implementation, we use the kernel independent fast multipole method
(KIFMM) of [109] for computing particle potentials and we use the volume fast multi-
pole method (FMM) of [65] for computing volume potentials. These methods reduce the
computational cost of computing particle and volume potentials from O (N?) to O (N) for
a problem with N degrees-of-freedom and N unknowns. The use of KIFMM allows us
to efficiently compute potentials for a wide range of elliptic kernels. The volume FMM
is a high-order, adaptive method specially designed for computing volume potentials ef-
ficiently. The method uses high-order piecewise Chebyshev polynomials on an adaptive
octree to represent the continuous source distribution and also the final potential. It uses
precomputation to efficiently handle singular and near-singular volume integration. Our
implementation support free-space and periodic boundary conditions on cubic compu-
tational domains. Our distributed memory implementation uses space-filling curves for
partitioning data and a hypercube communication scheme. We also incorporate several
performance optimizations including cache locality, vectorization, shared memory paral-

lelism and use of coprocessors.

Motivation and Significance. Many problems in physics and engineering require com-
puting potentials from discrete or continuous source distributions. Applications include
computing gravitational interactions in astrophysics [106, 74, 56], fluid flows [38, 68, 56],
electro-magnetic and acoustic scattering [93, 32] and many others [53, 39, 49]. Particle N-
body problems also arise from discretization of boundary integral methods [86, 112]. The
solution of a constant-coefficient elliptic partial PDEs can be computed by using the funda-
mental solution of the elliptic PDE as the kernel function in Eq. (2.1). We show an example

of such an integral transform in Fig. 2.1.

Contributions. We build on previous work on the Kernel Independent FMM
(KIFMM) [67, 109] for particle N-body problems and the volume FMM [65, 33] for vol-
ume potential problems. We discuss algorithmic modifications that significantly improve
performance and scalability of the method.

* We present novel cache-optimized traversal schemes for the near and far interac-

tions.

* We present integration of our method of volume potentials with coprocessors (Intel
Xeon Phi and NVIDIA GPU).

10
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Figure 2.1 Left: Vorticity field for a vortex-ring resolved on an adaptive Chebyshev octree is the
input to volume FMM. Right: Output velocity field obtained from FMM by computing convolution
of the vorticity field with the Biot-Savart kernel.

* The single-node algorithmic refactoring and optimizations result in 7x speedup over

an optimized, multithreaded implementation.

* We demonstrate the scalability of the method to several thousand cores for highly

non-uniform distributions that use 25 levels of refinement.

* We modified the original Kernel Independent FMM (KIFMM) formulation to use

backward stable pseudoinverse and this allows us to achieve better accuracy.

We have implemented our method in the PVFMM software library. The library is open
source and can be downloaded from the library homepage (http://pvfmm.org). To our
knowledge, this is among the fastest AMR constant-coefficient Poisson, Stokes and low-
frequency Helmholtz solvers. It achieves four main algorithmic goals: high-order approx-

imation, linear work, excellent single-node performance, and parallel scalability.

Related Work. The particle FMM was first introduced in [51] for Laplace kernel. The
method has since been optimized [23] and extended to other kernel functions in [39, 38, 49].
The earliest distributed memory algorithms for particles were presented in [106, 107]. They
introduced the concepts of local essential tree and space-filling curves which are now used
in many implementations including ours. The original KIFMM was presented in [109]
and parallel implementations were presented in [108, 67]. Other algorithms for general
kernel functions include [44] and black-box FMM of [36]. There has been extensive work
on optimizing the FMM. Our distributed memory FMM follows closely on the work of [67]
on particle FMM. Other scalable implementations of particle N-body codes include [112,

11
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56, 60, 59]. The importance of blocking to explore locality was also discussed in [21]. An
efficient implementation of far-field interactions in black-box FMM was discussed in [98];
however, this approach worked well only for uniform particle distributions, using single
precision computation on GPUs. None of the works on optimizing FMM performance
discuss volume potentials.

A volume potential FMM was first proposed in [33] and a basic 3D shared-memory
implementation (using OpenMP) was discussed in [65]. We extended this work in [76],
by including new algorithmic optimizations, vectorization, support for coprocessors and
distributed memory parallelism. To the best of our knowledge, there is no other work on
parallel, high-order volume FMM.

There are many alternatives to using an integral equation formulation. Multigrid
methods are also very effective and scalable [95] and are applicable to Stokes and low-
frequency Helmholtz problems. Other scalable approaches include hybrid domain decom-
position methods [73]. A very efficient Poisson solver is based on a non-iterative domain
decomposition method [79] using a low-order approximation scheme. Another approach

for integral equations is to use wavelet decomposition [57, 35].

Organization of the Chapter. We briefly review the kernel independent FMM in Sec-
tion 2.2. We also discuss modifications to the original algorithm, by using backward stable
pseudoinverse to improve the accuracy and convergence of the method. We review the
volume FMM in Section 2.3. In Sections 2.4 and 2.5 we discuss our main contributions to-
wards an optimized parallel implementation of the particle and volume FMM algorithms.
Then, in Sections 2.6 to 2.8 we present results to show convergence, performance and scal-
ability of our code. We provide comparisons with other software libraries in Section 2.9.
In Table 2.1, we list some frequently used symbols for easy reference. In literature, many
different abbreviations for the interaction (or translation) operators in the FMM algorithm
have been used. Therefore, in Table 2.2 we provide the abbreviation used in this chapter
and corresponding full descriptive name for each translation operator. Detailed definition

of each translation operator can be found in [109, 65].

2.2 Kernel Independent FMM

N-body problem. We are given a set of N source and target points. For each source
point, we have its coordinates y; € R? and its source density ¢;. For each target point, we

have its coordinates x; and the unknown potential u;. The potential u; at target points z;

12



Symbol Definition Symbol Definition

K Kernel function Ti(x) Chebyshev polynomial of degree i in «
Y, q Source: coordinates, density f Source density function

T, U Target: coordinates, potential €tree Tolerance for adaptive tree refinement
Npy Number of source, target points D Number of processes

N Number of unknowns in target potential Dr Rank of current process

T Octree Tp, Local tree of process p,

B Tree node (octant) Pu(B) User processes of B

P(B) Parent of B Send(S,p;) Send message S to process ¢

N (B) Near region of B Recv(R,p;) Receive message R from process i
F(B) Far region of B: Q \ N(B) tw Per-word transfer time

L(T) Leaf nodes in 7 ts Interconnect latency

Noct Number of octants Trree Time for tree construction

Nieat Number of leaf octants Tsetup Time for FMM setup

Loz Maximum tree depth Tevin Time for FMM evaluation

m Order of multipole expansion Tan Total solve time ~ Tryee + Tsetup + Trvm
q Degree of polynomial approximation

Table 2.1 Index of frequently used symbols.

Interaction abbreviation

Description

S2M

S2L or X-list
S2T or U-list

M2M

M2L or V-list
M2T or W-list

L2L
L2T

Translation from source density to multipole expansion

Translation from source density to local expansion
Translation from source density to target potential

Translation from multipole expansion to multipole expansion

Translation from multipole expansion to local expansion
Translation from multipole expansion to target potential

Translation from local expansion to local expansion
Translation from local expansion to target potential

Table 2.2 List of FMM translation operator abbreviations.

is given by the sum:

N

ui:ZK(wmy]‘)q]’, Vi=1,---,N

J=1

where, K is called the kernel function. Computing this sum directly requires O (N 2) time.
With FMM, we can evaluate this sum in O (N) time.

13



Near and Far Interactions. To solve the N-body problem

with FMM, we first partition the domain using a tree data

structure 7 (Fig. 2.2). For each target point x; in the leaf

node B € T, we compute interactions from source points in B

every leaf nodes in 7. In FMM, we split these interactions

into two parts, near interactions and far interactions: |

1
wi= Y K@,y)g+ Y, K@i,y)g

N(B) F(B)
y; EN(B) y; EF(B)

Figure 2.2 Near N(B) and far
F(B) interaction nodes for a tar-
get node B.

The near interactions are computed through direct summation over all source points y; €
N (B). The tree nodes further away from B are called well-separated from B.

