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Fast Integral Equation Solver for Variable Coefficient
Elliptic PDEs in Complex Geometries

by

Dhairya Malhotra, Ph.D.

The University of Texas at Austin, 2017

Supervisor: George Biros

This dissertation presents new numerical algorithms and related software for the nu-

merical solution of elliptic boundary value problems with variable coefficients on certain

classes of geometries. The target applications are problems in electrostatics, fluid me-

chanics, low-frequency electromagnetic and acoustic scattering. We present discretiza-

tions based on integral equation formulations which are founded in potential theory and

Green’s functions. Advantages of our methods include high-order discretization, optimal

algorithmic complexity, mesh-independent convergence rate, high-performance and par-

allel scalability.

First, we present a parallel software framework based on kernel independent fast mul-

tipole method (FMM) for computing particle and volume potentials in 3D. Our software is

applicable to a wide range of elliptic problems such as Poisson, Stokes and low-frequency

Helmholtz. It includes new parallel algorithms and performance optimizations which

make our volume FMM one of the fastest constant-coefficient elliptic PDE solver on cu-

bic domains. We show that our method is orders of magnitude faster than other N-body

codes and PDE solvers. We have scaled our method to half-trillion unknowns on 229K

CPU cores.

Second, we develop a high-order, adaptive and scalable solver for volume integral

equation (VIE) formulations of variable coefficient elliptic PDEs on cubic domains. We

use our volume FMM to compute integrals and use GMRES to solve the discretized linear

system. We apply our method to compute incompressible Stokes flow in porous media

geometries using a penalty function to enforce no-slip boundary conditions on the solid

walls. In our largest run, we achieved 0.66PFLOP/s on 2K compute nodes of the Stampede

system (TACC).
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Third, we develop novel VIE formulations for problems on geometries that can be

smoothly mapped to a cube. We convert problems on non-regular geometries to variable

coefficient problems on cubic domains which are then solved efficiently using our volume

FMM and GMRES. We show that our solver converges quickly even for highly irregular

geometries and that the convergence rates are independent of mesh refinement.

Fourth, we present a parallel boundary integral equation solver for simulating the

flow of concentrated vesicle suspensions in 3D. Such simulations provide useful insights

on the dynamics of blood flow and other complex fluids. We present new algorithmic im-

provements and performance optimizations which allow us to efficiently simulate highly

concentrated vesicle suspensions in parallel.
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1 Introduction

In this dissertation, we present new numerical algorithms and related software that find

applications in electrostatics, acoustic scattering, incompressible Stokes flow, porous me-

dia flow, particulate flows and complex fluids. Exemplary results from simulations ob-

tained with software in this thesis are shown in Fig. 1.1. The mathematical models that de-

scribe these applications can be expressed as a set of partial differential equations (PDEs).

Several methods based on direct discretization of the PDEs already exist; however, these

discretizations are often ill-conditioned and the conditioning worsens with mesh refine-

ment. One way to circumvent this problem is to use integral equation formulations based

on potential theory.

Our work focuses on developing a new class of methods which are based on integral

equation formulations. In such formulations, the resulting linear systems have bounded

and mesh-independent condition numbers; they work well with high-order discretizations

and are amenable to parallelization. However, integral equation formulations present a

new set challenges: they require costly singular and near-singular integration and result

in dense linear systems which are expensive to evaluate directly. Integral equation meth-

ods would not be practical without significant technological breakthroughs in the develop-

ment of efficient quadratures and scalable numerical algorithms. In the following sections

we discuss our contributions towards overcoming some of these challenges.

1.1 Overview of Methods

Here we summarize our contributions to numerical methods for elliptic PDEs, with a focus

on Stokesian flows and their application to the simulations of complex fluids and porous

media. The main contributions of this thesis can be briefly summarized as follows: (1)

in Chapter 2, we developed a distributed-memory, high-order accurate solver for volume

potentials – to our knowledge, the only one of its kind; we compared it with other state-

of-the-art solvers for the Poisson problem; (2) in Chapter 3, we applied this solver to flows

1



(a) Stokes flow in complex geometry (b) Wave scattering (c) Cellular scale blood flow

Figure 1.1 (a) Simulation of Stokes flow in a porous media geometry. The geometry is resolved on
an adaptive volumetric mesh by recursive refinement at the solid boundary (depicted in gray). We
compute the solution using our volume integral equation (VIE) solver, which uses GMRES together
with our parallel volume FMM (PVFMM ) framework. (b) A cross section of the solution of variable
coefficient Helmholtz problem in three dimensions with a Gaussian source near the right edge of
the domain and a spherical scatterer at the center of the domain. We solve the Lipmann-Schwinger
formulation using our fast VIE solver. (c) Simulation of blood flow with 1500 red blood cells and
35% hematocrit driven by a periodic Taylor-Green vortex flow. We discretize the surface of the cells
using a 16-th order spherical harmonic basis. Our boundary integral solver uses novel singular-
and near-singular quadrature schemes along with fast multipole acceleration.

in porous media; (3) in Chapter 4, we developed a solver for problems on irregular ge-

ometries with Dirichlet and Neumann conditions; and (4) in Chapter 5, we developed a

distributed-memory high-order accurate method for vesicle suspensions.

Constant-Coefficient Elliptic PDEs in the Unit Cube. For a general second order ellip-

tic PDE, denoted by Lu = f , the solution u can be obtained by convolving f with the

GreenâĂŹs function, G, of L. The result of the convolution u = G[f ] is also called the vol-

ume potential induced by the density f through the kernel function G. GreenâĂŹs func-

tions depend on boundary conditions and are rarely available. For constant-coefficient

elliptic operators, the Green’s function with free-space boundary conditions (also known

as the fundamental solution) can be derived analytically. However, evaluating the vol-

ume potential u = G[f ] directly requires expensive quadratures and O
(
N2
)

work for N

unknowns. This has limited the applicability of integral equation based methods to very

simple problems.

An efficient algorithm for computing volume potentials in three dimensions was pro-
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posed by [65]. In Chapter 2, we have extended this volume fast multipole method (FMM)

by building a parallel, high-order and adaptive method for computing solutions to ellip-

tic PDEs with free-space and periodic boundary conditions on cubic domains. We have

made our method freely available in the form of the PVFMM software library1. Our library

can compute potentials from both continuous as well as particle source density distribu-

tions. To our knowledge, this is the first and only highly parallel volume potential li-

brary currently available. Our library uses high-order piecewise polynomial discretization

on adaptive octrees and is efficient up to 16-th order discretization. It uses precomputed

quadratures to efficiently compute singular and near-singular integrals; has linear cost in

the number of unknowns; and is applicable to several elliptic PDEs such as Poisson, Stokes

and low-frequency Helmholtz.

To achieve high performance, we have developed a new cache-optimized algorithm

for the multipole-to-local translation operator in kernel independent FMM. This increased

the arithmetic intensity of the computation and improved performance by nearly an or-

der of magnitude. We have also developed a new blocking algorithm for computing near

interactions in volume FMM, which significantly improves performance, particularly on

accelerators such as NVIDIA GPUs and Intel Xeon Phi co-processors. These novel algo-

rithms together with vectorization and multi-threading allow us to achieve up to 60% of

the peak theoretical performance on x86 architectures. Our distributed memory parallel

algorithms use space-filling curves for partitioning data, a state-of-the-art parallel sorting

algorithm [97, 96] and a scalable hypercube communication scheme. We present results

to show that our scheme outperforms other particle fast multipole methods. Similarly, we

show that our volume FMM is over an order of magnitude faster compared to a wavelet

based approach. In [40], we compared our method to other parallel fast solvers for the

constant-coefficient Poisson’s equation. Our volume FMM was an order of magnitude

faster than a high-order geometric multigrid (GMG) method for the same accuracy. In that

work, we solved a Poisson problem with over half-trillion unknowns in 92s on 229K CPU

cores.

Variable Coefficient Elliptic PDEs. In general, for variable coefficient elliptic PDEs, the

Green’s function is not known analytically. For such problems, we treat the variable coeffi-

cient as perturbations around a constant value and use the Green’s function corresponding

to this constant-coefficient value. The convolution of this Green’s function with the PDE
1PVFMM (Parallel Volume Fast Multipole Method) software available at pvfmm.org
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results in a volume integral equation (VIE). A classic example of such a formulation is the

Lippmann-Schwinger equation. One property of such formulation is that, with appropri-

ate discretization schemes, it results in linear systems with mesh-independent condition-

number. However, the condition-number does depend on the magnitude of the variation

in the variable coefficients of the PDE. We solve these VIEs using our volume FMM to-

gether with iterative linear solvers like GMRES. For mildly varying coefficients, accurate

solutions can be obtained in only a few dozen GMRES iterations.

In Chapter 3, we use this approach to compute solutions for Stokes flow in porous

media geometries (Fig. 1.1a). Such problems are difficult to tackle with boundary inte-

gral formulations due to the complexity of the solid-fluid interface and even harder with

stencil-based methods due to the ill-conditioning of the underlying Stokes operator. We

discretized this problem by generating a volume mesh, which was adaptively refined at

the boundary between the solid phase and the fluid phase. To enforce no-slip at the solid

boundary, we used a penalty formulation to force the fluid velocity to be zero in the solid

phase. For the flow visualized in Fig. 1.1a, we solved a problem with 20-billion unknowns

in 8 minutes on 2K compute nodes of the Stampede system at TACC and achieved nearly

0.66PFLOP/s of performance with 88% weak-scaling efficiency.

We have solved similar VIE formulations for Stokes flow with variable viscosity and

for low frequency scattering problems using the Lippmann-Schwinger formulation for the

Helmholtz equation as shown in Fig. 1.1b.

All the fast solvers described above are designed for elliptic PDEs defined on the unit

box with either free-space or periodic boundary conditions. But what if we have more

general geometries and boundary conditions? One possible solution that has appeared

in the literature is to combine a volume integral formulation with a boundary integral

formulation. This is a mathematically valid approach but can be computationally very

expensive due to the online evaluation of nearly-singular integrals. As an alternative, in

Chapter 4, we have developed a novel formulation for domains that are diffeomorphic to

a cube. The methodology can be summarized as follows. We map the inhomogeneous

(either constant or variable coefficient) elliptic boundary value problem (BVP) to a unit

cube. This transforms the problem to a variable coefficient elliptic BVP problem on a cube.

Dirichlet or Neumann boundary conditions on the cube are enforced using either method

of images for scalar problems (like the Poisson equation) or boundary integrals for vector

problems (like the Stokes equation). This formulation has the advantage that the quadra-

tures for singular and near singular boundary integrals can be precomputed in the same

way as we have done for volume integrals. In addition, the boundary solve can be signif-
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icantly accelerated by using preconditioners constructed from precomputed factorization

of boundary integral operator. We present convergence results for incompressible Stokes

flow with Dirichlet boundary conditions. We show that high-order accurate solutions can

be computed efficiently even for highly anisotropic geometries.

Vesicle Suspensions in Stokes Flows. Vesicles are inextensible membranes enclosing

a small volume of a fluid. Studying the flow of vesicle suspensions is essential for un-

derstanding the dynamics of red blood cells (RBCs) and artificial vesicles used in drug

delivery. We model such flows using a boundary integral formulation. In [86], we used

this formulation to perform large scale simulations of low hematocrit (volume-fraction of

RBCs) blood flow with up to 200 million RBCs and achieved a performance of 0.7PFLOP/s

on 200K CPU cores.

In Chapter 5, we extend this work to allow long time-scale simulations of highly-

concentrated vesicle suspensions. Such simulations require efficient algorithms for near-

singular boundary integrals since the inter-vesicle distance can become arbitrarily small.

To do this, we have developed an inexpensive parallel algorithm adapted from the work of

[110]. Due to discretization errors, vesicles can sometimes intersect and therefore, robust

methods for collision handling are required. We have developed a novel repulsion-based

method to prevent vesicle collisions. In long time-scale simulations, errors can accumulate

over time and this can change the area and volume of vesicles. We have developed an

efficient algorithm to correct for this drift in each time step. In addition, we have also

implemented an adaptive time-stepping scheme, made significant improvements to the

surface re-meshing scheme, developed a faster algorithm for singular integration and used

our optimized parallel kernel independent FMM implementation for computing far-field

interactions. With these algorithmic improvements, we are able to simulate the flow of

concentrated vesicle suspensions. Fig. 1.1c shows 1500 vesicles with 35% hematocrit in a

Taylor-Green vortex flow with periodic boundary conditions. For a problem with 1.1E+5

vesicles, we achieved 43% parallel weak scaling efficiency on 16K x86 cores.

1.2 Related Work

Solutions to constant-coefficient elliptic BVPs can be represented as the potential induced

by some distribution of source terms, either discrete particles (Dirac-delta functions) or

continuous distributions. The discrete problem is solved by evaluating summations over

the particles and can be computed efficiently using fast summation algorithms such as
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particle-mesh method [30], treecode [11] and fast multipole method (FMM) [52, 109]. The

continuous problem requires evaluating integrals over the domain and can be computed

efficiently using the volume FMM [33, 65]. Several parallel implementations of particle

FMM have been developed and they achieve high performance on modern supercom-

puting architectures [60, 59, 112, 67]. Optimizations for the far-field translation operator in

FMM have appeared in [27, 21, 22, 99, 98, 81]; however, they do not achieve efficiency com-

parable to our work. There is no other distributed memory volume FMM library similar to

our PVFMM framework[75, 76]. Solutions to variable coefficient PDEs can be obtained by

iteratively solving a second-kind Fredholm integral equations, where the kernel function

in the integral corresponds to a constant-coefficient elliptic PDE [89]. Such formulations

have been presented for Poisson, Stokes and Helmholtz problems [31, 77, 3].

Boundary integral methods have been used to solve homogeneous elliptic PDEs on

complex domains [6, 58]. This requires evaluating singular and near-singular integrals

using special quadratures [110]. Solutions to inhomogeneous problems can be obtained

by using embedded boundary integral methods, where, the inhomogeneous equation is

solved using FFT [110], volume FMM [66] or other fast solvers [80, 78, 13] on a regular do-

main. However, accurate representation of the density function near the domain boundary

(on the cut-cells) can be problematic with regular grids. In 2D, this has been resolved by

constructing a C0 extension of the density function [5]. Our work on VIE solver for non-

regular geometries remapped to a cubic domain is completely new.

Previous work on 3D vesicle simulation in unbounded domains includes [103, 104, 86,

105, 87]. In [113], boundary elements are used to model flow in confined geometries. A

large scale simulation of blood flow in microfluidic devices is presented in [90]. Recent

work on 2D vesicle simulations introduces collision detection, near-singular integration

[83] and adaptive time-stepping [85]. Except for our own work, there is no other work on

parallel boundary integral methods for simulating concentrated vesicle suspensions.

1.3 Contributions

Applicable Mathematics. We present volume integral equation (VIE) formulations for

constant-coefficient elliptic PDEs with a range of boundary conditions on cubic domains.

We also present VIE formulations for variable coefficient elliptic PDEs by treating the vari-

able coefficients as perturbations around a constant value.

Our formulation for Stokes flow includes a penalty term which allows us to enforce

no-slip boundary conditions without having to explicitly define the interface between the
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fluid and the solid walls. This is useful in situations where the interface boundary is too

complex to construct boundary meshes.

We have developed new VIE formulations for Poisson and Stokes equations under

coordinate transformations. It allows us to map problems on certain non-regular geome-

tries to a cubic domain; allowing us to use fast solvers for cubic geometries. The resulting

VIE has coefficients which depend on the Jacobian of the coordinate mapping. We discuss

well-posedness of this formulation.

Numerical Analysis and Scientific Computation. We have developed a new high-order

adaptive fast multipole code for computing particle and volume potentials. We have made

important contributions towards performance optimizations and developed new parallel

algorithms. Our PVFMM library is the only distributed-memory volume integral equation

solver that we know of. It is scalable to over 200K CPU cores and achieves high perfor-

mance on hybrid architectures. We have used this to build solvers for constant and variable

coefficient elliptic PDEs.

We have developed efficient numerical algorithms for computing boundary integrals

on closed surfaces that are homeomorphic to spheres. Our method uses special quadra-

tures for singular and near-singular integrals and is parallelized using our particle FMM.

We have used this to develop a scalable solver for moving boundaries embedded in a

Stokesian fluid. For such simulations, we have also developed algorithms for adaptive

times stepping, collision handling using repulsion and surface reparameterization.

Mathematical Modeling and Applications. Our solver for constant and variable coeffi-

cient elliptic PDEs has applications in electrostatics, fluid flows and electromagnetic and

acoustic scattering. We have used our solver to model incompressible Stokes flows in

porous media geometries.

We present mathematical models for the flow of vesicles in creeping flow. We simulate

highly concentrated vesicle flows with periodic and free-space boundary conditions. Such

flows are useful in studying the dynamics for blood flow and other complex fluids.

1.4 Organization of the Thesis

In Chapter 2, we describe our PVFMM software framework for computing particle and vol-

ume potentials. We discuss performance optimizations, scalability and comparison with

other codes. In Chapter 3, we discuss our solver for volume integral equation formulations
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and apply it to incompressible Stokes flow in porous media geometries. In Chapter 4, we

extend this to VIE formulations under coordinate transformations and use it to compute

Stokes flow in non-regular geometries. In Chapter 5, we discuss our boundary integral

equation solver for simulating concentrated vesicle flows. Finally, in Chapter 6, we present

concluding remarks and discuss future work.
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2 A Parallel Fast Multipole Algorithm for Particle and
Volume Potentials

In this chapter we describe a parallel software library which we have designed to compute

the potential from distributions of point sources and continuous source density distribu-

tions. Our method applies to a wide range of elliptic kernel functions. We discuss several

performance optimizations which make our software efficient and scalable to large dis-

tributed memory machines. This library has been a key component in the development of

other technologies discussed in later chapters.

2.1 Introduction

We consider the problem of rapidly evaluating the potential induced by a kernel function

K, due to a source density distribution f(y) defined at each point y on a domain Ω ⊂ R3.