Interactions from source points in a well-separated tree node to the target points in B,
are low rank and can be approximated. Furthermore, instead of computing interactions
at the leaf level, far-field interactions in FMM are computed hierarchically at the coarsest
possible length scale. In Fig. 2.3, we show far-field interactions for a target node B. At the
finest level, we compute interactions to 53 from other source nodes Bs € V(). These are the
tree nodes that are well-separated from B but are not well-separated from P(5) (parent of
B). Similarly, at the next coarser level we compute interactions to P(B) from source nodes
Bs € V(P(B)) and so on for all ancestors of B. Finally, we combine the contributions from

all ancestors of B to obtain the far-field potential at target points in 5.

P(P(B))

F(B) V(B) V(P(B)) V(P(P(B)))

Figure 2.3 Far interactions broken into parts evaluated hierarchically at different levels in the tree.
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2.2.1 Far-field Interactions in KIFMM

We discuss the far-field translation operators, which is the defining feature of KIFMM.
Additional details and an error analysis can be found in [109]. We first discuss the two
basic building blocks for the FMM in the context of KIFMM: the multipole expansion and
the local expansion. The far-field interactions will then be defined by translation operators

between these expansions.

Check Surface (m;"B) Check Surface (x?’B)
Equivalent Surface (', g% quivalent Surface (y%, ¢F)

.
N

¥

kY
@

B
e

B
m'
BV
.
.
B
o
.
.

Sources (y;,4;) Sources (y;,4;)

Figure 2.4 Left: Multipole expansion of a leaf octant computed directly from source points. Right:
Multipole expansion of a non-leaf octant computed from the upward-equivalent density of its chil-
dren.

Multipole Expansion. For a tree node B, the multipole expansion (Fig. 2.4) approximates
the far-field potential due to the source points within B. In KIFMM, we evaluate the po-

tential u*P from these source points at points z%5

on a check surface. We then compute a
set of densities ¢** for points y*® on an equivalent surface by solving the following linear
system,
uf = Z K ("%, y)q, Vi
Y, €8

Then, the potential at a point well-separated from B can be evaluated by computing the
potential due to these equivalent sources. In 3D, the points y** and 2% are arranged in
regular grids on cubic surfaces (equivalent and check surface) centered on B. There are
m X m points on each face of the cube, where m is the multipole order and it determines
the accuracy of the multipole expansion. The edge length of the equivalent surface (s.) and
check surface (s.) must satisfy the relation s < s, < s. < 3s, where, s is the edge length of

B.
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Figure 2.5 Left: Local expansion from upward-equivalent source distribution of a well-separated
octant. Right: Local expansion from downward-equivalent source distribution of the parent octant.

Local Expansion. For a tree node B, the local expansion (Fig. 2.5) approximates the po-
tential at points in the interior of B due to the source points well-separated from it. We
evaluate the potential u®F from well-separated source points at points % on a check sur-
face. We then compute a set of densities ¢%? for points y*® on an equivalent surface by
solving the following linear system,
uf’B = Z K(:v?’B,yj)qj, V4.
y;€B

Then, the potential at a point in the interior of 3 can be evaluated by computing the poten-
tial due to these equivalent sources. As for multipole expansion, the points y** and 45
are arranged in regular grids on cubic surfaces (equivalent and check surface) centered on
B, with m x m points on each face. The edge length of the equivalent surface (s.) and check

surface (s.) must satisfy the relation s < s, < s. < 3s, where, s is the edge length of B.

Translation Operators. We now define five translation operators for computing far-field

interactions using multipole and local expansions.

* S2M translation. For a leaf node, we compute the check potential directly from its
source points and then compute its multipole expansion by solving a linear system

as discussed above (Fig. 2.4: left).

* M2M translation. For a non-leaf node, we compute the check potential by evaluating
the multipole expansion of each of its children and summing the result. We then

compute its multipole as discussed earlier (Fig. 2.4: right).
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e M2L translation. For a target node B, we compute contributions from a well-
separated source node B;, by evaluating the multipole expansion of B; at the check
surface for B; and computing its local expansion by solving a linear system (Fig. 2.5:
left).

o L2L translation. For a node B, we add contribution from the local expansion of its
parent P(B) by evaluating the local expansion of P(B) at the check surface of 5 and
then computing the local expansion of B as discussed before (Fig. 2.5: right).

o L2T translation. For a leaf-node B, we evaluate far-field component of the potential

at its target points by evaluating its local expansion.

FFT Acceleration of M2L interaction. Each M2L translation involves computing the
downward-check potential for a node B from the multipole expansion of a node well-
separated from it. Each surface has O (m?) points and the translation requires O (m?)
complexity. Since the points are on a regular grid, this operation can be treated as a con-
volution in three dimensions. In Fourier space, this convolution operation turns into a
complex Hadamard product. This reduces the computational cost to O (m?logm) when
Fourier transform and its inverse are computed using FFT and IFFT. The FFT and IFFT
need to be computed only once for each tree node. The details can be found in [109].

2.2.2 Outline of FMM

We only briefly discuss the case for uniform trees. The complete algorithm can be found
in [51, 109].

An outline of the steps in the FMM algorithm is presented below. We refer to steps 2,3
and 4 as the downward pass. Fig. 2.6 shows the interactions in upward and downward

passes for a quad tree.

1. Upward pass. For all leaf nodes compute S2M translation. Then, for all non-leaf nodes

compute M2M translations in a post-order traversal of the tree.

2. Far interactions. For all nodes, compute M2L translations from well separated source

nodes.

3. L2L and L2T interactions. For all nodes compute L2L translations in pre-order traver-
sal of the tree. Then, for all leaf nodes, evaluate the local expansion to get the target

potential.
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Figure 2.6 Upward Pass: constructing multipole expansions and Downward Pass: constructing
local expansions, evaluating near interactions.

4. Near interactions. For each leaf node, compute direct interactions from other leaf

nodes that are not well-separated from it and add the result to the target potential.

2.2.3 Backward Stable Pseudo-inverse

In the original KIFMM, when computing the multipole expansion (or the local expansion)
from the check potential, the linear system was solved by computing a pseudo-inverse i.e.
by computing a singular value decomposition (SVD), inverting the diagonal matrix with
appropriate regularization and then multiplying the factors together. However, it is an ill-
conditioned linear system and therefore, with finite precision arithmetic, we lose precision
when computing the equivalent density. Consequently, the original KIFMM could only
achieve about 9-digits of accuracy in double precision.

The error arises from the multiplication of the factors together to form the pseudo-
inverse, since the diagonal matrix has very large and very small numbers. This error can
be avoided by storing the inverse in the factorized form. The diagonal matrix can be mul-
tiplied with one of the two orthonormal matrices and therefore, we only need to store
two factors. For the M2M and L2L translation operators, the pseudo-inverse in multiplied
with another matrix which computes the check potential. In this case, we can multiply all
the matrices together to form a single matrix; however, we need to be careful of the or-
der in which we compute the product. With this modification, we can now achieve about

14-digits of accuracy with KIFMM in double precision.
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2.3 Volume FMM

The potential u at each point x € Q2 due to a continuous source distribution f defined on a

cubic domain Q = (0, 1)? is given by,

/Kx_ (v) = /K(x—y)f(yH/K(w—y)f(y) (2.3)
F(z)

Na)
In the volume FMM, we partition the domain using an adaptive octree. For each target
evaluation point z, we have split the integral over 2 into the near interactions from N (z)
(the set of octants containing or adjacent to x) and the far-field interactions from all the
remaining octants F(z). The far-field interactions are approximated using multipole and
local expansions. The near interactions are evaluated through direct numerical integration.
Since the kernel function has a singularity at the origin, this leads to singular and near-
singular integrals which are costly to evaluate. In the remainder of this section we briefly
describe the volume fast multipole method. A more detailed discussion of the method can
be found in [65].

2.3.1 Octree Construction

We partition the domain 2 using an octree 7 and approximate f at each leaf octant using
Chebyshev polynomials of degree g. Then, at a leaf octant B (with coordinates mapped to
[—1,1]?), we have the following approximation for the density,

) i+j+h<q
flor,mo,ms) = Y ol Ti(an)Ty(w2) Th(xs) (2.4)

i,j,k>0
where, T;(x) is the Chebyshev polynomial of degree i in z. Notice that this is not a complete
tensor order approximation since we truncate the expansion, so that i + j + k < ¢. For
adaptive octrees, we specify an error tolerance €;.. and a maximum octree depth L.
We estimate the truncation error at each leaf octant by computing the absolute sum of the
highest order coefficients in the Chebyshev approximation. We subdivide the leaf octants
with truncation error larger than €. and approximate f on each new octant. We refine
recursively until the desired accuracy is achieved or we reach the maximum allowed depth
)

We also represent the volume potential solution u using piecewise Chebyshev poly-

nomials. At each leaf octant B, we compute the following representation for the potential,
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Figure 2.7 Adaptive refinement of Chebyshev quadtree starting from the root node showing the
Chebyshev node points where the input function f is sampled and refining adaptively up to six
levels.

i+j+k<q
Wy, wo,w3) = Y B Ti(x1) T (w2) Tk (ws) (2.5)
i,j,k>0
Since u(z) € H!, it is smoother than f(z) € L% Based on this observation, we assume that
the potential can be represented accurately using the same octree refinement that we used
for the density.

2.3.2 Interaction Operators

To evaluate the potential in Section 2.3, we need to compute singular and near-singular
integrals over the leaf octants. For a leaf octant B with Chebyshev approximation of the
density f(y) = Dok afj’kTi,j,k (y), the potential at a point z is given by,

uw) = [ Ka-niw=Y ok | [ KT 6)

yeB bk yeB

We precompute the integral term in square brackets using the method explained in Sec-
tion 2.3.3. The potential from any leaf octant B at a point x (relative to ) can then be
evaluated using the sum u(z) = Ek afj’klgfj’k :

We precompute these quadr;zcilres (once for each level in the octree) so that source-
to-multipole (S2L), source-to-target (U-list) and source-to-local (X-list) interactions in the
FMM scheme can be represented as matrix-vector products. For S2M interactions, we pre-
compute quadratures to evaluate the potential at each point on the upward-check surface
of the leaf octant. For X-list interactions, for each possible direction of the target octant,

we precompute quadratures to evaluate the potential at the downward-check surface of
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the target octant. Similarly, for U-list interactions, for each possible direction of the target
octant, we precompute quadratures to evaluate the potential at the Chebyshev node points
in the target octant. Then, we can construct the polynomial approximation of the poten-
tial from the values at the Chebyshev node points. We store the composition of these two
operations (singular quadrature and polynomial approximation) so that the interactions
are represented as translation from Chebyshev coefficients for density a ¢ . at the source
octant Bj, to the Chebyshev coefficients for potential ﬁf; ;. at the target octant B,.

2.3.3 Evaluating Singular Integrals

For direct interactions, we need to evaluate integrals of the following form.
u(ro) = [ K(r=ro)plr) 27)
B

where, K (r — r() is the Green’s function, B is the cubic domain of an octant and p(r) is the
polynomial approximation of the source density within the octant. This is a near-singular
integral when r( is on the boundary of 5 and a singular integral when 7 is inside B. A
simple tensor-product Gauss-quadrature rule will converge very slowly for values of r
within or close to B. To evaluate such integrals, we make use of the Duffy transformation
[29] followed by a tensor-product Gauss-quadrature rule.

Consider the following integral (with K (r —r9) = for Poisson’s equation) over a

\TTI

regular pyramid.

u—/// p(z,y,z)dzdydx (2.8)
r \/a:2+y + 22

We perform a change of variables (y = vz, z = v z) and transform the integration domain

to a cuboid.

111
:///mp(x,um,vx)dvdudx (2.9)
0 -1-1

This transformed equation does not have a singularity and can now be integrated using
a tensor-product Gauss-quadrature rule. Moreover, the integral with respect to  can be
computed exactly by choosing the order of the rule appropriately in the z-direction.

To evaluate the singular integral over a cubic domain (an octant), we partition the
domain into six regular pyramidal regions with the apex of the pyramids at the singularity.
The intersection of each pyramid with the volume of the cube can be represented as stacks

of rectangular frustums and a smaller pyramid (Fig. 2.8). The integral over each of these
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Figure 2.8 Intersection of a reqular pyramid (apex at ro) with a cubic octant and decomposition
into frustum stack and a smaller pyramid. We also show the node points for the Gauss-quadrature
rule.

components is individually evaluated using the technique described above using Duffy

transformation.

2.3.4 2:1 Balance Constraint

For a general octree, the number of interaction operators that must be precomputed for the
volume FMM can be very large. To limit the number of possible interaction directions, we
constrain adjacent leaf octants to be within one level of each other. This is known as the
2:1 balance constraint.

We now explain the steps in our algorithm for 2:1 balance refinement (Algorithm 1).
We loop from the finest to the coarsest level in the octree. In each iteration, we collect the
set S of parents of all possible colleagues of non-leaf octants at that level. These are the non-
leaf octants which must exist in the next coarser level for the 2:1 balance constraint to hold,
and are therefore added to the set of non-leaf octants N in the next iteration. At each level,
we add the set of children of the non-leaf octants N, to the final balanced octree 7. We use
“std::set” to implement this algorithm. It allows addition, deletion and searching of octants
in O(logN) steps. The complexity of the overall algorithm is T'(Noet) = O(NoctlogNoct)
where, N, is the number of octants.

It is possible to improve this complexity estimate by using alternative data structures.
Such as, for a pointer based tree which also maintains a list of colleagues for each octant;
addition, deletion and searching of octants in the neighborhood of a given octant requires

O (1) time. Then, we can achieve O (N,¢) complexity for the algorithm.
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ALGORITHM 1: SEQUENTIALBALANCE
Input: 7 unbalanced octree, L,,,, maximum tree depth

Output: 7 balanced octree

T« 0,5« 0;

fori <+ L, to1do
N« SU{B: BeT\L(T), Level(B) =1i};
S < Parent(Colleagues(N));
7T U Children(N);

end

return 7;

2.3.5 Summary of Volume FMM

In volume FMM, the source density is represented by a polynomial approximation instead
of the discrete sources in classical FMM. Therefore, translations involving the source term
(S2M, X and U-list) need to be modified as discussed in Section 2.3.2. In addition, we want
to represent the final result by a Chebyshev interpolation. We choose the target points
to be the Chebyshev node points within each leaf octant and from that we compute the
polynomial approximation using L? projection. After precomputing all the translation
operators: S2M, M2M, L2L, L2T, U,VW and X-list for each interaction direction and for

each level in the octree, the volume FMM can be summarized as follows:

* Tree Construction: Construct a piecewise Chebyshev approximation of the source
density using octree based domain decomposition. Perform 2:1 balance refinement

using Algorithm 1.

* Upward-Pass: For all leaf octants apply S2M translation to construct the multipole
expansion. For all non-leaf octants apply M2M translations in bottom-up order, to

construct multipole expansion from the multipole expansion of children.

* Downward-Pass: For all octants, apply V-list and X-list translations to construct the
local expansion of each octant. In top-down order apply the L2L translation to all
octants and add the results to their local expansions. For all leaf octants, apply
L2T, W-list and U-list translations to construct the final target potential as piecewise

Chebyshev interpolation.
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2.3.6 Gradients

To compute gradient of the potential, we differentiate its piecewise polynomial represen-
tation obtained from the volume FMM. The gradient obtained in this way effectively has
the degree ¢ — 1. This also leads to one-sided derivatives at octant boundaries and there-
fore, this may not be suitable for some applications. An alternative method is to use the
gradient of the Green’s function to compute U and W-list interactions and local-to-target
translation. This has 3x extra cost for near interaction and no extra cost for multipole-to-

local interactions.

2.3.7 Selecting Optimal Parameter Values

We are interested in computing a solution to some accuracy in the least amount of time.
To do this we need to select the optimal values of the three parameters: the tolerance for
adaptive refinement ¢, the degree of Chebyshev polynomials ¢ and the multipole order
m. The parameters €. and m directly control the accuracy. The value of €. should be
the same as required solution accuracy in L., norm. Similarly, the optimal value for m is
determined by the required solution accuracy and can be looked up from the convergence
studies in Section 2.6.