The potential u(x) at a target point x ∈ Ω is given by the integral,

u(x) =

∫
Ω

K(x− y)f(y). (2.1)

When the source distribution is defined by a set ofN particles such that f(y) =
∑

N fiδ(y−
yi), then the potential u(x) can be computed by the sum,

u(x) =
N∑
j=1

K(x− yj)fj . (2.2)

To evaluate the potential at N target points from a source density with N degrees-of-

freedom after discretization, both problems require O
(
N2
)

computation using direct

methods. In addition, the kernel function (such as the fundamental solution of an elliptic

partial differential equation) may be singular and therefore standard quadratures cannot

be used to compute Eq. (2.1). In this chapter, we describe our PVFMM software framework

which can efficiently compute such potentials for kernel functions corresponding to funda-

mental solutions of elliptic PDEs (such as Poisson, Stokes and low frequency Helmholtz).

This chapter is based on work that has been published in [75, 76].
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In our implementation, we use the kernel independent fast multipole method

(KIFMM) of [109] for computing particle potentials and we use the volume fast multi-

pole method (FMM) of [65] for computing volume potentials. These methods reduce the

computational cost of computing particle and volume potentials fromO
(
N2
)

toO (N) for

a problem with N degrees-of-freedom and N unknowns. The use of KIFMM allows us

to efficiently compute potentials for a wide range of elliptic kernels. The volume FMM

is a high-order, adaptive method specially designed for computing volume potentials ef-

ficiently. The method uses high-order piecewise Chebyshev polynomials on an adaptive

octree to represent the continuous source distribution and also the final potential. It uses

precomputation to efficiently handle singular and near-singular volume integration. Our

implementation support free-space and periodic boundary conditions on cubic compu-

tational domains. Our distributed memory implementation uses space-filling curves for

partitioning data and a hypercube communication scheme. We also incorporate several

performance optimizations including cache locality, vectorization, shared memory paral-

lelism and use of coprocessors.

Motivation and Significance. Many problems in physics and engineering require com-

puting potentials from discrete or continuous source distributions. Applications include

computing gravitational interactions in astrophysics [106, 74, 56], fluid flows [38, 68, 56],

electro-magnetic and acoustic scattering [93, 32] and many others [53, 39, 49]. Particle N-

body problems also arise from discretization of boundary integral methods [86, 112]. The

solution of a constant-coefficient elliptic partial PDEs can be computed by using the funda-

mental solution of the elliptic PDE as the kernel function in Eq. (2.1). We show an example

of such an integral transform in Fig. 2.1.

Contributions. We build on previous work on the Kernel Independent FMM

(KIFMM) [67, 109] for particle N-body problems and the volume FMM [65, 33] for vol-

ume potential problems. We discuss algorithmic modifications that significantly improve

performance and scalability of the method.

• We present novel cache-optimized traversal schemes for the near and far interac-

tions.

• We present integration of our method of volume potentials with coprocessors (Intel

Xeon Phi and NVIDIA GPU).
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Figure 2.1 Left: Vorticity field for a vortex-ring resolved on an adaptive Chebyshev octree is the
input to volume FMM. Right: Output velocity field obtained from FMM by computing convolution
of the vorticity field with the Biot-Savart kernel.

• The single-node algorithmic refactoring and optimizations result in 7× speedup over

an optimized, multithreaded implementation.

• We demonstrate the scalability of the method to several thousand cores for highly

non-uniform distributions that use 25 levels of refinement.

• We modified the original Kernel Independent FMM (KIFMM) formulation to use

backward stable pseudoinverse and this allows us to achieve better accuracy.

We have implemented our method in the PVFMM software library. The library is open

source and can be downloaded from the library homepage (http://pvfmm.org). To our

knowledge, this is among the fastest AMR constant-coefficient Poisson, Stokes and low-

frequency Helmholtz solvers. It achieves four main algorithmic goals: high-order approx-

imation, linear work, excellent single-node performance, and parallel scalability.

Related Work. The particle FMM was first introduced in [51] for Laplace kernel. The

method has since been optimized [23] and extended to other kernel functions in [39, 38, 49].

The earliest distributed memory algorithms for particles were presented in [106, 107]. They

introduced the concepts of local essential tree and space-filling curves which are now used

in many implementations including ours. The original KIFMM was presented in [109]

and parallel implementations were presented in [108, 67]. Other algorithms for general

kernel functions include [44] and black-box FMM of [36]. There has been extensive work

on optimizing the FMM. Our distributed memory FMM follows closely on the work of [67]

on particle FMM. Other scalable implementations of particle N-body codes include [112,

11
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56, 60, 59]. The importance of blocking to explore locality was also discussed in [21]. An

efficient implementation of far-field interactions in black-box FMM was discussed in [98];

however, this approach worked well only for uniform particle distributions, using single

precision computation on GPUs. None of the works on optimizing FMM performance

discuss volume potentials.

A volume potential FMM was first proposed in [33] and a basic 3D shared-memory

implementation (using OpenMP) was discussed in [65]. We extended this work in [76],

by including new algorithmic optimizations, vectorization, support for coprocessors and

distributed memory parallelism. To the best of our knowledge, there is no other work on

parallel, high-order volume FMM.

There are many alternatives to using an integral equation formulation. Multigrid

methods are also very effective and scalable [95] and are applicable to Stokes and low-

frequency Helmholtz problems. Other scalable approaches include hybrid domain decom-

position methods [73]. A very efficient Poisson solver is based on a non-iterative domain

decomposition method [79] using a low-order approximation scheme. Another approach

for integral equations is to use wavelet decomposition [57, 35].

Organization of the Chapter. We briefly review the kernel independent FMM in Sec-

tion 2.2. We also discuss modifications to the original algorithm, by using backward stable

pseudoinverse to improve the accuracy and convergence of the method. We review the

volume FMM in Section 2.3. In Sections 2.4 and 2.5 we discuss our main contributions to-

wards an optimized parallel implementation of the particle and volume FMM algorithms.

Then, in Sections 2.6 to 2.8 we present results to show convergence, performance and scal-

ability of our code. We provide comparisons with other software libraries in Section 2.9.

In Table 2.1, we list some frequently used symbols for easy reference. In literature, many

different abbreviations for the interaction (or translation) operators in the FMM algorithm

have been used. Therefore, in Table 2.2 we provide the abbreviation used in this chapter

and corresponding full descriptive name for each translation operator. Detailed definition

of each translation operator can be found in [109, 65].

2.2 Kernel Independent FMM

N-body problem. We are given a set of N source and target points. For each source

point, we have its coordinates yj ∈ R3 and its source density qj . For each target point, we

have its coordinates xi and the unknown potential ui. The potential ui at target points xi
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Symbol Definition
K Kernel function
y, q Source: coordinates, density
x, u Target: coordinates, potential
Npt Number of source, target points
N Number of unknowns in target potential
T Octree
B Tree node (octant)
P(B) Parent of B
N (B) Near region of B
F(B) Far region of B: Ω \ N (B)

L(T ) Leaf nodes in T
Noct Number of octants
Nleaf Number of leaf octants
Lmax Maximum tree depth
m Order of multipole expansion
q Degree of polynomial approximation

Symbol Definition
Ti(x) Chebyshev polynomial of degree i in x
f Source density function
εtree Tolerance for adaptive tree refinement
p Number of processes
pr Rank of current process
Tpr Local tree of process pr
Pu(B) User processes of B
Send(S, pi) Send message S to process i
Recv(R, pi) Receive message R from process i
tw Per-word transfer time
ts Interconnect latency
TTree Time for tree construction
TSetup Time for FMM setup
TFMM Time for FMM evaluation
TAll Total solve time ≈ TTree + TSetup + TFMM

Table 2.1 Index of frequently used symbols.

Interaction abbreviation Description
S2M Translation from source density to multipole expansion
S2L or X-list Translation from source density to local expansion
S2T or U-list Translation from source density to target potential
M2M Translation from multipole expansion to multipole expansion
M2L or V-list Translation from multipole expansion to local expansion
M2T or W-list Translation from multipole expansion to target potential
L2L Translation from local expansion to local expansion
L2T Translation from local expansion to target potential

Table 2.2 List of FMM translation operator abbreviations.

is given by the sum:

ui =

N∑
j=1

K(xi, yj)qj , ∀i = 1, · · · , N

where, K is called the kernel function. Computing this sum directly requiresO
(
N2
)

time.

With FMM, we can evaluate this sum in O (N) time.
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Near and Far Interactions. To solve the N-body problem

with FMM, we first partition the domain using a tree data

structure T (Fig. 2.2). For each target point xi in the leaf

node B ∈ T , we compute interactions from source points in

every leaf nodes in T . In FMM, we split these interactions

into two parts, near interactions and far interactions:

ui =
∑

yj∈N (B)

K(xi, yj)qj +
∑

yj∈F(B)

K(xi, yj)qj .

B

F(B)N (B)
Figure 2.2 Near N (B) and far
F(B) interaction nodes for a tar-
get node B.

The near interactions are computed through direct summation over all source points yj ∈
N (B). The tree nodes further away from B are called well-separated from B.

Interactions from source points in a well-separated tree node to the target points in B,

are low rank and can be approximated. Furthermore, instead of computing interactions

at the leaf level, far-field interactions in FMM are computed hierarchically at the coarsest

possible length scale. In Fig. 2.3, we show far-field interactions for a target node B. At the

finest level, we compute interactions to B from other source nodes Bs ∈ V(B). These are the

tree nodes that are well-separated from B but are not well-separated from P(B) (parent of

B). Similarly, at the next coarser level we compute interactions to P(B) from source nodes

Bs ∈ V(P(B)) and so on for all ancestors of B. Finally, we combine the contributions from

all ancestors of B to obtain the far-field potential at target points in B.

B

F(B)

B

V(B)

=

P(B)

V(P(B))

+
P(P(B))

V(P(P(B)))

+

Figure 2.3 Far interactions broken into parts evaluated hierarchically at different levels in the tree.
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2.2.1 Far-field Interactions in KIFMM

We discuss the far-field translation operators, which is the defining feature of KIFMM.

Additional details and an error analysis can be found in [109]. We first discuss the two

basic building blocks for the FMM in the context of KIFMM: the multipole expansion and

the local expansion. The far-field interactions will then be defined by translation operators

between these expansions.

B

Sources (yj , qj)

Equivalent Surface (yu,Bk , qu,Bk )

Check Surface (xu,Bi )

B

Sources (yj , qj)

Equivalent Surface (yu,Bk , qu,Bk )

Check Surface (xu,Bi )

Figure 2.4 Left: Multipole expansion of a leaf octant computed directly from source points. Right:
Multipole expansion of a non-leaf octant computed from the upward-equivalent density of its chil-
dren.

Multipole Expansion. For a tree node B, the multipole expansion (Fig. 2.4) approximates

the far-field potential due to the source points within B. In KIFMM, we evaluate the po-

tential uu,B from these source points at points xu,B on a check surface. We then compute a

set of densities qu,B for points yu,B on an equivalent surface by solving the following linear

system,

uu,Bi =
∑
yj∈B

K(xu,Bi , yj)qj , ∀i.

Then, the potential at a point well-separated from B can be evaluated by computing the

potential due to these equivalent sources. In 3D, the points yu,B and xu,B are arranged in

regular grids on cubic surfaces (equivalent and check surface) centered on B. There are

m ×m points on each face of the cube, where m is the multipole order and it determines

the accuracy of the multipole expansion. The edge length of the equivalent surface (se) and

check surface (sc) must satisfy the relation s < se < sc < 3s, where, s is the edge length of

B.
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B

Sources (yj , qj)

Check Surface (xd,Bi )

Equivalent Surface (yd,Bk , qd,Bk )

B

P(B)
Sources (yj , qj)

Check Surface (xd,Bi )

Equivalent Surface (yd,Bk , qd,Bk )

Figure 2.5 Left: Local expansion from upward-equivalent source distribution of a well-separated
octant. Right: Local expansion from downward-equivalent source distribution of the parent octant.

Local Expansion. For a tree node B, the local expansion (Fig. 2.5) approximates the po-

tential at points in the interior of B due to the source points well-separated from it. We

evaluate the potential ud,B from well-separated source points at points xd,B on a check sur-

face. We then compute a set of densities qd,B for points yd,B on an equivalent surface by

solving the following linear system,

ud,Bi =
∑
yj∈B

K(xd,Bi , yj)qj , ∀i.

Then, the potential at a point in the interior of B can be evaluated by computing the poten-

tial due to these equivalent sources. As for multipole expansion, the points yd,B and xd,B

are arranged in regular grids on cubic surfaces (equivalent and check surface) centered on

B, withm×m points on each face. The edge length of the equivalent surface (se) and check

surface (sc) must satisfy the relation s < sc < se < 3s, where, s is the edge length of B.

Translation Operators. We now define five translation operators for computing far-field

interactions using multipole and local expansions.

• S2M translation. For a leaf node, we compute the check potential directly from its

source points and then compute its multipole expansion by solving a linear system

as discussed above (Fig. 2.4: left).

• M2M translation. For a non-leaf node, we compute the check potential by evaluating

the multipole expansion of each of its children and summing the result. We then

compute its multipole as discussed earlier (Fig. 2.4: right).
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• M2L translation. For a target node Bt we compute contributions from a well-

separated source node Bs, by evaluating the multipole expansion of Bs at the check

surface for Bt and computing its local expansion by solving a linear system (Fig. 2.5:

left).

• L2L translation. For a node B, we add contribution from the local expansion of its

parent P(B) by evaluating the local expansion of P(B) at the check surface of B and

then computing the local expansion of B as discussed before (Fig. 2.5: right).

• L2T translation. For a leaf-node B, we evaluate far-field component of the potential

at its target points by evaluating its local expansion.

FFT Acceleration of M2L interaction. Each M2L translation involves computing the

downward-check potential for a node B from the multipole expansion of a node well-

separated from it. Each surface has O
(
m2
)

points and the translation requires O
(
m4
)

complexity. Since the points are on a regular grid, this operation can be treated as a con-

volution in three dimensions. In Fourier space, this convolution operation turns into a

complex Hadamard product. This reduces the computational cost to O
(
m3 logm

)
when

Fourier transform and its inverse are computed using FFT and IFFT. The FFT and IFFT

need to be computed only once for each tree node. The details can be found in [109].

2.2.2 Outline of FMM

We only briefly discuss the case for uniform trees. The complete algorithm can be found

in [51, 109].

An outline of the steps in the FMM algorithm is presented below. We refer to steps 2,3

and 4 as the downward pass. Fig. 2.6 shows the interactions in upward and downward

passes for a quad tree.

1. Upward pass. For all leaf nodes compute S2M translation. Then, for all non-leaf nodes

compute M2M translations in a post-order traversal of the tree.

2. Far interactions. For all nodes, compute M2L translations from well separated source

nodes.

3. L2L and L2T interactions. For all nodes compute L2L translations in pre-order traver-

sal of the tree. Then, for all leaf nodes, evaluate the local expansion to get the target

potential.
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Figure 2.6 Upward Pass: constructing multipole expansions and Downward Pass: constructing
local expansions, evaluating near interactions.

4. Near interactions. For each leaf node, compute direct interactions from other leaf

nodes that are not well-separated from it and add the result to the target potential.

2.2.3 Backward Stable Pseudo-inverse

In the original KIFMM, when computing the multipole expansion (or the local expansion)

from the check potential, the linear system was solved by computing a pseudo-inverse i.e.

by computing a singular value decomposition (SVD), inverting the diagonal matrix with

appropriate regularization and then multiplying the factors together. However, it is an ill-

conditioned linear system and therefore, with finite precision arithmetic, we lose precision

when computing the equivalent density. Consequently, the original KIFMM could only

achieve about 9-digits of accuracy in double precision.

The error arises from the multiplication of the factors together to form the pseudo-

inverse, since the diagonal matrix has very large and very small numbers. This error can

be avoided by storing the inverse in the factorized form. The diagonal matrix can be mul-

tiplied with one of the two orthonormal matrices and therefore, we only need to store

two factors. For the M2M and L2L translation operators, the pseudo-inverse in multiplied

with another matrix which computes the check potential. In this case, we can multiply all

the matrices together to form a single matrix; however, we need to be careful of the or-

der in which we compute the product. With this modification, we can now achieve about

14-digits of accuracy with KIFMM in double precision.
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2.3 Volume FMM

The potential u at each point x ∈ Ω due to a continuous source distribution f defined on a

cubic domain Ω = (0, 1)3 is given by,

u(x) =

∫
Ω

K(x− y)f(y) =

∫
N (x)

K(x− y)f(y) +

∫
F(x)

K(x− y)f(y) (2.3)

In the volume FMM, we partition the domain using an adaptive octree. For each target

evaluation point x, we have split the integral over Ω into the near interactions from N (x)

(the set of octants containing or adjacent to x) and the far-field interactions from all the

remaining octants F(x). The far-field interactions are approximated using multipole and

local expansions. The near interactions are evaluated through direct numerical integration.

Since the kernel function has a singularity at the origin, this leads to singular and near-

singular integrals which are costly to evaluate. In the remainder of this section we briefly

describe the volume fast multipole method. A more detailed discussion of the method can

be found in [65].

2.3.1 Octree Construction

We partition the domain Ω using an octree T and approximate f at each leaf octant using

Chebyshev polynomials of degree q. Then, at a leaf octant B (with coordinates mapped to

[−1, 1]3), we have the following approximation for the density,

f̂(x1, x2, x3) =

i+j+k≤q∑
i,j,k≥0

αBi,j,kTi(x1)Tj(x2)Tk(x3) (2.4)

where, Ti(x) is the Chebyshev polynomial of degree i in x. Notice that this is not a complete

tensor order approximation since we truncate the expansion, so that i + j + k ≤ q. For

adaptive octrees, we specify an error tolerance εtree and a maximum octree depth Lmax.

We estimate the truncation error at each leaf octant by computing the absolute sum of the

highest order coefficients in the Chebyshev approximation. We subdivide the leaf octants

with truncation error larger than εtree and approximate f on each new octant. We refine

recursively until the desired accuracy is achieved or we reach the maximum allowed depth

Lmax.