We select the remaining parameter ¢ to optimize for the solve time. In the following
discussion we estimate the optimal value for ¢ for a fixed number of unknowns. The cost
of FMM evaluation is given by the number of interactions between the octants, weighted
by the cost of each translation. For the range of ¢ and m considered in this work, the cost
of U-list and V-list interactions dominate over the cost of other translations. For a uniform

octree, the total runtime is estimated by,

3
Teag = 9(q+2)°N 7y + 4E+4 (T—Z)?’N 7 + O (m2N +m'qN) (2.10)
g

where, N is the number of unknowns, 7, and 7, are the inverse FLOP -rates for U-list and
V-list interactions respectively. The parameters €. and m are determined by the desired
accuracy of the solution. We choose ¢ to minimize time to solution Tyyy. Assuming
that the FLOP -rates for U-list and V-list interactions are equal, for a fixed total number of

unknowns N, we have ¢ = 4.1\/m — 2.
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2.3.8 Reducing Memory Requirement

Even after enforcing the 2:1 balance constraint, the memory required to store translation
operators can be very large. For example, Helmholtz kernel with ¢ = 14 and 20 octree
levels requires 38GB of memory for storing U-list interaction matrices. We now describe

how this memory usage can be reduced.

Scale-invariant Kernels. Several kernel functions are scale-invariant i.e. when the dis-
tance between a source and a target point is scaled by «, the interaction between them is
scaled by a”. For d-dimensional space, the interaction operators computed for the root
level in the octree can be applied to interaction at level [ by scaling appropriately for the
change in volume (by a factor of 2~ for S2M, U and X-list interactions) and the change
in distance (by a factor of 277*! for L2T, U and W-list operators).

Symmetries. Most kernel functions have rotational symmetry and this allows us to
group interaction directions into classes and store one interaction matrix for each inter-
action class. We represent interaction directions by an integer triplet (i, j, k), representing
the relative coordinates of the source octant relative to the target octant. The representa-
tive class for an interaction direction is determined by taking the absolute value of each
integer in the triplet and sorting them in increasing order. The change of sign of an in-
teger represents a reflection along the corresponding coordinate and the sorting can be
accomplished by a sequence of swap operations. We represent these five transformations
(reflection along X, Y or Z axis and swapping {X,Y} or {X,Z} axes) by 17,15, - - -, T5.

The domain and range of the precomputed translation operators is either the equiva-
lent density data or the Chebyshev coefficient data. For equivalent density data, reflection
or swapping axes results in rearrangement of the vector elements corresponding to the
reordering of points on the equivalent surface. For Chebyshev coefficient data a reflec-
tion along an axis results in a change of sign of all the odd order Chebyshev coefficients
and swapping axes results in reordering of the Chebyshev coefficients. For tensor kernels,
these transformations can be more complex. For example, when the domain or range of a
kernel function is a spatial vector field (Stokes velocity, Laplace gradient, Biot-Savart ker-
nels), reflection along an axis will also cause the vector field component along that axis to
reverse direction and swapping axes will also require a rearrangement of the components
of the vector field. There may be other issues to consider, such as for Biot-Savart kernel,
reflection along an axis or swapping axes leads to reversal of the field direction. Never-
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theless, these five transformations (71,75, - - - ,75) can be performed through permutation
and scaling operations. For equivalent density data, we have: P, P», - - - , P5 operators and
for Chebyshev data, we have: Q1,Q2, - - - , Q5 operators.

The transformation from a direction (3, j, k) to the representative direction in its class
(40, Jo, ko) is given by a sequence of transformations: T,,,T4,, - , T, . An interaction in
direction (i, j, k) between a source vector v, and a target vector v, through an interaction
matrix M is given by, v; = v; + Mv, . We can now represent this interaction using the
interaction matrix M for the direction (i, jo, ko) by suitable transformations on the source

and target vectors. For example, for W-list interactions, this would correspond to:
v =0+ QL QL X My x Po, -+ Pa,vs (2.11)

The composition of permutation and scaling operators can be precomputed.

2.4 Intra-node Parallelism

We maximize intra-node performance of our algorithm by effectively utilizing parallelism
at each level of the architecture. We first discuss parallelism in the context of coprocessors,
by concurrently computing near and far interactions in volume FMM on the coprocessor
and the CPU respectively. Then, we summarize the most important aspects of our work,
re-organizing the data structure to optimize cache performance. Furthermore, we discuss

multithreading and vector intrinsics to extract maximum intra-node performance.

2.4.1 Asynchronous Execution on Coprocessor

Coprocessor X-list m U-List
: i

CPU source, local target
multipole expansion potential

. s v
ASﬁ?igifiﬁf' V-List @—»‘ L2L }—»‘ L2T }—»

Figure 2.9 Asynchronous computation of different interaction types on coprocessor (green) and
CPU (blue), and data transfer (dashed arrows) between host and device memory in the downward-
pass of FMM. The source density and multipole data is the input and output is the target potential.

In heterogeneous architectures it is essential that we overlap computation on CPU

26



with computation on coprocessor. In the downward pass of our volume FMM, we com-
pute U,W and X-list interactions on coprocessor and the rest (V-list, L2L and L2T) are com-
puted on CPU (Fig. 2.9). At the start of the downward-pass, we initiate asynchronously
the following operations: transfer source Chebyshev data from host memory to coproces-
sor, execute X-list interactions on coprocessor, transfer downward-equivalent density (lo-
cal expansion) from coprocessor to host, transfer upward-equivalent densities (multipole
expansion) from host to coprocessor, execute W-list and U-list on coprocessor and transfer
target potential from coprocessor to host. These operations are non-blocking, so the CPU
can continue its execution; on COprocessor, each of these operations execute in sequence.
On the CPU, we compute V-list interactions. We wait for the downward-equivalent
densities to finish transferring from coprocessor to host and then add the V-list contribu-
tions to it. We continue by evaluating L2L and L2T interactions on CPU and then wait for
the target Chebyshev potential to complete transferring from coprocessor to CPU before

adding the contributions from L2T to the target potential.

2.4.2 Near Interaction Optimizations for Volume FMM

In volume FMM, we precompute the translation operators for U,W and X-list translations
as matrices. A source octant B, interacts with a target octant B; through an interaction
matrix M},. The contribution from v, evaluated through M}, is added to v; as: vy = v+ Mjvs.
Now, consider several source octants B, interacting with target octants B;,, where (¢;, s;) €
I}, and I}, is the list of index pairs for source and target octants interacting through the
interaction matrix Mj. We combine these matrix-vector products into a single matrix-

matrix multiplication as follows,
[Vt Vtgy oo V] = [Vt) 5 Vtgy o oo 08, | + My [Vsy, Vsyy -+ - Vs, ] (2.12)

where, (s;,t;) € I, Vi = 1, ..,n. By doing so, we can now use matrix-matrix multiplication
function which is a level-3 BLAS operation, instead of matrix-vector multiplication (a level-
2 BLAS operation) and achieve better performance.

Many interaction matrices can be derived from another matrix through suitable per-
mutation and scaling of its rows and columns, as discussed in Section 2.3.8. So, we can

now assemble larger matrices and compute all interactions belonging to the same interac-
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tion class using a single matrix-matrix multiplication:
11 2 m T T T T
[wl,wQ, ceewi, - -wn] = My, [Ql Vg1, Q1 U1, Qa2+ vas?] (2.13)
1 1 2
|:Ut%7vt%7 T Uz, "Utgl} = [lel,P1w2, o Pwy, e me;n] (2.14)

where, (tg, SZ) € Iy; and My, = PijQ;‘-F Vj=1,---,m. A similar technique is used [81]
to optimize M2L interactions in black-box FMM. We have implemented highly optimized
kernels for these permutation operations on Phi and GPUs. In addition, when assembling
matrices, we try to minimize memory reads and writes by computing all the required
permutations together for each vector loaded in cache. Using symmetries significantly im-
proves performance for U,W and X-list interactions on both the CPU and on coprocessor,

particularly for small problems.

2.4.3 Near Interaction Optimizations for Particle FMM

In particle FMM, computing near interactions requires evaluating the kernel functions.
This is one of the most expensive parts of the FMM algorithm. In our code, we have de-
veloped highly optimized implementations for Laplace, Stokes and Helmholtz kernels.
We offer single and double precision implementation with both SSE and AVX vectorized
versions for these kernels. For Laplace and Stokes kernels, evaluating inverse square root
operation is the most expensive part of the computation. This operation has high latency
and low throughput on current architectures. In our implementation, we use the fast ap-
proximate inverse square root instruction and then perform Newton iteration for higher
accuracy. With these optimizations we achieved about 3.8 x speedup for double precision
with Laplace kernel. For the Helmholtz kernel we use Intel SVML library, when available,

for evaluating sin and cos functions.

2.4.4 V-List Optimizations

For a source octant B, interacting with a target octant B; through multipole-to-local (or
V-list) translation operator, the Hadamard product for the interaction is represented as:
vy = vy + M}, o v,. Since Hadamard product has O (n) floating-point operations, and O (n)
memory accesses for vectors of length n, a naive scheme will be bound by the memory
bandwidth. However, we note that V-list interactions have spatial locality, i.e. the same
set of source and target vectors are used when evaluating interactions for a compact re-
gion in space. Therefore, if we can keep data in cache then we can significantly improve

performance.
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Figure 2.10 Left: Interaction list for an octant using the conventional organization of the V-list
interaction. Right: Interaction between two sibling groups.

The first optimization that we make is to interleave the source and target vectors for
sibling octants. We compute interactions between adjacent sibling groups by loading the
tirst eight elements (one from each sibling) in the interleaved source and target vectors and
computing all interactions between these (Fig. 2.10), represented as multiplication with an
8 x 8 matrix, then load the next eight elements from the vectors and so on for the length of
the vectors. By doing so, we also compute interactions between adjacent octants which do
not actually appear in V-list interactions, so the corresponding entry in the 8 x 8 matrix is
zero. As a result, we perform some extra computation (about 10%), however the increased

efficiency justifies the additional computational cost.
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Figure 2.11 Combining multiple sibling group interactions and determining the optimal block size
for interactions. For the optimal block size, we achieve over 50% of peak performance even for highly
adaptive octrees.

Next, we note that as in the case of U,W and X-lists, we can combine several interac-
tions in the same direction (Fig. 2.11) and replace matrix-vector multiplications by a single
matrix-matrix multiplication. Since, these matrices are small it is not efficient to use BLAS
and therefore, we implement our own matrix-matrix multiplication routine for 8 x 8 ma-

trices optimized for the Sandy Bridge architecture by using AVX vector intrinsics. We can
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also look at this computation as a stack of matrix-matrix products. Each layer in the stack
can be computed independently and we use OpenMP parallelism to distribute work across
cores.

We further optimize cache usage by taking a Morton-sorted list of target octants (at the
same level) and splitting into blocks which have spatial locality. By doing so, we ensure
that we can keep the first eight elements from the source and target vectors of each sibling
group (one layer of the stack) in cache when we loop over different interaction directions.
In Fig. 2.11, the plot shows the performance in GFLOP/s on 16 CPU-cores (2x Xeon E5-2680)
for different block sizes. A block size of about 128 sibling groups worked best in our ex-
periments, achieving nearly 180GFLOP/s or about 50% of the theoretical peak. In Table 2.3,
we give the arithmetic intensity (defined as the number of floating-point operations per
word (8-bytes) of memory transfer) using our scheme on a uniform octree assuming that
the block of data fits in the cache. As we increase the block size, the arithmetic intensity
increases, however, the required cache also increases. For a block size of 128, we already re-
quire more memory than what is available in L1 cache and this prevents us from achieving

higher performance.

BlockSize CacheSize (kB) FLOP Mem.Transfer Arith.Intensity
32 22 4.38+5 6.6E+3 65

64 36 8.5E+5 8.8E+3 97

128 61 1.78+6 1.3e+4 131

256 106 3.4e+6 2.1E+4 162

512 190 6.8e+6 3.68+4 189

— 0 — 00 @ — 0 — 00 277

Table 2.3 Arithmetic intensity (defined as FLOP /word) and the required cache size for different
block sizes in V-list computation. Memory transfers are the number of words (8-bytes) transferred.

The overall algorithm (for one block of data) to compute Hadamard products is de-
scribed in Algorithm 2. In lines 1-3, we interleave source data for siblings. Next, the out-
ermost loop (line 4) is over the height of the stack and this is parallelized using OpenMP.
Then, we loop over each of the 26 interaction directions. In the innermost loop, we com-
pute the matrix-vector products for each source-target interaction pair. We then deinter-
leave target data (lines 11-13) for siblings to get the downward-check potential in Fourier

space for each octant.
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ALGORITHM 2: VLISTHADAMARD

Input: v, source vectors in Fourier space of length (2m)3; M} translation operators for k = 1, ..,26
(each sibling group interaction direction) and i = 1,--- , (2m)3

Output: v, target vectors in Fourier space of length (2m)?

foreach (sq,- -, ss) € source sibling octants do // interleave data
| fori« 0to(2m)> — 1do ws (8i,--+,8i+7) < [vs, (i), , s, (i) ] ;
end
fori < 0to (2m)3 — 1 do in parallel // vector length
fork < 1to26 do // directions

foreach (s, t) pair in direction k do
| wy (8i,- -, 8i+T) = M x wy (8i,--- ,8i+7)

end
end
end
foreach (¢1,- - ,ts) € target sibling octants do // deinterleave data
| fori < 0to(2m)> —1do [vy, (i), -, ve (i) ] = wy (8, ,8i +7);
end
return vy;

2.5 Distributed-Memory Parallelism

We first discuss the distributed-memory tree construction and explain the partitioning of
the domain across processes. We also discuss the parallel 2:1 balance algorithm on this
distributed octree. Finally, we explain the communication steps in the parallel FMM al-
gorithm. To analyze the communication cost, we assume an uncongested network and
therefore assume that the cost of point-to-point communication between any two compute
nodes is given by the sum of the latency ¢, and the message transfer time ¢,,N,,, where, t,,

is the per-word transfer time and [V, is the message size [48].

2.5.1 Tree Construction

On a distributed-memory system we use Morton IDs for tree construction and load bal-
ancing [107]. We sort the initial seed points by their Morton ID using a distributed sort and
partition the points equally between processes. Each process constructs a linear octree (a
linear array of leaf octants sorted by their Morton ID) using its local point set. We then col-
lect the Morton IDs of the first octant of each local octree and build the array My, - - - , M.
The domain belonging to a process with process ID p, is given by the region between M,

and M, 1 on the Morton curve. We then proceed with the adaptive refinement. After
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each level of refinement, we load balance by redistributing the leaf octants equally across
processes. The exchange of octant data requires only point-to-point communication with
at most eight other processes (although determining which processes must exchange data
requires collective communication). For an octree with n, levels, N, local octants, the

total communication costis T'(n) = O (tsnalogp + twna(plogp + Nocyq®/6)).

ALGORITHM 3: PARALLELBALANCE
Input: 7, unbalanced local octree, L,,,, maximum tree depth

Output: 7,, globally balanced octree

fori + L,,,. to 0 do
N, «{B: BeT, \L(T,), Level(B) =i};
N; < N; U Parent(Colleagues(N;+1));

end
N+«NoU --- UNg,
N <« ParallelSort( N \ Ancestors(N) ) ; // HykSort [96]

N < RemoveDuplicates(N);

7,, + Children(N);
Tp, < CompleteOctree(Ty, ) ; // add missing octants

return 7;

2.5.2 2:1 Balance Refinement

For the parallel 2:1 balance algorithm, we start with the distributed linear octree, i.e. a
distributed linear array of tree nodes sorted by their Morton ID. The first few lines of
Algorithm 3 are similar to the sequential version (Algorithm 1). We generate the set of
non-leaf octants N in the local balanced octree, however do not add the leaf octants at
this point. The leaf octants are added later and this reduces the communication cost by
about 8x. Next, we globally sort the set of non-leaf octants N using a variation of the
hyperquick sort algorithm that we have developed called HykSort [96]. This is followed
by removing duplicate octants, which is trivial given a sorted set of octants. Finally, the
leaf octants (Children(N)) are added and the tree is completed by adding missing octants
in the Morton ID sequence. The advantage of this 2:1 balance algorithm is that it does not
suffer from large load imbalance even for highly adaptive trees. Most other algorithms
repartition octants as a post processing step and therefore, during the local refinement

process, the load imbalance can potentially be unbounded.
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2.5.3 Distributed-Memory FMM

In the upward-pass of FMM, we compute the multipole expansions for each octant. For
non-leaf octants that are shared between processes, we need to perform a reduction to sum
the contributions from regions owned by different processes.

In the downward-pass of the FMM, we compute interactions between octants. For a
distributed octree, the interacting source octants may belong to different processes. There-
fore, we build a local essential tree by communicating the ghost octants needed by a
process for the downward-pass. Once we have constructed the local essential tree, the
downward-pass of the FMM can proceed independently of all other processes.