We also represent the volume potential solution u using piecewise Chebyshev poly-

nomials. At each leaf octant B, we compute the following representation for the potential,
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Figure 2.7 Adaptive refinement of Chebyshev quadtree starting from the root node showing the
Chebyshev node points where the input function f is sampled and refining adaptively up to six
levels.

û(x1, x2, x3) =

i+j+k≤q∑
i,j,k≥0

βBi,j,kTi(x1)Tj(x2)Tk(x3) (2.5)

Since u(x) ∈ H1, it is smoother than f(x) ∈ L2. Based on this observation, we assume that

the potential can be represented accurately using the same octree refinement that we used

for the density.

2.3.2 Interaction Operators

To evaluate the potential in Section 2.3, we need to compute singular and near-singular

integrals over the leaf octants. For a leaf octant B with Chebyshev approximation of the

density f̂(y) =
∑

i,j,k α
B
i,j,kTi,j,k(y), the potential at a point x is given by,

u(x) =

∫
y∈B

K(x− y)f̂(y) =
∑
i,j,k

αBi,j,k

 ∫
y∈B

K(x− y)Ti,j,k(y)

 (2.6)

We precompute the integral term in square brackets using the method explained in Sec-

tion 2.3.3. The potential from any leaf octant B at a point x (relative to B) can then be

evaluated using the sum u(x) =
∑
i,j,k

αBi,j,kI
x
i,j,k .

We precompute these quadratures (once for each level in the octree) so that source-

to-multipole (S2L), source-to-target (U-list) and source-to-local (X-list) interactions in the

FMM scheme can be represented as matrix-vector products. For S2M interactions, we pre-

compute quadratures to evaluate the potential at each point on the upward-check surface

of the leaf octant. For X-list interactions, for each possible direction of the target octant,

we precompute quadratures to evaluate the potential at the downward-check surface of
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the target octant. Similarly, for U-list interactions, for each possible direction of the target

octant, we precompute quadratures to evaluate the potential at the Chebyshev node points

in the target octant. Then, we can construct the polynomial approximation of the poten-

tial from the values at the Chebyshev node points. We store the composition of these two

operations (singular quadrature and polynomial approximation) so that the interactions

are represented as translation from Chebyshev coefficients for density αBsi,j,k at the source

octant Bs, to the Chebyshev coefficients for potential βBti,j,k at the target octant Bt.

2.3.3 Evaluating Singular Integrals

For direct interactions, we need to evaluate integrals of the following form.

u(r0) =

∫
B

K(r − r0) p(r) (2.7)

where, K(r− r0) is the Green’s function, B is the cubic domain of an octant and p(r) is the

polynomial approximation of the source density within the octant. This is a near-singular

integral when r0 is on the boundary of B and a singular integral when r0 is inside B. A

simple tensor-product Gauss-quadrature rule will converge very slowly for values of r0

within or close to B. To evaluate such integrals, we make use of the Duffy transformation

[29] followed by a tensor-product Gauss-quadrature rule.

Consider the following integral (with K(r− r0) = 1
|r−r0| for Poisson’s equation) over a

regular pyramid.

u =

1∫
0

x∫
−x

x∫
−x

1√
x2 + y2 + z2

p(x, y, z) dz dy dx (2.8)

We perform a change of variables (y = ux, z = v x) and transform the integration domain

to a cuboid.

u =

1∫
0

1∫
−1

1∫
−1

x√
12 + u2 + v2

p(x, u x, v x) dv dudx (2.9)

This transformed equation does not have a singularity and can now be integrated using

a tensor-product Gauss-quadrature rule. Moreover, the integral with respect to x can be

computed exactly by choosing the order of the rule appropriately in the x-direction.

To evaluate the singular integral over a cubic domain (an octant), we partition the

domain into six regular pyramidal regions with the apex of the pyramids at the singularity.

The intersection of each pyramid with the volume of the cube can be represented as stacks

of rectangular frustums and a smaller pyramid (Fig. 2.8). The integral over each of these
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Figure 2.8 Intersection of a regular pyramid (apex at r0) with a cubic octant and decomposition
into frustum stack and a smaller pyramid. We also show the node points for the Gauss-quadrature
rule.

components is individually evaluated using the technique described above using Duffy

transformation.

2.3.4 2:1 Balance Constraint

For a general octree, the number of interaction operators that must be precomputed for the

volume FMM can be very large. To limit the number of possible interaction directions, we

constrain adjacent leaf octants to be within one level of each other. This is known as the

2:1 balance constraint.

We now explain the steps in our algorithm for 2:1 balance refinement (Algorithm 1).

We loop from the finest to the coarsest level in the octree. In each iteration, we collect the

set S of parents of all possible colleagues of non-leaf octants at that level. These are the non-

leaf octants which must exist in the next coarser level for the 2:1 balance constraint to hold,

and are therefore added to the set of non-leaf octants N in the next iteration. At each level,

we add the set of children of the non-leaf octants N, to the final balanced octree T̂ . We use

“std::set” to implement this algorithm. It allows addition, deletion and searching of octants

in O(logN) steps. The complexity of the overall algorithm is T (Noct) = O(NoctlogNoct)

where, Noct is the number of octants.

It is possible to improve this complexity estimate by using alternative data structures.

Such as, for a pointer based tree which also maintains a list of colleagues for each octant;

addition, deletion and searching of octants in the neighborhood of a given octant requires

O (1) time. Then, we can achieve O (Noct) complexity for the algorithm.
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ALGORITHM 1: SEQUENTIALBALANCE

Input: T unbalanced octree, Lmax maximum tree depth
Output: T̂ balanced octree

T̂ ← ∅, S ← ∅;
for i← Lmax to 1 do

N← S ∪ {B : B ∈ T \ L(T ), Level(B) = i};
S ← Parent(Colleagues(N));
T̂ ←T̂ ∪Children(N);

end

return T̂ ;

2.3.5 Summary of Volume FMM

In volume FMM, the source density is represented by a polynomial approximation instead

of the discrete sources in classical FMM. Therefore, translations involving the source term

(S2M, X and U-list) need to be modified as discussed in Section 2.3.2. In addition, we want

to represent the final result by a Chebyshev interpolation. We choose the target points

to be the Chebyshev node points within each leaf octant and from that we compute the

polynomial approximation using L2 projection. After precomputing all the translation

operators: S2M, M2M, L2L, L2T, U,V,W and X-list for each interaction direction and for

each level in the octree, the volume FMM can be summarized as follows:

• Tree Construction: Construct a piecewise Chebyshev approximation of the source

density using octree based domain decomposition. Perform 2:1 balance refinement

using Algorithm 1.

• Upward-Pass: For all leaf octants apply S2M translation to construct the multipole

expansion. For all non-leaf octants apply M2M translations in bottom-up order, to

construct multipole expansion from the multipole expansion of children.

• Downward-Pass: For all octants, apply V-list and X-list translations to construct the

local expansion of each octant. In top-down order apply the L2L translation to all

octants and add the results to their local expansions. For all leaf octants, apply

L2T, W-list and U-list translations to construct the final target potential as piecewise

Chebyshev interpolation.
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2.3.6 Gradients

To compute gradient of the potential, we differentiate its piecewise polynomial represen-

tation obtained from the volume FMM. The gradient obtained in this way effectively has

the degree q − 1. This also leads to one-sided derivatives at octant boundaries and there-

fore, this may not be suitable for some applications. An alternative method is to use the

gradient of the Green’s function to compute U and W-list interactions and local-to-target

translation. This has 3× extra cost for near interaction and no extra cost for multipole-to-

local interactions.

2.3.7 Selecting Optimal Parameter Values

We are interested in computing a solution to some accuracy in the least amount of time.

To do this we need to select the optimal values of the three parameters: the tolerance for

adaptive refinement εtree, the degree of Chebyshev polynomials q and the multipole order

m. The parameters εtree and m directly control the accuracy. The value of εtree should be

the same as required solution accuracy in L∞ norm. Similarly, the optimal value for m is

determined by the required solution accuracy and can be looked up from the convergence

studies in Section 2.6.

We select the remaining parameter q to optimize for the solve time. In the following

discussion we estimate the optimal value for q for a fixed number of unknowns. The cost

of FMM evaluation is given by the number of interactions between the octants, weighted

by the cost of each translation. For the range of q and m considered in this work, the cost

of U-list and V-list interactions dominate over the cost of other translations. For a uniform

octree, the total runtime is estimated by,

TFMM = 9(q + 2)3N τu + 4E+4
m3

(q + 2)3
N τv + O

(
m2N +m4q−3N

)
(2.10)

where, N is the number of unknowns, τu and τv are the inverse FLOP -rates for U-list and

V-list interactions respectively. The parameters εtree and m are determined by the desired

accuracy of the solution. We choose q to minimize time to solution TFMM. Assuming

that the FLOP -rates for U-list and V-list interactions are equal, for a fixed total number of

unknowns N , we have q ≈ 4.1
√
m− 2.
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2.3.8 Reducing Memory Requirement

Even after enforcing the 2:1 balance constraint, the memory required to store translation

operators can be very large. For example, Helmholtz kernel with q = 14 and 20 octree

levels requires 38GB of memory for storing U-list interaction matrices. We now describe

how this memory usage can be reduced.

Scale-invariant Kernels. Several kernel functions are scale-invariant i.e. when the dis-

tance between a source and a target point is scaled by α, the interaction between them is

scaled by αγ . For d-dimensional space, the interaction operators computed for the root

level in the octree can be applied to interaction at level l by scaling appropriately for the

change in volume (by a factor of 2−d×l for S2M, U and X-list interactions) and the change

in distance (by a factor of 2−γ×l for L2T, U and W-list operators).

Symmetries. Most kernel functions have rotational symmetry and this allows us to

group interaction directions into classes and store one interaction matrix for each inter-

action class. We represent interaction directions by an integer triplet (i, j, k), representing

the relative coordinates of the source octant relative to the target octant. The representa-

tive class for an interaction direction is determined by taking the absolute value of each

integer in the triplet and sorting them in increasing order. The change of sign of an in-

teger represents a reflection along the corresponding coordinate and the sorting can be

accomplished by a sequence of swap operations. We represent these five transformations

(reflection along X, Y or Z axis and swapping {X,Y} or {X,Z} axes) by T1, T2, · · · , T5.

The domain and range of the precomputed translation operators is either the equiva-

lent density data or the Chebyshev coefficient data. For equivalent density data, reflection

or swapping axes results in rearrangement of the vector elements corresponding to the

reordering of points on the equivalent surface. For Chebyshev coefficient data a reflec-

tion along an axis results in a change of sign of all the odd order Chebyshev coefficients

and swapping axes results in reordering of the Chebyshev coefficients. For tensor kernels,

these transformations can be more complex. For example, when the domain or range of a

kernel function is a spatial vector field (Stokes velocity, Laplace gradient, Biot-Savart ker-

nels), reflection along an axis will also cause the vector field component along that axis to

reverse direction and swapping axes will also require a rearrangement of the components

of the vector field. There may be other issues to consider, such as for Biot-Savart kernel,

reflection along an axis or swapping axes leads to reversal of the field direction. Never-
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theless, these five transformations (T1, T2, · · · , T5) can be performed through permutation

and scaling operations. For equivalent density data, we have: P1, P2, · · · , P5 operators and

for Chebyshev data, we have: Q1, Q2, · · · , Q5 operators.

The transformation from a direction (i, j, k) to the representative direction in its class

(i0, j0, k0) is given by a sequence of transformations: Tα1 , Tα2 , · · · , Tαn . An interaction in

direction (i, j, k) between a source vector vs and a target vector vt through an interaction

matrix M is given by, vt = vt + Mvs . We can now represent this interaction using the

interaction matrix M0 for the direction (i0, j0, k0) by suitable transformations on the source

and target vectors. For example, for W-list interactions, this would correspond to:

vt = vt +QT
α1
· · ·QT

αn ×M0 × Pαn · · ·Pα1vs (2.11)

The composition of permutation and scaling operators can be precomputed.

2.4 Intra-node Parallelism

We maximize intra-node performance of our algorithm by effectively utilizing parallelism

at each level of the architecture. We first discuss parallelism in the context of coprocessors,

by concurrently computing near and far interactions in volume FMM on the coprocessor

and the CPU respectively. Then, we summarize the most important aspects of our work,

re-organizing the data structure to optimize cache performance. Furthermore, we discuss

multithreading and vector intrinsics to extract maximum intra-node performance.

2.4.1 Asynchronous Execution on Coprocessor

Start
Async Offload:

Data, Comp. V-List + L2L L2T + End

X-list W-List U-ListCoprocessor

CPU source,
multipole

local
expansion

target
potential

Figure 2.9 Asynchronous computation of different interaction types on coprocessor (green) and
CPU (blue), and data transfer (dashed arrows) between host and device memory in the downward-
pass of FMM. The source density and multipole data is the input and output is the target potential.

In heterogeneous architectures it is essential that we overlap computation on CPU
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with computation on coprocessor. In the downward pass of our volume FMM, we com-

pute U,W and X-list interactions on coprocessor and the rest (V-list, L2L and L2T) are com-

puted on CPU (Fig. 2.9). At the start of the downward-pass, we initiate asynchronously

the following operations: transfer source Chebyshev data from host memory to coproces-

sor, execute X-list interactions on coprocessor, transfer downward-equivalent density (lo-

cal expansion) from coprocessor to host, transfer upward-equivalent densities (multipole

expansion) from host to coprocessor, execute W-list and U-list on coprocessor and transfer

target potential from coprocessor to host. These operations are non-blocking, so the CPU

can continue its execution; on coprocessor, each of these operations execute in sequence.

On the CPU, we compute V-list interactions. We wait for the downward-equivalent

densities to finish transferring from coprocessor to host and then add the V-list contribu-

tions to it. We continue by evaluating L2L and L2T interactions on CPU and then wait for

the target Chebyshev potential to complete transferring from coprocessor to CPU before

adding the contributions from L2T to the target potential.

2.4.2 Near Interaction Optimizations for Volume FMM

In volume FMM, we precompute the translation operators for U,W and X-list translations

as matrices. A source octant Bs interacts with a target octant Bt through an interaction

matrixMk. The contribution from vs evaluated throughMk is added to vt as: vt = vt+Mkvs.

Now, consider several source octants Bsi interacting with target octants Bti , where (ti, si) ∈
Ik and Ik is the list of index pairs for source and target octants interacting through the

interaction matrix Mk. We combine these matrix-vector products into a single matrix-

matrix multiplication as follows,

[vt1 , vt2 , . . . vtn ] = [vt1 , vt2 , . . . vtn ] +Mk [vs1 , vs2 , · · · vsn ] (2.12)

where, (si, ti) ∈ Ik,∀i = 1, .., n. By doing so, we can now use matrix-matrix multiplication

function which is a level-3 BLAS operation, instead of matrix-vector multiplication (a level-

2 BLAS operation) and achieve better performance.

Many interaction matrices can be derived from another matrix through suitable per-

mutation and scaling of its rows and columns, as discussed in Section 2.3.8. So, we can

now assemble larger matrices and compute all interactions belonging to the same interac-
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tion class using a single matrix-matrix multiplication:[
w1

1, w
1
2, · · ·w2

1, · · ·wmn
]

= Mk

[
QT

1 vs11 , Q
T
1 vs12 , · · ·Q

T
2 vs21 , · · ·Q

T
mvsmn

]
(2.13)[

vt11 , vt12 , · · · vt21 , · · · vtmn
]

=
[
P1w

1
1, P1w

1
2, · · ·P2w

2
1, · · ·Pmwmn

]
(2.14)

where, (tji , s
j
i ) ∈ Ikj and Mkj = PjMkQ

T
j ∀j = 1, · · · ,m. A similar technique is used [81]

to optimize M2L interactions in black-box FMM. We have implemented highly optimized

kernels for these permutation operations on Phi and GPUs. In addition, when assembling

matrices, we try to minimize memory reads and writes by computing all the required

permutations together for each vector loaded in cache. Using symmetries significantly im-

proves performance for U,W and X-list interactions on both the CPU and on coprocessor,

particularly for small problems.

2.4.3 Near Interaction Optimizations for Particle FMM

In particle FMM, computing near interactions requires evaluating the kernel functions.

This is one of the most expensive parts of the FMM algorithm. In our code, we have de-

veloped highly optimized implementations for Laplace, Stokes and Helmholtz kernels.

We offer single and double precision implementation with both SSE and AVX vectorized

versions for these kernels. For Laplace and Stokes kernels, evaluating inverse square root

operation is the most expensive part of the computation. This operation has high latency

and low throughput on current architectures. In our implementation, we use the fast ap-

proximate inverse square root instruction and then perform Newton iteration for higher

accuracy. With these optimizations we achieved about 3.8× speedup for double precision

with Laplace kernel. For the Helmholtz kernel we use Intel SVML library, when available,

for evaluating sin and cos functions.

2.4.4 V-List Optimizations

For a source octant Bs interacting with a target octant Bt through multipole-to-local (or

V-list) translation operator, the Hadamard product for the interaction is represented as:

vt = vt +Mk ◦ vs. Since Hadamard product has O (n) floating-point operations, and O (n)

memory accesses for vectors of length n, a naive scheme will be bound by the memory

bandwidth. However, we note that V-list interactions have spatial locality, i.e. the same

set of source and target vectors are used when evaluating interactions for a compact re-

gion in space. Therefore, if we can keep data in cache then we can significantly improve

performance.
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Figure 2.10 Left: Interaction list for an octant using the conventional organization of the V-list
interaction. Right: Interaction between two sibling groups.

The first optimization that we make is to interleave the source and target vectors for

sibling octants. We compute interactions between adjacent sibling groups by loading the

first eight elements (one from each sibling) in the interleaved source and target vectors and

computing all interactions between these (Fig. 2.10), represented as multiplication with an

8× 8 matrix, then load the next eight elements from the vectors and so on for the length of

the vectors. By doing so, we also compute interactions between adjacent octants which do

not actually appear in V-list interactions, so the corresponding entry in the 8× 8 matrix is

zero. As a result, we perform some extra computation (about 10%), however the increased

efficiency justifies the additional computational cost.
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Figure 2.11 Combining multiple sibling group interactions and determining the optimal block size
for interactions. For the optimal block size, we achieve over 50% of peak performance even for highly
adaptive octrees.

Next, we note that as in the case of U,W and X-lists, we can combine several interac-

tions in the same direction (Fig. 2.11) and replace matrix-vector multiplications by a single

matrix-matrix multiplication. Since, these matrices are small it is not efficient to use BLAS

and therefore, we implement our own matrix-matrix multiplication routine for 8 × 8 ma-

trices optimized for the Sandy Bridge architecture by using AVX vector intrinsics. We can
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also look at this computation as a stack of matrix-matrix products. Each layer in the stack

can be computed independently and we use OpenMP parallelism to distribute work across

cores.

We further optimize cache usage by taking a Morton-sorted list of target octants (at the

same level) and splitting into blocks which have spatial locality. By doing so, we ensure

that we can keep the first eight elements from the source and target vectors of each sibling

group (one layer of the stack) in cache when we loop over different interaction directions.

In Fig. 2.11, the plot shows the performance in GFLOP/s on 16 CPU-cores (2×Xeon E5-2680)

for different block sizes. A block size of about 128 sibling groups worked best in our ex-

periments, achieving nearly 180GFLOP/s or about 50% of the theoretical peak. In Table 2.3,

we give the arithmetic intensity (defined as the number of floating-point operations per

word (8-bytes) of memory transfer) using our scheme on a uniform octree assuming that

the block of data fits in the cache. As we increase the block size, the arithmetic intensity

increases, however, the required cache also increases. For a block size of 128, we already re-

quire more memory than what is available in L1 cache and this prevents us from achieving

higher performance.

BlockSize CacheSize (kB) FLOP Mem.Transfer Arith.Intensity
32 22 4.3E+5 6.6E+3 65

64 36 8.5E+5 8.8E+3 97

128 61 1.7E+6 1.3E+4 131

256 106 3.4E+6 2.1E+4 162

512 190 6.8E+6 3.6E+4 189

→∞ →∞ →∞ →∞ 277

Table 2.3 Arithmetic intensity (defined as FLOP /word) and the required cache size for different
block sizes in V-list computation. Memory transfers are the number of words (8-bytes) transferred.

The overall algorithm (for one block of data) to compute Hadamard products is de-

scribed in Algorithm 2. In lines 1-3, we interleave source data for siblings. Next, the out-

ermost loop (line 4) is over the height of the stack and this is parallelized using OpenMP.

Then, we loop over each of the 26 interaction directions. In the innermost loop, we com-

pute the matrix-vector products for each source-target interaction pair. We then deinter-

leave target data (lines 11-13) for siblings to get the downward-check potential in Fourier

space for each octant.
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ALGORITHM 2: VLISTHADAMARD

Input: vs source vectors in Fourier space of length (2m)3; M i
k translation operators for k = 1, .., 26

(each sibling group interaction direction) and i = 1, · · · , (2m)3

Output: vt target vectors in Fourier space of length (2m)3

foreach (s1, · · · , s8) ∈ source sibling octants do // interleave data
for i← 0 to (2m)3 − 1 do ws (8i, · · · , 8i+ 7)← [ vs1(i), · · · , vs8(i) ] ;

end

for i← 0 to (2m)3 − 1 do in parallel // vector length
for k ← 1 to 26 do // directions

foreach (s, t) pair in direction k do
wt (8i, · · · , 8i+ 7)←M i

k × ws (8i, · · · , 8i+ 7)

end
end

end

foreach (t1, · · · , t8) ∈ target sibling octants do // deinterleave data
for i← 0 to (2m)3 − 1 do [ vt1(i), · · · , vt8(i) ]← wt (8i, · · · , 8i+ 7) ;

end

return vt;

2.5 Distributed-Memory Parallelism

We first discuss the distributed-memory tree construction and explain the partitioning of

the domain across processes. We also discuss the parallel 2:1 balance algorithm on this

distributed octree. Finally, we explain the communication steps in the parallel FMM al-

gorithm. To analyze the communication cost, we assume an uncongested network and

therefore assume that the cost of point-to-point communication between any two compute

nodes is given by the sum of the latency ts and the message transfer time twNm where, tw
is the per-word transfer time and Nm is the message size [48].

2.5.1 Tree Construction

On a distributed-memory system we use Morton IDs for tree construction and load bal-

ancing [107]. We sort the initial seed points by their Morton ID using a distributed sort and

partition the points equally between processes. Each process constructs a linear octree (a

linear array of leaf octants sorted by their Morton ID) using its local point set. We then col-

lect the Morton IDs of the first octant of each local octree and build the arrayM0, · · · ,Mp−1.

The domain belonging to a process with process ID pr is given by the region between Mpr

and Mpr+1 on the Morton curve. We then proceed with the adaptive refinement. After
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each level of refinement, we load balance by redistributing the leaf octants equally across

processes. The exchange of octant data requires only point-to-point communication with

at most eight other processes (although determining which processes must exchange data

requires collective communication). For an octree with nd levels, Noct local octants, the

total communication cost is T (n) = O
(
tsnd log p+ twnd(p log p+Noctq

3/6)
)
.

ALGORITHM 3: PARALLELBALANCE
Input: Tpr unbalanced local octree, Lmax maximum tree depth
Output: T̂pr globally balanced octree

for i← Lmax to 0 do
Ni ← {B : B ∈ Tpr \ L(Tpr ), Level(B) = i};
Ni ← Ni ∪ Parent(Colleagues(Ni+1));

end

N← N0 ∪ · · · ∪ NLmax ;
N← ParallelSort( N \Ancestors(N) ) ; // HykSort [96]
N← RemoveDuplicates(N);

T̂pr← Children(N);
T̂pr← CompleteOctree(T̂pr ) ; // add missing octants

return T̂ ;

2.5.2 2:1 Balance Refinement

For the parallel 2:1 balance algorithm, we start with the distributed linear octree, i.e. a

distributed linear array of tree nodes sorted by their Morton ID. The first few lines of

Algorithm 3 are similar to the sequential version (Algorithm 1). We generate the set of

non-leaf octants N in the local balanced octree, however do not add the leaf octants at

this point. The leaf octants are added later and this reduces the communication cost by

about 8×. Next, we globally sort the set of non-leaf octants N using a variation of the

hyperquick sort algorithm that we have developed called HykSort [96]. This is followed

by removing duplicate octants, which is trivial given a sorted set of octants. Finally, the

leaf octants (Children(N)) are added and the tree is completed by adding missing octants

in the Morton ID sequence. The advantage of this 2:1 balance algorithm is that it does not

suffer from large load imbalance even for highly adaptive trees. Most other algorithms

repartition octants as a post processing step and therefore, during the local refinement

process, the load imbalance can potentially be unbounded.
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2.5.3 Distributed-Memory FMM

In the upward-pass of FMM, we compute the multipole expansions for each octant. For

non-leaf octants that are shared between processes, we need to perform a reduction to sum

the contributions from regions owned by different processes.

In the downward-pass of the FMM, we compute interactions between octants. For a

distributed octree, the interacting source octants may belong to different processes. There-

fore, we build a local essential tree by communicating the ghost octants needed by a

process for the downward-pass. Once we have constructed the local essential tree, the

downward-pass of the FMM can proceed independently of all other processes.

Compared to [67], we have decoupled to reduction and broadcast operations. Al-

though this does not change the overall complexity, the resulting algorithms are simpler.

This also makes future optimization of the broadcast operation possible, by using point-

to-point communication to exchange octants at finer levels in the octree and using the

hypercube all-to-all scheme only for coarser octants.

ALGORITHM 4: MULTIPOLEREDUCE
Input: pr process rank, p process count, Tpr local tree.
Output: Tpr with correct multipole expansions.

S1 ← {B : B ∈Ancestors(minL(Tpr ))};
S2 ← {B : B ∈Ancestors(maxL(Tpr ))};
for i← 0 to log p do

p0 ← pr XOR 2i;
Send([S1, S2], p0);
Recv([R1, R2], p0);
if pr ≤ p0 then

Reduce(S2, R1);
S2 ← R2;

else
Reduce(S1, R2);
S1 ← R1;

end
end

Multipole Reduce. We give the pseudocode for reduction in Algorithm 4. For simplic-

ity, we assume that the processor count p is of the form 2k. The communication between

processes required for the multipole reduction is mapped to a hypercube network topol-

ogy. Each process identifies the list of octants it shares with other processes. These are
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the ancestors of either the first or the last leaf octant in the local octree. In each step, a

process exchanges shared octants with another process that it is directly connected to in

the hypercube topology, moving in the order of least significant dimension to the most

significant dimension of the hypercube. The shared octants among pairs of adjacent re-

gions are merged forming a bigger region such that the only octants which still need to be

updated are the octants shared across the new bigger regions. At any stage in this process,

each process maintains a list of octants which it’s region shares with adjacent regions, i.e.

a maximum of 2Lmax octants, where Lmax is the maximum depth of the tree. In each com-

munication step, the shared octants are exchanged and then each process independently

sums the multipole expansions of the octants shared between the two regions and builds

the list of octants shared by the new region with adjacent regions. The time complexity for

this algorithm is given by:

T (n) = O
(
ts log p+ twm

2 log pLmax +m2 log pLmax
)

(2.15)

Here, ts, tw are the communication latency and the per-word transfer time respectively, p

is the number of processes, Lmax is the maximum depth of the octree.

Multipole Broadcast. We build the local essential tree by sending ghost octants from its

owner process to each of its user processes. The pseudocode for the hypercube broadcast

is given in Algorithm 5. For simplicity, we have assumed that p is of the form 2k. For

each process pr, we identify shared local octants Q. We split the processes into two groups

({p1, · · · , p1 + 2i − 1} and {p2, · · · , p2 + 2i − 1} 3 pr) each with 2i processes. Each process

communicates with a process p0 in the other group {p1, · · · , p1 + 2i − 1} and sends those

octants from its shared set Q, which have user processes in {p1, · · · , p1 + 2i − 1}. Next,

we retain the new received octants and only those shared octants which will be used in

subsequent communication steps. We stop when the process set contains only pr. Then,

Q contains all the ghost octants which together with the local octants in Tpr make up the

local essential tree.

The communication cost for the hypercube communication scheme is discussed in

detail in [67]. For an uncongested network, that work provides a worst case complex-

ity which scales as O
(
ts log p+ twNs(q

3 +m2)
√
p
)
, where Ns is the maximum number of

shared octants owned by any process. However, assuming that the messages are evenly

distributed across processes in every stage of the hypercube communication, we get a cost

of O
(
ts log p+ twNs(q

3 +m2) log p
)
. For our experiments with uniform octrees, the ob-

served complexity appears to agree with this estimate.
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ALGORITHM 5: CONSTRUCTLET
Input: pr process rank, p process count, Pu(B) user processes of octant B, Tpr local tree.
Output: T̂pr local tree with ghost octants added.

Q← {B : B ∈ Tpr , |Pu(B)| > 1} ; // all shared octants
for i← (log p− 1) to 0 do

p0 ← pr XOR 2i;
p1 ← p0 AND (p− 2i);
p2 ← pr AND (p− 2i);
S ← {B : B ∈ Q, Pu(B) ∩ {p1, · · · , p1 + 2i − 1} 6= ∅};
Send(S, p0);
Recv(R, p0);
Q← {B : B ∈ Q, Pu(B) ∩ {p2, · · · , p2 + 2i − 1} 6= ∅};
Q← Q ∪R;

end

return T̂pr← Tpr ∪Q

2.6 Convergence Analysis

We conduct experiments to measure errors as a function of various parameters and show

that they converge as predicted by the theory. All errors reported in this chapter are rel-

ative errors. We also report time to solution, CPU cycles per unknown and FLOP -rates

for the evaluation phase. All results in this section were obtained on a single node of the

Stampede platform at Texas Advanced Computing Center (TACC), using one MPI process

and 16 OpenMP threads. For most results, we have used a regular (16-core, 32GB ) node.

However, for some results we needed to use the large memory node, while using only 16-

cores. In the results, we indicate wherever we have used a large memory node. The peak

theoretical double-precision performance using 16 CPU cores is 345.5GFLOP/s .

2.6.1 Convergence Results for Particle FMM

For particle FMM, the near interactions are computed exactly and the accuracy of the far-

field interactions is determined by the multipole order m. In our results, we report the

maximum relative error (estimated by computing direct interactions for a subset of the

target particles) as we increase the multipole order. For each case the source and the target

particles coincide and the source densities are generated from a uniform random distribu-

tion in the interval (-0.5, 0.5). We use two kinds of particle distributions: uniform distribution
with particles distributed uniformly in a cube and highly non-uniform distribution with par-

ticles on the surface of an ellipsoid, distributed uniformly over the azimuthal and polar
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angles. The ellipsoid has a pole-to-pole distance of 0.9 and the equatorial cross-section is a

circle of diameter 0.225.

Npt Nleaf m Error TAll cycles/Npt TTree TSetup TFMM(GFLOP/s)

1E+6

1.8E+4 4 5E-04 0.51 2.2E+4 0.19 0.14 0.15 (232)

1.5E+4 6 5E-06 0.57 2.5E+4 0.18 0.11 0.25 (246)

4.1E+3 10 7E-09 1.26 5.4E+4 0.16 0.06 1.01 (174)

2.0E+3 16 2E-13 2.77 1.2E+5 0.15 0.09 2.49 (161)

8E+6

1.5E+5 4 5E-04 5.09 2.7E+4 2.20 1.24 1.24 (235)

1.2E+5 6 4E-06 5.52 3.0E+4 2.13 0.92 2.08 (247)

3.3E+4 10 6E-09 11.66 6.3E+4 2.15 0.34 8.71 (173)

1.5E+4 16 1E-13 24.80 1.3E+5 2.09 0.24 22.02 (158)

Table 2.4 Convergence with increasing multipole order m for Laplace kernel with uniform particle
distribution. The timing results are for 16 cores on a single node of Stampede.

Npt Nleaf m Error TAll cycles/Npt TTree TSetup TFMM(GFLOP/s)

1E+6

3.1E+4 4 1E-04 0.55 2.4E+4 0.23 0.14 0.15 (267)

2.1E+4 6 2E-06 0.57 2.5E+4 0.21 0.10 0.24 (285)

1.8E+4 10 8E-10 1.32 5.7E+4 0.22 0.11 0.96 (156)

6.2E+3 16 2E-13 2.94 1.3E+5 0.19 0.12 2.61 (143)

8E+6

2.1E+5 4 2E-04 4.91 2.7E+4 2.31 1.06 1.13 (280)

1.7E+5 6 1E-05 5.31 2.9E+4 2.21 0.84 1.83 (284)

1.5E+5 10 6E-10 12.13 6.6E+4 2.58 0.92 8.11 (154)

4.3E+4 16 4E-14 25.00 1.4E+5 2.30 0.37 21.82 (140)

Table 2.5 Convergence results for Laplace kernel with a highly non-uniform particle distribution.
For m = 4, the octree is refined to 12 levels for 1E+6 particles and 14 levels for 8E+6 particles.

In Table 2.4 and Table 2.5, we report results for Laplace kernel with uniform and non-

uniform particle distributions respectively. In each table we report two sets of results, first

with 1E+6 particles and in the second with 8E+6 particles. In each case as we increase the

multipole order m, we observe spectral convergence in maximum relative error, almost

up to machine precision. We observe similar results for Stokes and Helmholtz kernels in

Table 2.6 and Table 2.7 respectively. The Helmholtz problem corresponds to a wavenumber

of ten in the length of the computational domain. To get meaningful results, the distance

between points on the check surfaces at the coarsest scale in the tree must resolve the

oscillatory part of the Helmholtz kernel and therefore, we start with a larger multipole

order. Ideally, we should use a larger multipole order only at the coarsest levels of the

octree; however, this feature is currently not supported in our implementation.
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Npt Nleaf m Error TAll cycles/Npt TTree TSetup TFMM(GFLOP/s)

1E+6

3.1E+4 4 6E-04 0.87 3.8E+4 0.23 0.15 0.44 (268)

2.1E+4 6 4E-06 1.19 5.1E+4 0.21 0.11 0.81 (274)

1.3E+4 12 6E-10 7.48 3.2E+5 0.25 0.30 6.84 (137)

6.2E+3 16 2E-12 12.01 5.2E+5 0.25 0.73 10.96 (127)

8E+6

2.1E+5 4 3E-03 7.70 4.2E+4 2.51 1.09 3.39 (273)

1.7E+5 6 8E-05 10.76 5.8E+4 2.47 0.89 6.70 (272)

9.4E+4 12 1E-09 61.18 3.3E+5 2.79 1.02 56.44 (136)

4.3E+4 16 6E-12 94.99 5.1E+5 2.64 1.14 90.30 (125)

Table 2.6 Convergence results for particle FMM with Stokes kernel.

Npt Nleaf m Error TAll cycles/Npt TTree TSetup TFMM(GFLOP/s)

2.7E+4 8 6E-05 2.50 1.1E+5 0.21 0.13 2.11 (122)

1E+6
1.9E+4 10 2E-06 3.10 1.3E+5 0.19 0.15 2.72 (137)

1.4E+4 12 3E-09 9.67 4.2E+5 0.22 0.50 8.89 ( 63)

6.2E+3 16 8E-14 22.46 9.7E+5 0.30 2.17 19.92 ( 44)

2.0E+5 8 3E-04 20.37 1.1E+5 2.44 1.06 16.35 (124)

8E+6
1.6E+5 10 4E-05 25.80 1.4E+5 2.37 0.97 21.90 (147)

1.0E+5 12 7E-09 78.14 4.2E+5 3.04 1.33 72.94 ( 63)

4.3E+4 16 2E-13 172.11 9.3E+5 3.49 3.28 164.39 ( 44)

Table 2.7 Convergence results for Helmholtz kernel with wavenumber 10 and a highly non-uniform
particle distribution. The results for the shaded rows are computed on a large memory node of
Stampede using 16 processor cores.