Compared to [67], we have decoupled to reduction and broadcast operations. Al-
though this does not change the overall complexity, the resulting algorithms are simpler.
This also makes future optimization of the broadcast operation possible, by using point-
to-point communication to exchange octants at finer levels in the octree and using the

hypercube all-to-all scheme only for coarser octants.

ALGORITHM 4: MULTIPOLEREDUCE
Input: p, process rank, p process count, 7, local tree.
Output: 7, with correct multipole expansions.

S1 < {B: B €Ancestors(min £(7,,))};
Sa + {B : B €Ancestors(max L(7,.))};
fori < 0tologp do
Po + pr XOR 2%;
Send([Sl, SQ},po),’
Recv([Rl, RQ],pQ);
if p,. < po then
Reduce(Ss, Ry);

SQ “— RQ,‘
else
Reduce(S;, R»);
S1 < Ry;

end

end

Multipole Reduce. We give the pseudocode for reduction in Algorithm 4. For simplic-
ity, we assume that the processor count p is of the form 2*. The communication between
processes required for the multipole reduction is mapped to a hypercube network topol-
ogy. Each process identifies the list of octants it shares with other processes. These are
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the ancestors of either the first or the last leaf octant in the local octree. In each step, a
process exchanges shared octants with another process that it is directly connected to in
the hypercube topology, moving in the order of least significant dimension to the most
significant dimension of the hypercube. The shared octants among pairs of adjacent re-
gions are merged forming a bigger region such that the only octants which still need to be
updated are the octants shared across the new bigger regions. At any stage in this process,
each process maintains a list of octants which it’s region shares with adjacent regions, i.e.
a maximum of 2L,,,, octants, where L, is the maximum depth of the tree. In each com-
munication step, the shared octants are exchanged and then each process independently
sums the multipole expansions of the octants shared between the two regions and builds
the list of octants shared by the new region with adjacent regions. The time complexity for
this algorithm is given by:

T(n) = O (tslogp + tum®10g pLuas + m*10g pLinas) (2.15)

Here, ¢, t,, are the communication latency and the per-word transfer time respectively, p

is the number of processes, L,,,, is the maximum depth of the octree.

Multipole Broadcast. We build the local essential tree by sending ghost octants from its
owner process to each of its user processes. The pseudocode for the hypercube broadcast
is given in Algorithm 5. For simplicity, we have assumed that p is of the form 2*. For
each process p,, we identify shared local octants (). We split the processes into two groups
({p1, -+ ,p1 +2"— 1} and {ps, -+ ,p2 + 2° — 1} > p,) each with 2 processes. Each process
communicates with a process py in the other group {pi,---,p; + 2' — 1} and sends those
octants from its shared set ), which have user processes in {p1,---,p; + 2" — 1}. Next,
we retain the new received octants and only those shared octants which will be used in
subsequent communication steps. We stop when the process set contains only p,. Then,
@ contains all the ghost octants which together with the local octants in 7, make up the
local essential tree.

The communication cost for the hypercube communication scheme is discussed in
detail in [67]. For an uncongested network, that work provides a worst case complex-
ity which scales as O (t,log p + t,Ns(¢* + m?),/p), where N; is the maximum number of
shared octants owned by any process. However, assuming that the messages are evenly
distributed across processes in every stage of the hypercube communication, we get a cost
of O (ts log p + tNs(q> + m?) log p). For our experiments with uniform octrees, the ob-
served complexity appears to agree with this estimate.

34



ALGORITHM 5: CONSTRUCTLET
Input: p, process rank, p process count, P,(B) user processes of octant B, 7,,. local tree.
Output: 7, local tree with ghost octants added.

Q< {B: BeT,, |[P.B)|>1}; // all shared octants
fori < (logp—1)to0do

po < pr XOR 2¢;

p1 < po AND (p — 2%);

p2 < pr AND (p — 2%);

S« {B: BeQ, PuB)N{p1, - ,p; +2" —1} #0};

Send(S, po);

Recv(R, po);

Q<+ {B: BeQ, PuB)N{p2, -+ ,p2+2 -1} #0};

Q<+ QUR;

end

return 7, < 7, UQ

2.6 Convergence Analysis

We conduct experiments to measure errors as a function of various parameters and show
that they converge as predicted by the theory. All errors reported in this chapter are rel-
ative errors. We also report time to solution, CPU cycles per unknown and FLOP -rates
for the evaluation phase. All results in this section were obtained on a single node of the
Stampede platform at Texas Advanced Computing Center (TACC), using one MPI process
and 16 OpenMP threads. For most results, we have used a regular (16-core, 32GB ) node.
However, for some results we needed to use the large memory node, while using only 16-
cores. In the results, we indicate wherever we have used a large memory node. The peak

theoretical double-precision performance using 16 CPU cores is 345.5GFLOP/s .

2.6.1 Convergence Results for Particle FMM

For particle FMM, the near interactions are computed exactly and the accuracy of the far-
field interactions is determined by the multipole order m. In our results, we report the
maximum relative error (estimated by computing direct interactions for a subset of the
target particles) as we increase the multipole order. For each case the source and the target
particles coincide and the source densities are generated from a uniform random distribu-
tion in the interval (-0.5, 0.5). We use two kinds of particle distributions: uniform distribution
with particles distributed uniformly in a cube and highly non-uniform distribution with par-

ticles on the surface of an ellipsoid, distributed uniformly over the azimuthal and polar
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angles. The ellipsoid has a pole-to-pole distance of 0.9 and the equatorial cross-section is a

circle of diameter 0.225.

Npt Near m | Error Tan cycl 6S/Npt Trvee TSetup TrvMm (GFLOP/S)
1.8e+4 4 | 5e-04 0.51 2.28+4 | 0.19 0.14 0.15 (232)

1846 1.5e+4 6| 5e-06  0.57 2.5+4 | 0.18 0.11 0.25 (246)
4.1e+3 10 | 78-09  1.26 5.48+4 | 0.16 0.06 1.01 (174)
2.0e+3 16 | 28-13  2.77 1.2e+5 | 0.15 0.09 2.49 (161)
1.5e+5 4| 58-04  5.09 2.76+4 | 2.20 1.24 1.24 (235)

3546 1.28+5 6 | 48-06  5.52 3.0e+4 | 2.13 0.92 2.08 (247)
3.36+4 10 | 6E-09 11.66 6.3e+4 | 2.15 0.34 8.71 (173)
1.5e+4 16 | 1e-13 24.80 1.3e+5 | 2.09 0.24 22.02 (158)

Table 2.4 Convergence with increasing multipole order m for Laplace kernel with uniform particle
distribution. The timing results are for 16 cores on a single node of Stampede.

Npt Nicasr m | Error Tan CyCl@S/Npt Trrvee TSetup TFMM(GFLOP/S)
3.1e+4 4 | 18-04 0.55 2.48+4 | 0.23 0.14 0.15 (267)

1546 2.1e+4 6 | 28-06  0.57 2.5+4 | 0.21 0.10 0.24 (285)
1.8e+4 10 | 8e-10 1.32 5.7e+4 | 0.22 0.11 0.96 (156)
6.2e+3 16 | 28-13 2.94 1.3e+5 | 0.19 0.12 2.61 (143)
2.1+ 4| 28-04 491 2.78+4 | 2.31 1.06 1.13 (280)

8546 1.7e+5 6 | 1e-05 5.31 2.9e+4 | 2.21 0.84 1.83 (284)
1.5e+5 10 | 6e-10 12.13 6.6e+4 | 2.58 0.92 8.11 (154)
4.3e+4 16 | 4e-14 25.00 1.4e+5 | 2.30 0.37 21.82 (140)

Table 2.5 Convergence results for Laplace kernel with a highly non-uniform particle distribution.
For m = 4, the octree is refined to 12 levels for 18+6 particles and 14 levels for 8E+6 particles.