In all results, we also report the total wall-time to obtain the solution TAll, and the

number of CPU cycles per particle. The cycles per particle is computed as TAll × 2.7GHz×
16cores/Npt and this provides an estimate of the efficiency of the algorithm for a given

accuracy, independent of the problem size and CPU frequency. For a particular kernel and

fixed multipole order, the cycles per particle is relatively independent of the problem size.

Comparing Table 2.4 and Table 2.5, we observe that the cycles per particle is also relatively

independent of particle distribution.

We also report detailed breakdown of the time spent in different stages of the algo-

rithm. We report the tree construction time TTree. This includes the time to sort the source

particles and the associated source densities by their Morton ID and then construct the

octree with a prescribed maximum number of particles per octant. This stage is domi-

nated by the particle sort time and depends on the number of particles and the size of the

associated density data. Across tables, we note that for 1E+6 particles, TTree is about 0.2s

and for 8E+6 particles, it is about 2s. We also report the setup time TSetup, which involves
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pre-allocating memory buffers and determining interaction lists for the FMM algorithm.

Finally, we report the time (TFMM) spent in the FMM algorithm and the FLOP rate for this

stage. At the end of the FMM algorithm, we redistribute the target potentials to the original

ordering of the particles and this stage is less than 5% of the total time and is not reported

in these results; however, it is included in the total time TAll. In all cases, we choose the

number of particles per octant to achieve the minimum TFMM. Results with accuracy less

than 1E-7 were computed in single precision. We observe a significant drop in the FLOP

rate as we switch from single to double precision, due to the smaller SIMD vector length

for double precision in the kernel implementation. In our implementation, we count each

inverse square root operation as two floating-point operations, with four additional oper-

ations for each Newton iteration. We use one Newton iteration for single precision and

two for double precision. Therefore, each evaluation of the Laplace kernel is counted as

16FLOPs in single precision and 20FLOPs in double precision. For the Helmholtz kernel,

we use Intel SVML to vectorize sin and cos operations. We count each evaluation of sin

and cos as one FLOP. Since evaluating these functions has lower throughput on current

architectures, we achieve low FLOP rates for the Helmholtz problem. Since the Helmholtz

kernel is not scale-invariant, it requires much more memory than Laplace and Stokes ker-

nels. Therefore, for the high accuracy experiments (shaded rows in Table 2.7), we needed

more than 32GB of memory and we had to use the large memory node on Stampede.

2.6.2 Convergence Results for Volume FMM

||ef ||∞ m q Nleaf ||eu||∞ TAll cycles/N TTree TSetup TFMM(GFLOP/s)

4E-05 4 8 1.8E+2 1E-04 0.16 2.4E+5 0.02 0.14 0.01 ( 56)

5E-07 6 10 5.1E+2 5E-06 0.25 7.4E+4 0.04 0.19 0.02 (150)

2E-09 10 13 8.5E+2 2E-08 0.51 4.7E+4 0.09 0.30 0.12 (218)

3E-12 14 15 1.2E+3 9E-12 0.96 4.3E+4 0.16 0.38 0.42 (220)

2E-14 18 17 1.9E+3 7E-14 2.35 4.8E+4 0.25 0.52 1.57 (201)

Table 2.8 Convergence with multipole order m for a Poisson problem.

Laplace Kernel. In Table 2.8, we solve the Poisson problem with free-space boundary

conditions and f(x) = −(4α2|x|2 − 6α)e−α|x|
2

where, α = 160, x ∈ (−0.5, 0.5)3. The exact

solution is given by u(x) = e−α|x|
2

. As we increasem, we also use a smaller tolerance (εtree)

for the adaptive refinement of the Chebyshev octree and therefore, the maximum relative

error (||ef ||∞) in approximating f converges with εtree. We choose the Chebyshev degree q

to approximately match the cost of near and far-field interactions. We report the maximum
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relative error in the output ||eu||∞, and this shows spectral convergence with m. We also

report the total time to solution TAll and the number of CPU cycles per unknown. We give

a breakdown of the time spent in the different stages of the algorithm: the tree construction

time TTree, the setup time TSetup and the FMM evaluation time TFMM. We also report the

FLOP rates for the evaluation phase. In general, the number of CPU cycles per unknown

should be smaller for the low order cases; however, at low orders, the setup time domi-

nates and therefore the cycles per unknown is larger. It is sometimes possible to amortize

the setup cost when multiple FMM evaluations are required on the same octree, such as

when solving a linear system iteratively with the matrix-vector product implemented us-

ing FMM.

||ef ||∞ m q Nleaf ||eu||∞ TAll cycles/N TTree TSetup TFMM(GFLOP/s)

2E-04 4 8 1.8E+2 1E-03 0.27 1.3E+5 0.02 0.22 0.02 (121)

2E-06 6 10 5.1E+2 7E-05 0.45 4.4E+4 0.05 0.27 0.13 (220)

3E-07 10 13 2.9E+2 3E-07 1.02 9.1E+4 0.08 0.59 0.35 (196)

2E-11 14 15 1.4E+3 5E-11 4.83 6.3E+4 0.18 1.17 3.48 (241)

1E-12 18 17 1.1E+3 1E-12 11.23 1.3E+5 0.25 3.32 7.66 (192)

Table 2.9 Convergence with multipole order m for a Stokes problem.

Stokes Kernel. In Table 2.9 we show convergence for the following Stokes problem,

where we solve for the velocity field u(x) with free space boundary conditions in the do-

main (−0.5, 0.5)3,

−µ∆u+∇p = 4L2(5− 2L |x|2)e−L|x|
2

(x3e2 − x2e3),divu = 0, (2.16)

u(x) =
2L

µ
e−L|x|

2

(x3e2 − x2e3) (2.17)

where, e2, e3 are unit vectors along Y and Z axes respectively, L = 125, and the viscosity

µ = 1. The analytical solution for the velocity field u(x) is used to compute the output

relative error.

Helmholtz Kernel. In Table 2.10, we demonstrate the case of an oscillatory kernel by

solving the Helmholtz equation with wavenumber 10 and free space boundary conditions

in the domain (−0.5, 0.5)3,

∆u+ µ2u = (4α2 |x|2 − 6α+ µ2)e−α|x|
2

,

u(x) = e−α|x|
2
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||ef ||∞ m q Nleaf ||eu||∞ TAll cycles/N TTree TSetup TFMM(GFLOP/s)

4E-04 8 6 1.8E+2 3E-03 0.11 1.7E+5 0.01 0.04 0.06 ( 38)

1E-08 12 10 9.6E+2 4E-08 0.99 7.8E+4 0.06 0.43 0.51 (143)

5E-13 16 13 3.6E+3 1E-12 8.86 9.5E+4 0.19 1.39 7.28 (132)

1E-13 18 14 3.6E+3 7E-14 13.57 1.2E+5 0.31 2.14 11.12 (131)

Table 2.10 Convergence with multipole order m for a Helmholtz problem with wavenumber 10.
The results for the shaded row are computed on the large memory node of Stampede using 16 pro-
cessor cores.

where, α = 160, µ = 20π. The analytical solution u(x) is used to compute the output error.

As before, for particle FMM, we need to use a multipole order of 8 or larger.

2.7 Single-Node Performance Results

We now present detailed double precision performance results on a single node of Stam-

pede (TACC), which has 16 CPU-cores and an Intel Xeon Phi SE10P coprocessor. Each

CPU core has a peak double precision performance of 21.6GFLOP/s and the Xeon Phi co-

processor has a peak double precision performance of 1.1TFLOP/s. Each compute node has

a total peak performance of 1.4TFLOP/s.

2.7.1 Performance of M2L Translation

cores Nleaf HADAMARD FFT+IFFT ALL

1 512 0.308 (13.9) 0.127 (3.6) 0.434 (10.9)
4 512 0.081 (13.3) 0.033 (3.5) 0.114 (10.4)

16 512 0.021 (12.7) 0.010 (2.8) 0.035 ( 8.5)
1 4096 2.761 (12.4) 1.013 (3.6) 3.774 (10.1)
4 4096 0.720 (11.9) 0.258 (3.6) 0.977 ( 9.7)

16 4096 0.190 (11.1) 0.071 (3.2) 0.265 ( 8.9)

Table 2.11 Results with timing and performance in GFLOP/s per core (in parenthesis) for shared-
memory strong scaling of multipole-to-local translation for uniform octree with Laplace kernel and
m = 10. We show the time spent in the Hadamard product stage which we have optimized and
discussed in Section 2.4.4 and the FFT and IFFT computation stage through FFTW library.

In Tables 2.11 and 2.12 , we demonstrate intra-node strong scalability for our new

multipole-to-local translation algorithm for uniform and non-uniform octrees respec-

tively. We only report OpenMP results since we get best performance with 16 OpenMP
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cores Nleaf HADAMARD FFT+IFFT ALL

1 904 0.265 (11.1) 0.224 (3.6) 0.488 (7.7)
4 904 0.074 ( 9.9) 0.057 (3.5) 0.132 (7.1)

16 904 0.021 ( 8.6) 0.017 (3.1) 0.044 (5.3)
1 62483 24.989 (11.4) 15.439 (3.6) 40.428 (8.4)
4 62483 6.836 (10.4) 3.940 (3.6) 10.776 (7.9)

16 62483 1.883 ( 9.5) 1.040 (3.4) 2.925 (7.3)

Table 2.12 Results with timing and performance in GFLOP/s per core (in parenthesis) for shared-
memory strong scaling of V-List for non-uniform octree with Laplace kernel and m = 10. Even
for highly non-uniform octrees and small problems sizes, we achieve very high FLOP -rates. This
demonstrates the robustness of our scheme.

threads and one MPI process per compute node and this is also the mode of operation in

all runs with more than one compute node. As a result of our new optimized algorithm for

Hadamard product, we achieve 203GFLOP/s per compute node or 60% of theoretical peak

on one node and achieve 90% efficiency for intra-node strong scaling for the uniform case.

This is a significant improvement over a naive Hadamard product, which was limited by

the main-memory bandwidth and attained roughly 16GFLOP/s on one compute node.

2.7.2 Performance of Volume FMM

In Table 2.13 we show performance for various stages in the downward-pass for the Stokes

kernel with a non-uniform octree. We show results for different values of parameters m

(order of multipole expansion), q (degree of polynomial approximation) and for different

problem sizes (number of leaf octants, Nleaf). In each case, we show the performance for

three configurations: 1) CPU only configuration, 2) CPU+XEON PHI: with U,W and X-lists

executing on Xeon Phi and everything else on CPU, 3) ASYNC: with Xeon Phi executing

asynchronously and overlapped with CPU execution.

In Table 2.13 we first show performance for a low-order case with m = 2 and q = 4.

For smaller problem sizes, we observe longer solve time when we use the Phi coprocessor.

This is because there is insufficient parallelism to effectively utilize the coprocessor. As we

increase the problem size, we observe about 20-40% speedup for the ASYNC case compared

to the CPU only case.

For higher accuracy with m = 8 and q = 13, U,W and X-list evaluation dominates

the execution time for the CPU only case and for CPU+XEON PHI configuration, it is

comparable to V-list execution time. In the ASYNC mode, the CPU is idle for some time as
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Nleaf U,W,X-LIST V-LIST L2L+L2T WAIT ALL

Low-order (m = 2, q = 4)
CPU 904 0.005 (100.2) 0.002 (121.4) 0.000 ( 19.3) 0.000 0.010 ( 90.7)
CPU+PHI 904 0.046 ( 12.8) 0.002 (132.5) 0.000 ( 19.3) 0.000 0.084 ( 10.4)
ASYNC 904 0.000 (–NA-) 0.003 (107.9) 0.000 ( 19.3) 0.031 0.044 ( 19.8)
CPU 9654 0.059 (101.8) 0.027 (159.0) 0.002 ( 43.9) 0.000 0.090 (116.0)
CPU+PHI 9654 0.069 ( 87.0) 0.027 (160.2) 0.002 ( 43.9) 0.000 0.104 (100.3)
ASYNC 9654 0.000 (–NA-) 0.029 (151.9) 0.002 ( 43.9) 0.043 0.076 (137.6)

High-order (m = 8, q = 13)
CPU 904 0.700 (274.2) 0.172 ( 92.2) 0.045 ( 94.9) 0.000 0.921 (230.0)
CPU+PHI 904 0.327 (586.4) 0.126 (125.2) 0.031 (137.2) 0.000 0.494 (428.4)
ASYNC 904 0.003 (–NA-) 0.124 (127.2) 0.031 (137.2) 0.173 0.333 (636.5)
CPU 9654 6.144 (305.4) 1.627 (141.7) 0.184 (250.6) 0.000 7.958 (270.6)
CPU+PHI 9654 2.773 (676.7) 1.632 (141.4) 0.189 (243.9) 0.000 4.674 (460.8)
ASYNC 9654 0.003 (–NA-) 1.642 (140.4) 0.190 (242.6) 0.987 2.832 (760.3)

Table 2.13 Results for timing and performance in GFLOP/s (in parenthesis) for downward-pass for
Stokes kernel. We report results for low-accuracy case with m = 2 and q = 4 and high-accuracy
case withm = 8 and q = 13 for different problem sizes on non-uniform octrees. We compare results
for different stages of the downward-pass, for CPU only, CPU+Phi and asynchronous runs.

it waits for computation on Xeon Phi to complete. Here we observe a significant speedup

(2.8× for large problems) because we are able to keep the Xeon Phi busy.

In Table 2.14, we provide similar results for Laplace kernel. For the high-order case, we

also show the performance for the ORIGINAL code i.e. without the optimizations discussed

in Section 2.4. We see speedup of about 3× for the CPU version and 7−7.6× for the ASYNC

case.

2.8 Distributed Memory Performance Results

For the majority of our experiments in this section we have used TACC’s Stampede system

in both strong and weak scaling regimes. Stampede is a high-performance Linux cluster

consisting of 6400 compute nodes, each with 16 CPU-cores (2×Xeon E5-2680) and an Intel

Xeon Phi SE10P coprocessor. Stampede has a 56GB/S FDR Mellanox InfiniBand network

connected in a fat tree configuration that carries all high-speed traffic (including both MPI

and parallel file-system data).

We also ran experiments on ORNL’s Titan, a Cray XK7 with a total of 18,688 nodes,

each consisting of a single 16-core AMD Opteron 6274 (Interlagos) processor, for a total of
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Nleaf U,W,X-LIST V-LIST L2L+L2T WAIT ALL

Low-order (m = 4, q = 6)
CPU 904 0.005 ( 97.9) 0.002 (105.3) 0.000 ( 22.8) 0.000 0.009 ( 85.1)
CPU+PHI 904 0.040 ( 12.9) 0.002 (110.3) 0.000 ( 22.8) 0.000 0.080 ( 9.6)
ASYNC 904 0.000 (–NA-) 0.003 ( 72.4) 0.000 ( 22.8) 0.035 0.060 ( 12.8)
CPU 9654 0.050 ( 99.9) 0.026 (133.0) 0.002 ( 72.6) 0.000 0.080 (108.4)
CPU+PHI 9654 0.064 ( 78.3) 0.025 (135.7) 0.003 ( 57.0) 0.000 0.099 ( 87.5)
ASYNC 9654 0.000 (–NA-) 0.027 (125.7) 0.002 ( 66.7) 0.035 0.068 (127.1)

High-order (m = 10, q = 13)
ORIGINAL 904 0.315 ( 85.0) 0.214 ( 14.3) 0.009 (106.0) 0.000 0.570 ( 55.9)
CPU 904 0.124 (215.0) 0.032 (116.2) 0.006 (153.7) 0.000 0.164 (191.6)
CPU+PHI 904 0.080 (332.1) 0.032 (115.1) 0.007 (146.9) 0.000 0.125 (250.3)
ASYNC 904 0.000 (–NA-) 0.033 (112.0) 0.006 (156.2) 0.040 0.082 (380.5)
ORIGINAL 9654 1.294 (194.1) 2.724 ( 16.5) 0.069 (153.8) 0.000 4.258 ( 74.5)
CPU 9654 0.973 (257.5) 0.379 (140.1) 0.046 (228.9) 0.000 1.403 (224.0)
CPU+PHI 9654 0.536 (467.3) 0.380 (139.7) 0.048 (220.8) 0.004 0.999 (314.6)
ASYNC 9654 0.000 (–NA-) 0.387 (137.0) 0.047 (223.1) 0.115 0.558 (563.0)

Table 2.14 Results for timing and performance in GFLOP/s (in parenthesis) for downward-pass
for Laplace kernel. We compare results for different stages of the downward-pass, for CPU only,
CPU+Phi and asynchronous runs. For the high accuracy test case, we also compare with an original
version of the code without the V-list optimizations and without symmetry optimizations for U,W
and X-lists.

299,008 cores. Each node has 32GB of memory. It is equipped with a Gemini interconnect.

Most nodes are also equipped with NVIDIA GPUs but we have not used them in the

experiments we report here.

For our GPU results in Section 2.8.4, we have used TACC’s Maverick system. It is a

132 node Linux cluster with a Mellanox FDR InfiniBand interconnect. Each node has two

10-core Intel Xeon E5-2680 v2 running at 2.8GHz, 256GB of memory and an NVIDIA Tesla

K40 GPU.

2.8.1 Strong Scalability of Particle FMM

In Fig. 2.12 and Fig. 2.13 we show fixed-size or strong scalability results for Laplace and

Helmholtz problems respectively with 1E+8 particles. For the Laplace problem we use

particles on the surface of an ellipsoid, distributed uniformly over the space of polar and

azimuthal angles. This leads to a very high density of particles at the poles of the ellipsoid

and results in an octree with 18 levels of refinement. For the Helmholtz problem, we uni-
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Figure 2.12 Strong scalability results for Laplace kernel with multipole order m = 6 and a highly
non-uniform distribution of 1E+8 particles with 18 levels of octree refinement. We increase the
number of processor cores from 32 to 8k and observe a 95× speedup and 37% parallel efficiency.
We achieve 14TFLOP/s of double precision performance on 8k CPU cores.

formly distribute particles over the surface of a sphere and the resulting octree has 9 levels

of refinement. In each case we report the total processor time (computed as: wall-time ×
#of-cores). We also report breakdown of the total time in to the time for tree construction

(TTree), the setup time (TSetup), the FMM communication time (TFMMCOMM), the FMM com-

putation time (TFMMCOMP) and the time to scatter the target potentials to original ordering

of the particles (TScatter).

For the Laplace problem, we get perfect scalability up to 256 cores. Beyond 256 cores

the communication costs begin to grow. Notice that all stages, except FMM computation,

require MPI communication. The FMM computation stage scales much better than the

other stages. Overall, we achieve 95× speedup which corresponds to about 37% parallel

efficiency.

We observe similar results for the Helmholtz problem, except that a much larger frac-

tion of the total time is spent in the FMM computation stage since the Helmholtz kernel is

much more costly to evaluate and also because the multipole order is higher. We achieve

a 60× speedup and 47% parallel efficiency.

2.8.2 Strong Scalability of Volume FMM

We present strong scaling results for the volume FMM in Fig. 2.14 and Fig. 2.15. We re-

port the total CPU time, computed as wall-time × CPU cores, for the FMM evaluation
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Figure 2.13 Strong scalability results for Helmholtz kernel (wavenumber=10) with multipole order
m = 10 and a non-uniform distribution of 1E+8 particles with 9 levels of octree refinement. We
increase the number of processor cores from 128 to 16k and observe a 60× speedup and 47% parallel
efficiency. We achieve 37TFLOP/s of performance on 16k CPU cores.

phase (excludes tree construction and setup) and also present a breakdown of this time

into the upward pass, the communication phase and the downward pass. For these re-

sults, we have also used the Phi coprocessor on each compute node. For the Laplace ker-

nel (Fig. 2.14), we achieve 439GFLOP/s on a single compute node. This high FLOP rate is

made possible due to the use of the Phi coprocessor. As we scale up to 2k CPU cores we

achieve 43× speedup and 19TFLOP/s of performance. We observe good scalability for the

computational part of the algorithm (the downward pass); however, the communication

costs become significant beyond 512 CPU cores.

In Fig. 2.15, we present strong scaling results for the Helmholtz kernel as we scale from

64 to 4k CPU cores. We achieve 20× speedup with 31% parallel efficiency and 35TFLOP/s

of performance. Although we observe good performance on a small number of cores

(1.7TFLOP/s on 64 CPU cores), unlike for Laplace kernel, the computational phase does

not scale well for the Helmholtz kernel. This is primarily due to the overhead of copying

interaction matrices to the coprocessor. These precomputed interaction matrices can be

several gigabytes in size and therefore cannot be stored on the coprocessor and must be

copied from the host memory to the coprocessor for computing interactions at each level

in the octree.
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Figure 2.14 Strong scaling on Stampede while using Phi coprocessor for Laplace kernel with m =

10, q = 13, 2E+5 leaf octants and 16 levels of refinement for 1.13E+8 unknowns. We observe 43×
speedup as we scale up to 2k CPU cores with 33% parallel efficiency. We achieve 19TFLOP/s of
performance with a wall-time of 0.36s on 2k cores.

2.8.3 Weak Scalability of Volume FMM

In Fig. 2.16 (left) we demonstrate weak scalability on Stampede for the Laplace kernel.

Here, the octree is highly non-uniform with a maximum tree depth of 23 levels. However,

we still achieve about 93% efficiency for the upward and downward passes combined.

For the overall FMM evaluation, we achieve about 78.4% efficiency with about 457TFLOP/s

or 33% of peak theoretical performance. In Fig. 2.16 (right), we present weak scalability

results on ORNL’s Titan, for the same problem as above, going up to 25 levels and 73.6

billion unknowns, while scaling from 1 MPI process to 16K MPI processes on 16K nodes

of Titan and achieve 567TFLOP/s.

In Fig. 2.17 we show weak scalability with uniform octrees for Laplace kernel (left) and

low-frequency Helmholtz kernel (right) for a grain size of 16K octants per compute node.

In both cases, the communication cost appears to scale logarithmically as predicted for a

network without congestion. The remaining stages, the upward-pass and the downward-

pass, also scale well with about 85 − 90% efficiency. Overall, for 1024 compute nodes, we

have 74% efficiency and 359TFLOP/s for Laplace kernel and 80% efficiency and 351TFLOP/s

for Helmholtz kernel. We have better scalability for Helmholtz, since it is a 2×2 tensor ker-

nel, therefore it has 4× the computation but only 2× the communication compared to the

Laplace problem for the same number of octants and therefore communication overhead

for Helmholtz is lower. This can be clearly seen from the bar graph.
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Figure 2.15 Strong scaling on Stampede for Helmholtz kernel with wavenumber=10, m = 10,
q = 14, 2.6E+5 leaf octants and 6 levels of refinement for 3.6E+8 unknowns. We observe 20×
speedup as we scale up to 4k CPU cores with 31% parallel efficiency. We achieve 35TFLOP/s of
performance with a wall-time of 1.04s on 4k cores.

2.8.4 Performance with GPU Accelerators

In Table 2.15, we report results on Maverick using 32 compute nodes. We observe high

FLOP rates (∼ 800GFLOP/s per compute node) due to the use of GPUs for computing near

(U,W and X-list) interactions.

kernel N Lmax TTree TFMM TFLOP/s

Laplace 1.8E+9 14 3.98 5.34 25.5

Laplace 7.1E+9 14 19.94 20.78 25.2

Stokes 1.8E+9 14 2.32 11.78 31.3

Stokes 6.6E+9 14 7.42 45.82 31.9

Helmholtz 5.1E+8 6 0.84 2.90 21.8

Helmholtz 4.1E+9 7 5.27 17.86 30.6

Table 2.15 Results for volume FMM on 32 compute nodes of Maverick using the K40 GPU on
each node. We use uniform octrees for Helmholtz problem and non-uniform octrees for Laplace and
Stokes. We use m = 10 and q = 16. The FLOP rates are for the FMM evaluation only.

2.8.5 Scalability of 2:1 Balance Refinement

Although 2:1 balance refinement is not part of the evaluation phase, it is an important com-

ponent of the setup phase for our solver. In the past we have used an algorithm described
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Figure 2.16 Weak scaling for highly non-uniform octrees with m = 10, q = 13. Left: Stam-
pede (asynchronous execution on Phi) with 32K octants per compute node and 23 levels of tree
refinement. Right: Titan (without using GPUs) with 8K octants per compute node and 25 levels of
refinement.
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Figure 2.17 Weak scaling on Stampede (asynchronous execution on Phi) for Laplace (left) and
low-frequency Helmholtz (right) kernels with m = 10, q = 14 and uniform octrees with grain size
of 16K octants per compute node.

48



in [94]. However, that algorithm did not take into account the load imbalance arising from

local refinement and therefore, its performance degraded rapidly for large, highly non-

uniform octrees, which we use in our scalability experiments. Table 2.16 compares weak

scalability of the original algorithm and the new algorithm presented in Section 2.5.2. The

new algorithm is over 50 times faster for this input case.

cores Nleaf/core ORIGINAL NEW

16 16752 0.2271 0.0126

64 15664 0.5969 0.0152

256 15143 1.6212 0.0186

1024 15107 5.5016 0.0255

2048 15101 9.2205 0.0291

4096 15106 12.9548 0.0441

8192 15113 27.7878 0.4992

Table 2.16 Weak scaling for 2:1 balance refinement for the original algorithm [94] and Algorithm 3.

2.9 Comparison with Other Methods

In this section we present numerical results to compare the performance of our PVFMM

library with other codes.

MADNESS PVFMM

ν cores ||eu||2 TTree Tsolve N ||eu||2 TTree TSetup TFMM cycles/N

20 16 1.2E-5 1.8 1.9 1.6E+6 9.1E-6 0.22 0.11 0.19 4.9E+3

40 16 1.3E-5 7.9 6.6 6.7E+6 9.3E-6 0.53 0.56 0.77 5.0E+3

80 16 2.1E-5 33.1 23.2 2.5E+7 1.5E-5 1.74 2.77 3.07 5.2E+3

160 64 1.8E-5 60.2 48.9 1.0E+8 1.6E-5 4.77 3.07 3.14 5.3E+3

Table 2.17 Comparison with MADNESS for a Poisson problem with analytical solution u =

exp(−(r/R)ν) for different values of ν, solved to about 5-digits of accuracy using 10th order dis-
cretization.

Comparison with MADNESS. In Table 2.17, we compare our method with the approach

using wavelet decomposition [57, 35] implemented in the MADNESS library. We solve

an analytical Poisson problem with the solution u = exp(−(r/R)ν) to about 5-digits of

accuracy in L2 norm for different values of ν and fixed R = 0.3. Increasing ν by 2×
increases the number of unknowns by roughly 4×. For the case ν = 160, we use four
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compute nodes since MADNESS required more memory than what was available on a

single compute node. We used q = 10 and m = 6 for PVFMM and 10th order discretization

for MADNESS. We report the time for tree construction, setup and solve. We also report

the number of unknowns (N ) and cost per unknown (cycles/N ) for PVFMM . In each case,

our PVFMM code is about an order of magnitude faster than MADNESS.

EXAFMM PVFMM

error Ncrit m θ T cycles/N error Ncrit m T cycles/N

6.1E-2 40 4 0.99 0.28 8.7E+3 1.3E-1 100 2 0.44 1.4E+4

9.9E-3 40 4 0.52 0.89 2.8E+4 8.2E-3 100 4 0.63 2.0E+4

1.2E-3 40 6 0.43 1.50 4.7E+4 2.3E-4 100 6 1.09 3.4E+4

9.1E-6 40 8 0.27 12.32 3.8E+5 4.5E-6 250 8 1.39 4.3E+4

1.1E-6 40 8 0.21 23.77 7.4E+5 3.5E-7 250 10 1.62 5.0E+4

9.2E-8 40 8 0.15 49.67 1.5E+6 7.7E-9 250 12 2.13 6.6E+4

− − − − − − 4.1E-12 250 18 4.69 1.5E+5

Table 2.18 Results for computing Coulombic potential and force for N = 1E+5 source and target
particles on a single core of Intel Xeon E5-2687W. We optimized parameter values of both codes to
minimize the total solve time for the given accuracy.

Comparison with EXAFMM. In Table 2.18, we compare our particle code with EXAFMM

[111] for an N-body problem with 1E+5 source and target particles randomly distributed in

the domain. We compute the Coulombic potential and force at each target point and report

the total time (tree construction, setup and solve time) for different solution accuracies.

For extremely low accuracy the two methods have comparable performance; however,

for single precision and higher accuracies our KIFMM based scheme is over an order of

magnitude faster.

In addition to MADNESS and EXAFMM, we have also compared our method to other

parallel fast solvers for the constant-coefficient Poisson’s equation in [40]. Our volume

FMM was an order of magnitude faster than a high-order geometric multigrid (GMG)

method for the same accuracy. In that work, we solved a Poisson problem with over half-

trillion unknowns in 92s on 229k CPU cores.

2.10 Conclusions

We have discussed our implementation of the PVFMM software library. It is a high-order

accurate, adaptive and scalable library for computing particle and volume potentials for
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elliptic kernels such as Laplace, Stokes, Biot-Savart, Helmholtz (low frequency) and mod-

ified Laplace. With new modifications using backward stable pseudoinverse, we can

achieve convergence up to 14-digits of accuracy. We have discussed several performance

improvements for near and far-field interactions. Our volume FMM is optimized to utilize

NVIDIA GPU or Intel Phi coprocessors. We have studied the singled node CPU perfor-

mance of the method and presented results showing convergence with multipole order

for both particle and volume FMM. We have demonstrated scalability of our method to

thousands of processors on the Stampede platform at TACC.
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3 A Volume Integral Equation Solver for Stokes Flow in
Porous Media Geometries

We present a novel volume integral equation method for solving the Stokes equation with

variable coefficients on the unit box. Our scheme is based on our volume FMM discussed

in Chapter 2 and is high-order, adaptive and scalable. As an application example, we

simulate Stokes flow in a porous medium with highly complex pore structure using a

penalty formulation to enforce the no slip condition. In our largest scalability test, we

solved a problem with 20 billion unknowns on 2048 nodes of the Stampede system at the

Texas Advanced Computing Center and achieved 0.656 PFLOP/s for the overall code and

one PFLOP/s for the volume integrals.

3.1 Introduction

We propose an algorithm for the Stokes equation in the unit cube with variable coefficients,

which can be stated as

ρu− div (µ(∇u+∇uT )) +∇p = f, divu = 0. (3.1)

Here, u = u(x) is the velocity, p = p(x) is the pressure, f = f(x) is a momentum source,

and x ∈ [0, 1]3. The first equation is the conservation of momentum and the second the

conservation of mass—also known as the incompressibility condition. Periodic and free-

space boundary conditions on the faces of the unit cube can be applied. The variable

coefficients ρ = ρ(x) and µ = µ(x) are related to the fluid density and viscosity respectively.

Eq. (3.1) models incompressible flows (steady or unsteady upon temporal discretiza-

tion) in which the convective inertia is neglected. Such flows are found in microfluidics,

biofuels, emulsions, polymers, porous and fractured media flows, and geophysical flows.

It can also be used to model incompressible elastic materials with a homogeneous matrix

phase and a random distribution of micron-sized particles in the matrix like reinforced

This chapter is based on work that has been published in [77].
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elastomers, microgel suspensions, and biological tissues. Solvers for Eq. (3.1) can be used

as part of implicit-explicit time-stepping schemes for Navier-Stokes problems, in which

the nonlinear convection is treated explicitly.

Designing numerical methods for Eq. (3.1) is challenging. The main difficulties are

summarized below.

• It requires four unknowns per spatial grid point in three dimensions (three velocities

and one pressure).

• Satisfying the incompressibility condition accurately is hard but crucial for obtaining

the correct results.

• We cannot use arbitrary discretization spaces for the velocity and pressure because

the inf sup condition [55] must be satisfied.

• Discretizations of Eq. (3.1) result in ill-conditioned systems. The need for different

discretization spaces for velocity and pressure necessitates block preconditioners.

• It is an elliptic but indefinite problem, which further complicates the construction of

fast linear algebraic solvers and preconditioners, especially for problems with highly

variable coefficients or high-order discretizations [15].

Due to the importance of Stokes solvers, sophisticated techniques have emerged that

can tackle the challenges described above. Discretizing and solving Eq. (3.1) is typically

done using finite element methods (FEM) and, to a lesser extent, using finite-difference

or finite volume methods [55]. Many theoretically-optimal technologies have been devel-

oped for constant and variable coefficients. In practice, however, most existing codes that

have been scaled to large core counts have demonstrated scalability only for low-order

implementations, typically first- or second-order accurate [16, 17].

3.1.1 Contributions

We propose a scheme that circumvents most of the challenges associated with stencil-based

discretizations. Writing ρ(x) and µ(x) as perturbations around constant values ρ0 and µ0,

that is ρ(x) = ρ0 + ρ̃(x) and µ(x) = µ0 + µ̃(x), it is possible to transform Eq. (3.1) to a

second-kind volume integral equation for the velocity u only:

u+ G[ρ̃u] +D[µ̃(∇u+∇uT )] = G[f ], (3.2)
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where G is a convolution operator with a boundary condition-dependent Green’s function

for the Stokes problem and D is a convolution operator with the transpose of the gradient

of the Green’s function. The Green’s function correspond to any constant-coefficient values

ρ0 and µ0, e.g., the average values of µ and ρ. The derivation and precise expressions are

stated in Section 3.2. In other words, to solve Eq. (3.1) we solve Eq. (3.2) for the velocity u.

Once the velocity has been computed, the pressure and overall stress can also be computed

by evaluating appropriate convolution integrals.

Our formulation has several nice characteristics. It results in a second-kind Fredholm
equation with a condition number that is independent of the mesh refinement; it depends

only on the magnitude of ρ̃ and µ̃. The incompressibility condition is satisfied pointwise due

to the Green’s function formulation. The equations for velocity and pressure are decoupled.

We can evaluate the pressure as a post-processing step. There is no inf sup-type restriction
on approximating p.

Formulations like Eq. (3.2) for variable-coefficient boundary value problems are well

known [24]. We showed a solution of the Lippmann-Schwinger problem using our solver

in Fig. 1.1b. However, such formulations have not been used for Stokes problems. One

possible reason is the lack of technologies for evaluating G andD accurately and efficiently.

G and D are formally dense operators. They are convolutions, but for non-uniform dis-

cretizations, fast Fourier transforms cannot be used. A second possible reason is that the

singularities in G and D make their computation extremely expensive, resulting in huge

constants in the complexity estimates. The third possible reason is that the method requires

the knowledge of a Green’s function that accounts for the boundary conditions. Thus, the

method is restricted only to simple geometries. In this chapter, we try to address these

issues.

Since our solver supports variable coefficients, the case of complex geometries can be

treated with several methods. For low-order approximations a penalty formulation can

be used. We present an example in this chapter. For high-order accuracy ideas similar to

overset grids [20] and domain decomposition methods [19] can be used. The geometry is

first decomposed into subdomains that are diffeomorphic to the unit cube and matched

with appropriate boundary conditions. Each subdomain can be solved with our scheme.

Algorithms for high-order accuracy and complex geometries are discussed in Chapter 4.

Our contributions can be summarized as follows:

• We present a volume integral formulation of Stokes equation and demonstrate the

feasibility of the approach.
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Figure 3.1 Here we illustrate the capabilities of our solver. We simulate Stokes flow through a
porous medium. From left: in the first figure, the gray color indicates the solid phase geometry and
the space in between is the pore space. We also visualize the velocity field using streamlines. In the
second figure we show the same geometry with clipping to better visualize the streamlines. The
third figure shows the leaves of the octree. Weak scalability results for this problem are reported in
Fig. 3.4 and Table 3.7.

• We conduct a performance study and report time-to-solution for various smooth and

discontinuous problems.

• We demonstrate scalability on single core, GPUs, MIC, and MPI architectures (Sec-

tion 3.4) and report, to our knowledge, one of the largest, high-order Stokes runs.