In Table 2.4 and Table 2.5, we report results for Laplace kernel with uniform and non-
uniform particle distributions respectively. In each table we report two sets of results, first
with 1e+6 particles and in the second with 8e+6 particles. In each case as we increase the
multipole order m, we observe spectral convergence in maximum relative error, almost
up to machine precision. We observe similar results for Stokes and Helmholtz kernels in
Table 2.6 and Table 2.7 respectively. The Helmholtz problem corresponds to a wavenumber
of ten in the length of the computational domain. To get meaningful results, the distance
between points on the check surfaces at the coarsest scale in the tree must resolve the
oscillatory part of the Helmholtz kernel and therefore, we start with a larger multipole
order. Ideally, we should use a larger multipole order only at the coarsest levels of the

octree; however, this feature is currently not supported in our implementation.
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Ny Nieat  m | Error  Tay  cycles/Npt | Trvee  Tsetup  Lrnvinvi(GFLOP/s)
3.1e+4 4 | 6E-04 0.87 3.86+4 | 0.23 0.15 0.44 (268)

1546 2.1E+4 6 | 4e-06 1.19 5.1e+4 | 0.21 0.11 0.81 (274)
1.36+4 12 | 6E-10 7.48 3.2E+5 | 0.25 0.30 6.84 (137)
6.2+3 16 | 2-12 12.01 5.2+5 | 0.25 0.73 10.96 (127)
21e+5 4 | 3803  7.70 42e+4 | 251 1.09  3.39 (273)

3546 1.7e+5 6 | 8-05 10.76 5.86+4 | 2.47 0.89 6.70 (272)
9.4+4 12 | 1E-09 61.18 3.3e+5 | 2.79 1.02 56.44 (136)
4.38+4 16 | 6E-12 94.99 5.1E+5 | 2.64 1.14 90.30 (125)

Table 2.6 Convergence results for particle FMM with Stokes kernel.

Npt Niear  m | Error Tan cycles/Npt Tvee TSetup TevMm (GFLOP/S)
2.7e+4 8 | 68-05 2.50 1.1e+5 | 0.21 0.13 2.11 (122)
1546 1.98+4 10 | 2E-06 3.10 1.3e+5 | 0.19 0.15 2.72 (137)
1.4e+4 12 | 3g-09 9.67 4.28+5 | 0.22 0.50 8.89 ( 63)
6.2E+3 16 | 8e-14  22.46 9.7e+5 | 0.30 2.17 19.92 ( 44)
2.0e+5 8 | 3604  20.37 1.1e+5 | 2.44 1.06  16.35 (124)
8546 1.6e+b 10 | 48-05  25.80 1.48+5 | 2.37 0.97 21.90 (147)
1.0e+6 12 | 7e-09 78.14 4.2845 | 3.04 1.33 72.94 ( 63)
4.38+4 16 | 28-13 172.11 9.3e+5 | 3.49 3.28 164.39 ( 44)

Table 2.7 Convergence results for Helmholtz kernel with wavenumber 10 and a highly non-uniform
particle distribution. The results for the shaded rows are computed on a large memory node of
Stampede using 16 processor cores.

In all results, we also report the total wall-time to obtain the solution 74;, and the
number of CPU cycles per particle. The cycles per particle is computed as Tay x 2.7GHz x
16cores/Ny: and this provides an estimate of the efficiency of the algorithm for a given
accuracy, independent of the problem size and CPU frequency. For a particular kernel and
fixed multipole order, the cycles per particle is relatively independent of the problem size.
Comparing Table 2.4 and Table 2.5, we observe that the cycles per particle is also relatively
independent of particle distribution.

We also report detailed breakdown of the time spent in different stages of the algo-
rithm. We report the tree construction time Tyc.. This includes the time to sort the source
particles and the associated source densities by their Morton ID and then construct the
octree with a prescribed maximum number of particles per octant. This stage is domi-
nated by the particle sort time and depends on the number of particles and the size of the
associated density data. Across tables, we note that for 1E+6 particles, Trryee is about 0.2s

and for 8e+6 particles, it is about 2s. We also report the setup time Tsct,p, Which involves
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pre-allocating memory buffers and determining interaction lists for the FMM algorithm.
Finally, we report the time (T¥yv) spent in the FMM algorithm and the FLOP rate for this
stage. At the end of the FMM algorithm, we redistribute the target potentials to the original
ordering of the particles and this stage is less than 5% of the total time and is not reported
in these results; however, it is included in the total time T4y. In all cases, we choose the
number of particles per octant to achieve the minimum 7w\n. Results with accuracy less
than 1E-7 were computed in single precision. We observe a significant drop in the FLOP
rate as we switch from single to double precision, due to the smaller SIMD vector length
for double precision in the kernel implementation. In our implementation, we count each
inverse square root operation as two floating-point operations, with four additional oper-
ations for each Newton iteration. We use one Newton iteration for single precision and
two for double precision. Therefore, each evaluation of the Laplace kernel is counted as
16FLOPs in single precision and 20FLOPs in double precision. For the Helmholtz kernel,
we use Intel SVML to vectorize sin and cos operations. We count each evaluation of sin
and cos as one FLOP. Since evaluating these functions has lower throughput on current
architectures, we achieve low FLOP rates for the Helmholtz problem. Since the Helmholtz
kernel is not scale-invariant, it requires much more memory than Laplace and Stokes ker-
nels. Therefore, for the high accuracy experiments (shaded rows in Table 2.7), we needed

more than 32GB of memory and we had to use the large memory node on Stampede.

2.6.2 Convergence Results for Volume FMM

| |€f | |oo m q Nleaf ’ |€u| |oo TAll CyCZGS/N TTree TSetup TFMM (GFLOP/S)
48-05 4 8 1.88+2 1e-04 0.16 2.4e+5 | 0.02 0.14 0.01 ( 56)
5e-07 6 10 5.1e+2 | 5HeE-06 0.25 7.4e+4 | 0.04 0.19 0.02 (150)
28-09 10 13 8.5e+2 28-08 0.51 4.78+4 | 0.09 0.30 0.12 (218)
38-12 14 15 1.2e+3 | 98-12 0.96 4.38+4 | 0.16 0.38 0.42 (220)
28-14 18 17 1.98+3 | Te-14 2.35 4.86+4 | 0.25 0.52 1.57 (201)

Table 2.8 Convergence with multipole order m for a Poisson problem.

Laplace Kernel. In Table 2.8, we solve the Poisson problem with free-space boundary
conditions and f(z) = —(4a2|z|> — 6a)e~**I" where, a = 160, z € (—0.5,0.5)3. The exact
solution is given by u(z) = e~**I°. As we increase m, we also use a smaller tolerance (e;cc)
for the adaptive refinement of the Chebyshev octree and therefore, the maximum relative
error (||ef||~) in approximating f converges with €.... We choose the Chebyshev degree ¢

to approximately match the cost of near and far-field interactions. We report the maximum
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relative error in the output ||e,||~, and this shows spectral convergence with m. We also
report the total time to solution T, and the number of CPU cycles per unknown. We give
a breakdown of the time spent in the different stages of the algorithm: the tree construction
time T'ryee, the setup time Tgey, and the FMM evaluation time Tyyvn. We also report the
FLOP rates for the evaluation phase. In general, the number of CPU cycles per unknown
should be smaller for the low order cases; however, at low orders, the setup time domi-
nates and therefore the cycles per unknown is larger. It is sometimes possible to amortize
the setup cost when multiple FMM evaluations are required on the same octree, such as
when solving a linear system iteratively with the matrix-vector product implemented us-
ing FMM.

lleflloo m @ Nieat | |leulloo  Tan  cycles/N | Trree TSetup  Tenini(GFLOP/s)
2e-04 4 8 1.8E+2 1E-03 0.27 1.3e+5 | 0.02 0.22 0.02 (121)
2E-06 6 10 5.1+2 Te-05 0.45 4.48+4 | 0.05 0.27 0.13 (220)
3e-07 10 13 2.98+2 3e-07 1.02 9.1e+4 | 0.08 0.59 0.35 (196)
2e-11 14 15 1.4g+3 5E-11 4.83 6.3e+4 | 0.18 1.17 3.48 (241)
1g-12 18 17 1.1E+3 1e-12 11.23 1.3e+5 | 0.25 3.32 7.66 (192)

Table 2.9 Convergence with multipole order m for a Stokes problem.

Stokes Kernel. In Table 2.9 we show convergence for the following Stokes problem,
where we solve for the velocity field u(z) with free space boundary conditions in the do-
main (—0.5,0.5)3,

—puAu+Vp = 4L*(5—2L ’$‘2)6_L|m|2($362 — z9eg),divu =0, (2.16)
2L

u() = e M (2305 — 2mes) (2.17)
©

where, e3, e3 are unit vectors along Y and Z axes respectively, L = 125, and the viscosity
i = 1. The analytical solution for the velocity field u(x) is used to compute the output

relative error.

Helmholtz Kernel. In Table 2.10, we demonstrate the case of an oscillatory kernel by
solving the Helmholtz equation with wavenumber 10 and free space boundary conditions
in the domain (—0.5,0.5)3,

Au+pPu = (402 |z]* — 6o+ ,uQ)e_o"“”‘Q,

u(z) = e—alal®
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||ef||oo m q Nleaf ||eu| |oo TAH CyCles/N TTree TSetup TFMM(GFLOP/S)
48-04 8 6 1.8e+2 | 38-03 0.11 1.7e+5 | 0.01 0.04 0.06 ( 38)
1e-08 12 10 9.6e+2 | 4e-08 0.99 7.86+4 | 0.06 0.43 0.51 (143)
oE-13 16 13 3.6E+3 1e-12  8.86 9.5e+4 | 0.19 1.39 7.28 (132)
1e-13 18 14 3.6e+3 | T7e-14 13.57 1.2e+5 | 0.31 2.14 11.12 (131)

Table 2.10 Convergence with multipole order m for a Helmholtz problem with wavenumber 10.
The results for the shaded row are computed on the large memory node of Stampede using 16 pro-
cessor cores.

where, a = 160, u = 207. The analytical solution u(x) is used to compute the output error.
As before, for particle FMM, we need to use a multipole order of 8 or larger.

2.7 Single-Node Performance Results

We now present detailed double precision performance results on a single node of Stam-
pede (TACC), which has 16 CPU-cores and an Intel Xeon Phi SE10P coprocessor. Each
CPU core has a peak double precision performance of 21.6GFLOP/s and the Xeon Phi co-
processor has a peak double precision performance of 1.1TFLOP/s. Each compute node has

a total peak performance of 1.4TFLOP/s.

2.7.1 Performance of M2L Translation

cores Near | HADAMARD FFT+IFFT ALL
1 512 0.308 (13.9) 0.127 (3.6) 0.434 (10.9)
4 512 0.081 (13.3) 0.033(3.5) 0.114 (10.4)
16 512 0.021 (12.7)  0.010 (2.8) 0.035( 8.5)
1 4096 2.761 (12.4) 1.013(3.6) 3.774(10.1)
4 4096 0.720 (11.9) 0.258 (3.6) 0.977 ( 9.7)
16 4096 0.190 (11.1)  0.071 (3.2) 0.265 ( 8.9)

Table 2.11 Results with timing and performance in GFLOP/s per core (in parenthesis) for shared-
memory strong scaling of multipole-to-local translation for uniform octree with Laplace kernel and
m = 10. We show the time spent in the Hadamard product stage which we have optimized and
discussed in Section 2.4.4 and the FFT and IFFT computation stage through FFTW library.

In Tables 2.11 and 2.12 , we demonstrate intra-node strong scalability for our new
multipole-to-local translation algorithm for uniform and non-uniform octrees respec-

tively. We only report OpenMP results since we get best performance with 16 OpenMP
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cores  Niar | HADAMARD FFT+IFFT ALL

1 904 | 0265(11.1) 0.224(3.6) 0.488(7.7)
4 904 | 0.074(9.9) 0.057(35) 0.132(7.1)
16 904 | 0.021(86) 0.017(3.1) 0.044 (5.3)
1 62483 | 24.989 (11.4) 15.439 (3.6) 40.428 (8.4)
4 62483 | 6.836(10.4) 3.940 (3.6) 10.776 (7.9)
16 62483 | 1.883(9.5) 1.040 (34) 2.925(7.3)

Table 2.12 Results with timing and performance in GFLOP/s per core (in parenthesis) for shared-
memory strong scaling of V-List for non-uniform octree with Laplace kernel and m = 10. Even
for highly non-uniform octrees and small problems sizes, we achieve very high FLOP -rates. This
demonstrates the robustness of our scheme.

threads and one MPI process per compute node and this is also the mode of operation in
all runs with more than one compute node. As a result of our new optimized algorithm for
Hadamard product, we achieve 203GFLOP/s per compute node or 60% of theoretical peak
on one node and achieve 90% efficiency for intra-node strong scaling for the uniform case.
This is a significant improvement over a naive Hadamard product, which was limited by

the main-memory bandwidth and attained roughly 16GFLOP/s on one compute node.

2.7.2 Performance of Volume FMM

In Table 2.13 we show performance for various stages in the downward-pass for the Stokes
kernel with a non-uniform octree. We show results for different values of parameters m
(order of multipole expansion), ¢ (degree of polynomial approximation) and for different
problem sizes (number of leaf octants, Niea¢). In each case, we show the performance for
three configurations: 1) CPU only configuration, 2) CPU+XEON PHI: with U,W and X-lists
executing on Xeon Phi and everything else on CPU, 3) ASYNC: with Xeon Phi executing
asynchronously and overlapped with CPU execution.

In Table 2.13 we first show performance for a low-order case with m = 2 and ¢ = 4.
For smaller problem sizes, we observe longer solve time when we use the Phi coprocessor.
This is because there is insufficient parallelism to effectively utilize the coprocessor. As we
increase the problem size, we observe about 20-40% speedup for the ASYNC case compared
to the CPU only case.

For higher accuracy with m = 8 and ¢ = 13, U W and X-list evaluation dominates
the execution time for the CPU only case and for CPU+XEON PHI configuration, it is

comparable to V-list execution time. In the ASYNC mode, the CPU is idle for some time as
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Niat  U,W,X-LIST V-LiIsT L2L+L2T WAIT ALL
Low-order (m =2, q¢ =4)
CPU 904 0.005 (100.2) 0.002 (121.4) 0.000 ( 19.3) 0.000 0.010 ( 90.7)
CPU+PHI 904 0.046( 12.8) 0.002 (132.5) 0.000( 19.3) 0.000 0.084 ( 10.4)
ASYNC 904 0.000 (-NA-) 0.003 (107.9) 0.000 ( 19.3) 0.031 0.044 ( 19.8)
CPU 9654 0.059 (101.8) 0.027 (159.0) 0.002 ( 43.9) 0.000 0.090 (116.0)
CPU+PHI 9654 0.069 ( 87.0) 0.027 (160.2) 0.002 ( 43.9) 0.000 0.104 (100.3)
ASYNC 9654 0.000 (-NA-) 0.029 (151.9) 0.002 ( 43.9) 0.043 0.076 (137.6)
High-order (m =8, ¢ = 13)
CPU 904 0.700 (274.2) 0.172( 92.2) 0.045( 94.9) 0.000 0.921 (230.0)
CPU+PHI 904 0.327 (586.4) 0.126(125.2) 0.031(137.2) 0.000 0.494 (428.4)
ASYNC 904 0.003 (-NA-) 0.124 (127.2) 0.031 (137.2) 0.173 0.333 (636.5)
CPU 9654 6.144 (305.4) 1.627 (141.7) 0.184 (250.6) 0.000 7.958 (270.6)
CPU+PHI 9654 2.773(676.7) 1.632(141.4) 0.189 (243.9) 0.000 4.674 (460.8)
ASYNC 9654 0.003 (-NA-) 1.642(140.4) 0.190 (242.6) 0.987 2.832(760.3)

Table 2.13 Results for timing and performance in GFLOP/s (in parenthesis) for downward-pass for
Stokes kernel. We report results for low-accuracy case with m = 2 and q = 4 and high-accuracy
case with m = 8 and q = 13 for different problem sizes on non-uniform octrees. We compare results
for different stages of the downward-pass, for CPU only, CPU+Phi and asynchronous runs.

it waits for computation on Xeon Phi to complete. Here we observe a significant speedup
(2.8x for large problems) because we are able to keep the Xeon Phi busy.

In Table 2.14, we provide similar results for Laplace kernel. For the high-order case, we
also show the performance for the ORIGINAL code i.e. without the optimizations discussed
in Section 2.4. We see speedup of about 3 x for the CPU version and 7—7.6x for the ASYNC

case.

2.8 Distributed Memory Performance Results

For the majority of our experiments in this section we have used TACC’s Stampede system
in both strong and weak scaling regimes. Stampede is a high-performance Linux cluster
consisting of 6400 compute nodes, each with 16 CPU-cores (2xXeon E5-2680) and an Intel
Xeon Phi SE10P 