• We apply it to porous medium flows in complex geometries using a penalization

approach. An example is shown in Fig. 3.1 and scalability results in Fig. 3.4 and

Table 3.7.

• We make our code freely available1.

3.1.2 Related Work

An integral equation formulation for Navier-Stokes in two dimensions was reported in

[50], but the formulation and algorithms were specific to a disk geometry and do not gen-

eralize to arbitrary geometries in 2D or to 3D. We are not aware of any other work on

volume integral equation formulations for Stokes equation with variable coefficients. Of

course, there is a lot of work on solvers for Stokes boundary integral equations [82, 86] but

they are not applicable for discretizing Eq. (3.1) for arbitrary ρ and µ.

1http://padas.ices.utexas.edu/sc14stokes.tgz
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For finite element methods for steady Stokes problems we refer the reader to [12, 55].

For unsteady Navier-Stokes, most solvers are based on pressure-projection schemes, which

do not work well for stationary problems. For Stokes solvers, state-of-the art implemen-

tations include [16, 17], and [64]. The latter is done with Deal.II [9, 10], an open source

package. One of the most scalable Stokes runs is reported in [18] in which the authors

solve problems with up to two billion unknowns on 120K cores using linear elements.

The majority of scalable finite element codes for the Stokes equation use low-order dis-

cretizations. An exception is the work in [15] in which the author studies the convergence

rates of different high-order discretizations along with the costs of solving the related al-

gebraic system of equations. Multigrid-accelerated block preconditioners result in mesh-

independent behavior for all orders. However, the constants deteriorate with increasing

approximation order. A cubic velocity-linear pressure (Q3−Q1) discretization required 41

iterations for six orders of magnitude reduction in the Krylov residual, whereas a seventh-

order velocity-fifth order pressure (Q7−Q5) discretization required 95 iterations.

For porous media flow there is a lot of work for Darcy models, but less work on

scalable algorithms for Stokes flow. Typically meshing is prohibitively expensive or not

scalable and a penalty formulation similar to ours (described in Section 3.2.3) is used. A

discussion on the need and importance of solvers for porous media flows can be found

in [92] which also uses a penalty formulation (with a finite volume scheme).

3.1.3 Limitations

Our work is the first study of its kind and as such is not comprehensive. We consider the

formulation, analysis, convergence tests and scalability studies only for the case of variable

density in free space. Here we are not considering high-order accurate scheme for complex

geometries, generic boundary conditions, or variable viscosity problems. Also, we are not

considering the design of preconditioners for Eq. (3.2). As we can see from the results in

Sections 3.3 and 3.4, although the condition number of Eq. (3.2) is mesh-independent, it

does depend on the magnitude of the variable coefficients.

3.1.4 Organization of the Chapter

We discuss the formulation and the numerical algorithms in Section 3.2. In Section 3.3, we

show convergence results for our methods. We provide strong and weak scalability results

in Section 3.4. In Table 3.1, we list some frequently used symbols for easy reference.
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Symbol Definition
Ω Computational domain: [0, 1]3

G Green’s function (kernel function)
m Multipole order
q Chebyshev polynomial degree
εtree Tolerance for adaptive refinement
L Maximum tree depth
Noct Number of leaf octants
Ncell = (q + 1)(q + 2)(q + 3)/2 Degrees of freedom per leaf
Ndof = NoctNcell Number of unknowns
p Number of compute nodes
Tsolve Total solve time
εgmres GMRES residual
Niter GMRES iterations

Table 3.1 Index of frequently used symbols.

3.2 Methodology and Algorithms

To explain our scheme we will consider the case with free-space boundary conditions. Pe-

riodic boundary conditions can be implemented using either the same free-space Green’s

function by tiling R3 or by using a problem-specific Green’s function. We assume that ρ̃, µ̃,

and f are compactly supported in Ω = [0, 1]3. We only consider the variable density case

and set µ = 1. Under these simplifications, Eq. (3.1) becomes

ρ0u+ ρ̃u−∆u+∇p = f, divu = 0. (3.3)

To derive the integral equation we need to introduce the Green’s function G(x, y). By

construction, G(x, y) satisfies

ρ0G(x, y)−∆xG(x, y) +∇xGp(x, y) = δ(x− y),

div xG(x, y) = 0,
(3.4)

where Gp(x, y) is the corresponding pressure kernel and δ is the Dirac delta function. For

a function f , the convolution of G with f is denoted by G[f ]. For the free-space case and

with ρ0 = 0, G is given by [82]

G[f ](x) :=

∫
y∈Ω

G(x− y)f(y) =

∫
y∈Ω

1

8π

(
1

|r| +
rrT

|r|3
)
f(y), (3.5)

where r = x − y. We also set ρ0 = 0 so that ρ = ρ̃. Then, by taking the convolution of

the momentum equation in Eq. (3.3) with G, integrating by parts the G∆u and G∇p terms,

and using Eq. (3.4), we obtain

u(x) + G[ρu](x) = G[f ](x), ∀x ∈ Ω. (3.6)
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Eq. (3.6) is the main equation we will be considering here. As mentioned in the intro-

duction, Eq. (3.6) is a second-kind Fredholm integral equation. Thus, it has a bounded

condition number [63]. The condition number increases with increase in the norm of ρ.

The expressions for G and its gradient for the case with variable viscosity or for the

case with non-zero ρ0 are quite cumbersome and are not discussed here. Nothing changes

in the formulation for those cases, but the case of ρ0 6= 0 is computationally more expensive

because G is not scale invariant anymore.

3.2.1 Discretization

The numerical problem can be stated as follows: given function evaluators for ρ, f and a

target accuracy, compute an evaluator function for u. To do this, we use a Galerkin scheme

in which we represent ρ, f and u in the same basis. This basis is constructed by decom-

posing Ω into a set of disjoint cells Ωi (in our case the leaf-octants of an octree partitioning

of Ω). In each Ωi, we approximate ρ(x), u(x), and f(x) using Chebyshev polynomials of

degree q. We call this representation the Chebyshev tree of a function. Using a Galerkin

projection on Eq. (3.6), we obtain a finite-dimensional algebraic system for the coefficients

of u at each Ωi. This system is non-symmetric. We solve it with unrestarted, unprecon-

ditioned, Generalized Minimum Residual method (GMRES) implemented in the PETSc

library [8]. The evaluator function for u will use the Chebyshev coefficients of u at each Ωi.

We outline these steps in detail below.

Building the Chebyshev tree. We partition Ω to Ωi so that ρ and f are both resolved to

a prespecified accuracy in the Chebyshev space. Let’s consider the case for f . A Cheby-

shev octree representation of f is a tree in which at every leaf Ωi, we represent f by its

Chebyshev coefficients f̂nm` so that

f(x) =

n+m+`≤q∑
n=0,m=0,`=0

f̂nm`Tnm`(x), x ∈ Ωi,

where Tnm`(x) = Tn(x1)Tm(x2)T`(x3) and Tn is the nth degree Chebyshev polynomial.

We proceed in a top-down fashion. Recall that we are given an evaluator, which for any x

returns f(x). To construct the tree, we start at the root level and we evaluate f̂ by sampling

f at Chebyshev points and then taking a discrete Chebyshev transform [102]. That is, we

use Chebyshev quadrature to evaluate f̂nm` =
∫

Ωi
Tnm`f(x)w(x), wherew(x) = (1−x2)−1/2

is required for orthogonality. Then, we estimate the truncation error from the tails: if∑
n+m+`=q |f̂nm`| ≤ ε we terminate the recursion, otherwise we subdivide and continue
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recursively for each child octant of the root. If f is discontinuous we stop when we reach

a prespecified maximum tree level. Once the tree is constructed, we have a representation

for f in terms of piecewise Chebyshev polynomials. Notice that we are not using a tensor

product basis. Instead we truncate so that the highest degree of the polynomial is q. This

results in Ncell coefficients per leaf octant (roughly (q + 2)3/2 instead of 3(q + 1)3).

Convolution with G. Once we have built the Chebyshev trees for ρ and f , we merge them

to a single tree that represents both functions accurately. Then, we evaluate the action of

G on Chebyshev tree functions. For a given function f , computing u = G[f ] corresponds

to solving a constant-coefficient Stokes problem with right-hand side equal to f . This is

the most expensive step in our method and is done using our volume FMM described in

Chapter 2. The result is a piecewise polynomial discretization of u using the same basis as

the Chebyshev tree for f .

Evaluating G[ρu]. We assume that we have an evaluator for ρ(x) andNcell Chebyshev co-

efficients per octant for u. To compute the convolution of their product, we first evaluate u

at the (q+1)3 Chebyshev node points in every octant and we multiply the values pointwise

to get ρ(xk)u(xk) at the Chebyshev points. We take their Chebyshev transform to compute

the Chebyshev coefficients for ρ(x)u(x) and then, we apply G as described above. To eval-

uate u at the Chebyshev node points, we use tensor-product transformations after padding

the coefficients with zero. This has O
(
q4
)

complexity.

Overall Scheme. The overall scheme can be summarized as follows

• Create a Chebyshev tree based on approximating f and ρ to a desired accuracy. The

resulting tree has Noct octants.

• Evaluate G[f ] using volume FMM.

• Solve Eq. (3.6) using GMRES, in which the operator G[ρu] is implemented by com-

puting ρu pointwise followed by computing a Chebyshev transform and then com-

puting the convolution with G using the volume FMM.

To summarize, let PN be the projection operator that restricts f , u and ρ, to the space

spanned by Ndof polynomials. Then the discretized system can be written as

uN + GN [ρuN ] = GN [f ], (3.7)
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where GN [·] = PNG[PN ·] denotes the discretization of G. Notice the degrees of freedom

depend on q but for notational simplicity we suppress this dependence. We remark again

that this linear system is not symmetric, unlike the original Stokes problem.

3.2.2 Error Analysis

We follow standard error analysis for projection methods for second kind operators [63].

Let uN to be the solution of Eq. (3.6). Then the overall error can be estimated by,

‖uN − u‖2 = O (‖PNu− u‖2 + ‖GN − PNG‖2 + ‖PNf − f‖2) .

The constant in the estimate is proportional to the norm of G, which in turn depends on

‖ρ‖. The first term is the approximation error due to the projection, the second term is

error due to quadratures (related to the smoothness of ρ) and FMM, and the last term is

the approximation error of f .

Assuming standard regularity, i.e., ρ(x) ∈ L∞ and f ∈ L2, then u ∈ H2. If ρ and f are

in C∞ the convergence is of order q. Otherwise the convergence depends on the regularity

of u and ρ. For constant-coefficients ρ = 0 and the middle term drops. Then the error in u

becomes directly proportional to the error in f .

3.2.3 Formulation for Porous Media Flow

Let ξ(x) be the characteristic function of the fluid phase and 1−ξ(x) the characteristic func-

tion of the solid phase. Then Eq. (3.6) is satisfied in the fluid phase and u = 0 in the solid

phase. For regular pore geometries the right approach is to use a double-layer potential

formulation using boundary integral equations. But for complex geometries like the one in

Fig. 3.1, constructing surface meshes can be complicated and expensive due to the scalabil-

ity of meshing and constructing multilevel preconditioners. When engineering accuracies

are acceptable (say 1% error), one can approximate the solution using a penalty formula-

tion. This is a classical approach similar to fictitious domain methods, immersed boundary

methods, embedded methods and others. To force the fluid to have zero velocity we use

a volume penalty method in which ρ(x) = η(1 − ξ(x)), where η is the penalty parameter.

This can easily be derived by a constrained variational formulation of the Stokes equation

in which u(x) = 0 for ξ(x) = 0. With this approximation, the formulation becomes

η(1− ξ(x))u(x)−∆u+∇p = f, divu = 0,
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and its volume integral formulation becomes

u(x) + ηG[(1− ξ)u] = G[f ]. (3.8)

The theoretical analysis of the scheme for Stokes equation can be found in [4]. Let us

denote the solution of Eq. (3.8) as uη and u∗ be the exact solution. It can be shown that

uη converges to u∗ as η goes to infinity, in the L2 norm. If the solution u is regular, the

convergence rate is expected to be O (1/η). If the solution is not regular the convergence

rate can deteriorate to 1/η1/a, with a = 2 or even a = 4. Let us remark that the use of

penalty formulations for porous media is not new, for example it has been used in [92].

3.3 Numerical Results

In Chapter 2, we have already showed convergence results for the constant-coefficient case.

Here, we consider two problems with analytic solutions. The first test cases correspond to

a C∞ velocity field. For the second test the solution is in H2. We consider convergence as

a function of the polynomial degree q, the GMRES tolerance εgmres, the discretization error

εtree = ‖PNf − f‖∞ and the order of multipole expansions m. All timing results reported

here are for single Sandy Bridge core running at 2.7GHz.

In the first test, we consider the case with ρ = ρ0 exp(−500|x|2) and study the con-

vergence of the method as we decrease the tree-refinement tolerance εtree and corre-

spondingly choose the best Chebyshev degree q and multipole order m for the fastest

time to solution for a given accuracy. The analytical solution for velocity is given by

u(x) = exp(−500|x|2)(x3e2 − x2e3), where e2 and e3 are orthogonal unit vectors. We

report the L∞ and L2 errors in the velocity field, the number of GMRES iterations and the

total time to solution in Table 3.2. For fixed ρ, the number of iterations increase with in-

creasing mesh size because we tighten the GMRES tolerance as we refine. The dependence

of the GMRES iterations on large variations of ρ is mild up to fiver orders of magnitude

variations. We observe fast convergence but the conditioning deteriorates with increasing

‖ρ‖∞. For four digits of relative accuracy pointwise, the number of GMRES iterations is

six for ‖ρ‖∞ = 1E+5. For higher ‖ρ‖∞, we need tighter GMRES residuals due to the deteri-

oration of conditioning and the number of iterations jumps to 100s of iterations. Although

the timings are not bad (just 13 minutes on a single core for the most expensive run), for

large variations of ρ preconditioning should be used.

In the second test case, we consider a problem with discontinuous ρ. We solve for

Stokes flow around a sphere and check our result with the analytic solution. The solu-
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εtree ‖ρ‖∞ Noct εgmres Niter L∞ L2 Tsolve

1E-1 1E+5 64 1E-3 5 8.3E-3 1.5E-2 3.91

1E-2 1E+5 120 1E-4 6 5.7E-4 7.0E-4 12.4

1E-3 1E+5 176 1E-7 14 4.6E-7 8.4E-7 45.4

1E-6 1E+5 736 1E-8 17 6.8E-8 1.9E-7 229

1E-1 1E+7 64 1E-4 12 2.2E-2 5.0E-2 9.45

1E-2 1E+7 120 1E-7 61 2.3E-4 3.4E-4 127

1E-3 1E+7 176 1E-9 103 7.6E-7 1.9E-6 337

1E-1 1E+9 64 1E-4 12 2.3E-2 5.5E-2 9.44

1E-2 1E+9 120 1E-7 82 6.2E-4 2.4E-3 171

1E-3 1E+9 176 1E-9 246 1.9E-5 1.6E-4 818

Table 3.2 Convergence for a variable-coefficient Stokes flow, with reducing tree refinement tolerance
εtree and GMRES tolerance εgmres for different values of ρ. Chebyshev degree q = 14, multipole
order m = 10; Tsolve is the overall solve time in seconds on a single core.

tion in the exterior of the sphere is smooth but if we extend the velocity by zero inside

the sphere, its derivatives are discontinuous at the boundary of the sphere. We approxi-

mate the solution of this problem using the penalty formulation and solving in the whole

domain. For convergence, we must increase η as we refine and the problem becomes

‖ρ‖∞ L Noct εgmres Niter L∞ L2 Tsolve

2.5E+5 1 1 4.0E-6 4 2.6E-1 2.4E-1 0.1

5.0E+5 2 8 2.0E-6 29 1.7E-1 8.9E-2 1.2

1.0E+6 3 64 1.0E-6 36 1.2E-1 4.8E-2 4.9

2.0E+6 4 120 5.0E-7 43 4.6E-2 6.8E-3 17

4.0E+6 5 512 2.5E-7 44 2.0E-2 8.8E-4 43

Table 3.3 Convergence for Stokes flow around a sphere of radius=0.15 (variable and discontin-
uous coefficients) in Ω = [0, 1]3 with decreasing GMRES residual εgmres and increasing penalty
‖ρ‖∞ and tree refinement level L. Chebyshev degree q = 14, multipole order m = 10; Tsolve is the
overall solve time in seconds on a single core.

increasingly ill conditioned. Notice that we do not advocate using our method for this par-

ticular problem. Boundary integrals should be used instead. We just use it to illustrate the

convergence rate of our scheme in this setting. The L2 and L∞ errors are measured on the

exterior of the sphere only.

In Table 3.4, we examine the cost for different discretization orders. We keep the solu-

tion accuracy fixed ( 1% error) and we vary the polynomial order q and the FMM far-field

accuracy m. In all of these examples, we set the penalty parameter to η = 1E+7. As we

expected, higher-order elements will not help with the convergence rate but they can help
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q m Noct Niter L∞ Tsolve

14 10 1, 856 45 1.4E-2 140

14 6 1, 856 45 1.4E-2 89

6 6 5, 328 45 1.0E-2 38

4 6 5, 328 53 1.4E-2 35

2 6 20, 952 46 1.2E-2 103

Table 3.4 Single node performance results for flow around a sphere with fixed accuracy and different
Chebyshev degrees q and multipole orders m. Here we examine the effect of using a high-order
discretization for a non-smooth problem. The timings are on a single compute node using 16 CPU
cores.

with the constants by allowing faster convergence away from the discontinuity. From this

table we observe that using high-order approximation (high q and high m) increases the

cost significantly and should not be used. The cases of q = 6 and q = 4 give similar timings.

3.4 Performance Analysis

In this section, we analyze the performance of our implementation. Below, we briefly

describe the experimental setup used in this work.

Hardware. All experiments were performed on the Stampede system at TACC, consist-

ing of 6,400 compute nodes connected by 56GB /s FDR Mellanox InfiniBand network in a

fat tree configuration. Each compute node has dual eight-core Intel Xeon E5-2680 CPUs

running at 2.7GHz and 32GB of memory. In addition, most nodes have an Intel Xeon

Phi SE10P co-processor, while a few have an NVIDIA K20 GPU co-processor. The system

has a theoretical peak performance of 1.42TFLOP/s per node (345.5GFLOP/s for CPU and

1.07TFLOP/s for Phi) and about 9PFLOP/s for the entire system. Of this, Stampede achieved

5.2PFLOP/s with 6,006 compute nodes on the LINPACK benchmark. For this work, we had

access to 2048 compute nodes and for our largest run we achieved 656TFLOP/s or 22.4% of

the theoretical peak performance.

Software. We use the Intel compiler version 13.1.0 along with Intel MPI Library 4.1 to

compile our code. We use PETSc-3.4.3, FFTW3/3.3.2 and Intel MKL-11.0.1 libraries for the

BLAS operations and NVIDIA CudaBLAS for the GPU version.
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CPU CPU+Phi CPU+GPU
q Noct L Niter L∞ L2 Tsolve GFLOP/s Tsolve GFLOP/s Tsolve GFLOP/s

8 32, 768 6 48 3.1E-6 1.0E-6 1026.4 148 940.0 162 942.9 161

10 32, 768 6 46 1.0E-7 3.0E-7 1157.9 161 963.3 194 952.1 196

12 4, 096 5 49 3.2E-6 1.4E-6 183.5 184 129.3 262 123.9 273

14 4, 096 5 47 1.7E-7 3.1E-7 259.3 210 138.0 394 128.5 424

16 4, 096 5 46 8.3E-8 3.1E-7 384.3 242 159.5 582 140.2 662

6 29, 240 9 41 4.8E-7 4.0E-7 722.6 148 681.0 157 669.1 159

8 4, 656 8 41 6.6E-7 6.7E-7 118.8 160 101.0 188 97.4 195

10 2, 024 7 41 2.5E-7 3.5E-7 66.9 166 44.3 251 42.4 262

12 1, 240 6 44 1.1E-7 3.1E-7 63.4 179 31.4 360 30.3 374

14 736 6 42 9.2E-8 3.0E-7 56.4 192 23.2 467 19.1 565

16 232 5 41 1.5E-7 3.2E-7 38.8 147 15.6 366 9.8 579

Table 3.5 Single node performance results for a variable coefficient problem (‖ρ‖∞ = 1E+6) for
uniform and non-uniform meshes with increasing Chebyshev degree q and fixed multipole order
m = 10, GMRES tolerance εgmres = 1E-9. This example demonstrates two orders of magnitude
speed-up from a 9th order, uniform grid approximation, to a 17th order GPU-accelerated, adaptive
scheme reducing 1026 seconds to 9.8 seconds.

3.4.1 Single Node Performance

In this section we present runtime and performance (in GFLOP/s ) on a single node of

Stampede. We use the smooth coefficient test case, described in Section 3.3, with ρ(x) =

106 exp(−500x2). In Table 3.5, we show results for both uniform and adaptive meshes. We

vary the discretization order q for a fixed solution accuracy of about 1E-6. With higher

order approximation, we require significantly fewer octree nodes and consequently solve

the problem faster. We achieve a speedup of 2.7× and 3.1× on CPU for the uniform and

adaptive cases respectively by increasing the discretization order q from 8 to 16. Further-

more, using adaptive mesh requires an order of magnitude fewer unknowns and is about

10× faster for the same q. We can also use either an Intel Phi or NVIDIA GPU to accelerate

the near interactions. For low-order discretization, since there is not enough work in near

interactions and we do not observe a significant advantage in using co-processors. How-

ever, for q = 16, we see 2.5× and 2.7 − 4.0× speedups for CPU+Phi and CPU+GPU cases

respectively, with GPUs giving significantly better performance even for small problems

with just 232 octants. Overall, we have over 100× speedup going from low-order CPU

case to high-order, adaptive CPU+GPU case and achieve 579GFLOP/s or about 40% of the

theoretical peak performance of the compute node.
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Figure 3.2 Here, we solve Stokes flow around a random distribution of spheres. On the left we
visualize the streamlines around the spheres. The figure on the right shows cross sections of the
magnitude of the velocity field with velocity field increasing from green to red.

3.4.2 Weak Scalability

We now present isogranular or weak scalability results on Stampede. In Fig. 3.3 and Ta-

ble 3.6, we present results for a low-order case with discretization order q = 6 and multi-

pole order m = 6. We solve for flow around a distribution of 250 spheres each of radius

5E-2 in a unit cube. The configuration is similar to that visualized in Fig. 3.2. We use the

penalty method with η = 1E+9 inside the spheres and zero outside. We adaptively re-

fine our mesh on the boundary of the spheres and the problem size is determined by the

maximum refinement level L. Here, we vary L from 5 to 10 and increase the number of

compute nodes while keeping the number of unknowns per processor (Ndof/p) fixed at

roughly one million. In Fig. 3.3, we present a breakdown of the time spent in each stage of

the solver. Of the total solve time, GMRES corresponds to the time spent internally in the

PETSc’s Krylov subspace iterative solver. In each iteration of GMRES, a matrix multipli-

cation operation (the LHS in Eq. (3.7)), labeled as MATMUL, is performed. In this operation,

the convolution with the Green’s function is implemented using our volume FMM and

we show the time spent in computation (FMMCOMP) and communication (FMMCOMM). We

show results for execution on CPU and CPU+Phi as we increase the number of compute

nodes from 1 to 2048. We observe that the FMM accounts for over 60% of the total solve

time. As expected, the FMM computation stage is about 15% faster with the co-processor

than without it. The communication cost of FMM increases gradually as we increase the

number of MPI processes. This trend appears to be consistent with the expected O (log p)
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Figure 3.3 Weak scalability results for low-order discretization (q = 6, m = 6) showing a break-
down of time in seconds for different stages of the solver for CPU and CPU+Phi runs respectively.
We solve for flow around a random distribution of 250 spheres. We report more information in
Table 3.6.

p Ndof/p Niter Tsolve TFLOP/s η

1 9.8E+5 200 115.0 0.12 1.00

6 9.5E+5 163 115.2 0.62 0.86

27 1.0E+6 116 82.5 3.12 0.96

125 1.0E+6 99 77.6 13.0 0.87

508 1.1E+6 92 84.2 47.9 0.78

2048 1.1E+6 90 108.5 150 0.61

Table 3.6 Solve time, total FLOP rate and parallel scaling efficiency of the solver for flow around
250 spheres using q = 6 and m = 6, for weak scaling up to 2K compute nodes on Stampede using
Phi co-processor.

complexity estimate. For very large process counts, the scalability of GMRES appears to

suffer and there is a significant increase in the time spent in this stage for 2048 compute

nodes. In Table 3.6, we show performance results for CPU+Phi case. Overall the code

scales well and on 2048 compute nodes we achieve 150TFLOP/s with 61% parallel scaling

efficiency η. We lose some performance due to communication overhead and increase in

time spent in the GMRES stage.

In Fig. 3.4 and Table 3.7 we solve for Stokes flow using the geometry visualized in

Fig. 3.1. Here we have used a high-order discretization with q = 14 and multipole order

m = 10. In this test case, we see significant speedup (∼ 2×) using the Phi co-processor

since we have enough work in the near interactions. Consequently, we also get signif-
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Figure 3.4 Breakdown of time in seconds for different stages of the solver for CPU and CPU+Phi
runs respectively using q = 14 and m = 10 for the geometry visualized in Fig. 3.1. We get nearly
2× speedup for the CPU+Phi runs over CPU only runs. We observer excellent weak scalability
from one to 2048 compute nodes. We report more information for the CPU+Phi run in Table 3.7.

p Ndof/p Niter Tsolve TFLOP/s η

1 8.0E+6 155 477 0.36 1.00

6 7.8E+6 115 388 2.27 1.04

27 8.6E+6 101 401 10.3 1.05

125 8.5E+6 98 419 45.3 0.99

508 8.9E+6 92 444 173 0.94

2048 9.1E+6 90 474 656 0.88

Table 3.7 Solve time, total FLOP rate and parallel scaling efficiency of the solver for porous media
flow, for weak scaling up to 2K compute nodes on Stampede using CPUs and the Intel Phi acceler-
ator. The number of GMRES iterations appear to be independent of the mesh size (in fact they are
reducing with increasing mesh size).

icantly higher FLOP rates, achieving 656TFLOP/s on 2048 compute nodes and a parallel

scaling efficiency η = 0.88. Again the number of GMRES iterations is significant due the

large ‖ρ‖∞.

3.4.3 Strong Scalability

We report strong scalability results where we fix the problem size and increase the number

of compute nodes. In Fig. 3.5 and Table 3.8, we simulate flow around a random distribution

of 250 spheres using high-order discretization (q = 14, m = 10) and with an adaptive mesh

refined to 7 levels corresponding to 232 million unknowns. We solved GMRES to a residual
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Figure 3.5 Strong scalability up to 1024 compute nodes using high-order discretization (q = 14,
m = 10) for flow around spheres with 232 million unknowns. We report breakdown of time in
seconds for different stages of the solver for CPU and CPU+Phi runs respectively. We report more
information in Table 3.8.

CPU CPU+Phi
p Tsolve TFLOP/s η Tsolve TFLOP/s η

32 676 6.11 1.00 326 12.7 1.00

64 377 11.0 0.90 179 23.1 0.91

128 210 19.8 0.81 97 42.7 0.84

256 133 31.4 0.63 65 64.9 0.63

512 95 44.6 0.44 57 74.6 0.36

1024 73 60.0 0.29 46 94.8 0.22

Table 3.8 Solve time, total FLOP rate and parallel scaling efficiency of the solver for flow over 250
spheres using q = 14 and m = 10, for strong scaling up to 1K compute nodes on Stampede.

tolerance εgmres = 1E-8 and the solve required 101 iterations. As we increase the number

of compute nodes from 32 to 1024, we get 9× and 7× speedup for the CPU and CPU+Phi

respectively. Overall, we achieve 94.8TFLOP/s and a parallel efficiency of 22%.

Next, in Fig. 3.6 and Table 3.9, we use the porous medium geometry as a test case and

use low order discretization for the solver. The octree is refined to 8 levels and we have 169

million unknowns. Due to the low-order discretization, we gain little from using the Phi

accelerator and get about 24TFLOP/s for both CPU and CPU+Phi on 1024 compute nodes.

Scaling from 32 compute nodes to 1024 compute nodes, we get similar parallel efficiency

as before.
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Figure 3.6 Strong scalability using low-order discretization (q = 6, m = 6) for flow through a
porous medium using 169 million unknowns. We report breakdown of time in seconds for different
stages of the solver for CPU and CPU+Phi runs respectively. We give more details in Table 3.9.

CPU CPU+Phi
p Tsolve TFLOP/s η Tsolve TFLOP/s η

32 841 3.0 1.00 778 3.2 1.00

64 414 6.1 1.02 351 7.2 1.11

128 255 9.9 0.83 216 11.7 0.91

256 140 18.1 0.76 122 20.9 0.81

512 142 18.1 0.38 112 22.9 0.44

1024 109 24.0 0.25 113 23.1 0.22

Table 3.9 Solve time, total FLOP rate and parallel scaling efficiency of the solver for flow through
a porous media using q = 6 and m = 6, for strong scaling up to 1K compute nodes on Stampede.

3.5 Conclusions

We have presented a novel scheme for solving the Stokes equation with variable coeffi-

cients. We demonstrated the convergence of our scheme and its efficiency. We showed scal-

ability on hybrid architectures. For smooth problems, we demonstrated that the combina-

tion of high-order accuracy, adaptivity, integration with accelerators, algorithmic optimal-

ity, and distributed memory parallelism can result in many orders of magnitude speedups.

Here we have only scratched the surface of the capabilities and challenges of the pro-

posed methodologies. There remain challenges in terms of performance, preconditioners,

general geometries, and of course careful verification for porous media flows.

For more general geometries and boundary conditions, one can use block solvers as
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we discussed before. The transformation Jacobian from an arbitrary hexahedral domain to

the unit cube, can be easily handled by our variable coefficient solver. As long the number

of hexahedral elements is reasonably small and the elements are well shaped (for example

in the absence of large anisotropy), we can handle non-cubic geometries by using ideas

similar to macromesh construction codes [16], overset grids and other similar ideas. We

explore this approach in Chapter 4.

Another issue that we do not discussed here is the need for preconditioning. We saw

an increase in the number of iterations as ρ∞ increases significantly. Many algorithms

for preconditioning integral equations exist but none has been scaled to such complexity.

Promising schemes include multilevel solvers and hierarchical inexact factorizations.

There are several other issues regarding performance. When the average ρ0 is not zero,

the Green’s function is not scale invariant. This means that the precomputed matrices for

near interactions will depend on the level of the source leaf octant. This will increase the

storage requirements and reduce performance. Variability on the viscosity does not cause

any problems.
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4 Volume Integral Equation Solver for Stokes Flow in
Complex Geometries

In this chapter, we will discuss new volume integral equation (VIE) formulations for Pois-

son and Stokes equations under coordinate transforms. We will extend our VIE solver

discussed in Chapter 3 to these new formulations and use it to solve problems on certain

non-regular geometries which can be mapped to a cubic domain.

4.1 Introduction

We consider the solution of constant and variable coefficient elliptic boundary value prob-

lems (BVPs) on complex geometries. Embedded boundary methods can be used for such

problems. In this approach, a fast solver is used to compute a solution to the inhomo-

geneous elliptic problem on a regular domain enclosing the target geometry and a fast

boundary solver for the homogeneous elliptic problem is used to enforce the required

boundary conditions on the geometry of interest. While a lot of progress has been made in

this direction, there continue to be many challenges. Due to the presence of cut-cells these

methods often require excessive refinement near the boundary and result in low-order

convergence. For embedded boundary integral methods, computing the solution close to

the boundary requires evaluating near-singular integrals which are often expensive.

In this chapter, we propose a new approach for certain classes of geometries which

can be mapped to cubic domains. We reformulate constant and variable coefficient elliptic

problems on such geometries to problems on cubic domains. We have developed novel

volume integral equation (VIE) formulations for the transformed problem. On cubic do-

mains, we can solve these VIE formulations efficiently using our volume fast multipole

method (discussed in Chapter 2) together with iterative linear solvers like GMRES. Our

method uses a 2:1 level-restricted adaptive octree and high-order piecewise polynomials

to discretize the boundary and volume data in the cubic computational domain. The use

of a regular octree discretization allows us to precompute expensive singular and near-
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singular quadratures for volume and boundary integration and apply them efficiently,

achieving high FLOP -rates.

4.1.1 Contributions

We have developed new VIE formulations by mapping constant and variable coefficient

elliptic BVPs on certain classes for non-regular geometries to cubic domains. We show

well-posedness of our formulation for the case of constant-coefficient Poisson equation.

We have developed an efficient solver for our VIE formulations with Dirichlet bound-

ary conditions. We show feasibility of our approach and present results for convergence

and timing-to-solution for constant-coefficient Stokes equation on different geometries.

4.1.2 Related Work

Much work has been done on developing fast solvers for elliptic PDEs in non-regular ge-

ometries. This includes boundary integral methods for homogeneous elliptic PDEs on

complex domains [6, 58]. For inhomogeneous problems, embedded boundary integral

methods can be used, where, the inhomogeneous equation is solved using FFT [110], vol-

ume FMM [66] or other fast solvers [80, 78, 13] on a regular domain. However, accurate

representation of the density function near the domain boundary (on the cut-cells) can

be problematic with regular grids. In [5], this has been addressed by constructing a C0

extension of the density function for 2D problems. This approach can also be applied to

problems in 3D; however, we are not aware of any existing implementation.

Solutions to variable coefficient PDEs can be obtained by iteratively solving a second-

kind Fredholm integral equations, where the kernel function in the integral corresponds to

a constant-coefficient elliptic PDE [89]. Such formulations have been presented for Poisson,

Stokes and Helmholtz problems [31, 77, 3].

4.1.3 Limitations

Our formulation applies to very simple geometries which can be smoothly mapped to

cubic domains. It further assumes that the mapping is provided in the form of a function

evaluator. This may not be true for problems where only a description of the domain

boundary is given and constructing a mapping to a cubic domain may not be trivial.

Our analysis of the existence and uniqueness of the solution only considers the case

for constant-coefficient Poisson problem.
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4.1.4 Organization of the Chapter

In Section 4.2, we introduce our VIE formulations for the Poisson and Stokes equations

and also analyze the well-posedness for the Poisson problem. In Section 4.3, we discuss

the discretization and the numerical algorithms for solving the discretized VIE. Finally,

we present convergence results for Stokes flow in different geometries in Section 4.4. In

Table 4.1, we list some frequently used symbols for easy reference. In Table 4.2, we sum-

marize the kernel functions used in this chapter.

Symbol Definition
X Cubic domain
Y Non-regular domain

x(y) Coordinate map from Y to X
y(x) Coordinate map from X to Y
J = (∂yi/∂xj)ij (Jacobian)
A = J −1J −T (Metric tensor)
G, D Poisson single and double-layer

kernel function
S, P Stokes single-layer velocity and

pressure kernels
D, K Stokes double-layer velocity and

pressure kernels
Ḡ, D̄, S̄, P̄ , D̄, K̄ kernel functions with homogeneous

Dirichlet boundary conditions

Symbol Definition
ωi Leaf node in octree partitioning of X
Noct Number of leaf octants
L Maximum tree depth
q Chebyshev polynomial degree
εtree Tolerance for adaptive refinement
PNv Projection to piecewise polynomial

discretization for volume data
PNb Projection to piecewise polynomial

discretization for boundary data
m Multipole order

εGMRES GMRES residual
Nφ GMRES iterations for VIE solve
Nσ GMRES iterations for BIE solve
Tsolve Total solve time

Table 4.1 Index of frequently used symbols.

4.2 Formulation

In this section, we discuss the mathematical formulation of our method. Starting with

the integral equation formulation for the constant-coefficient Poisson problem on the unit

cube, we incrementally build more complex formulations. We discuss variable coefficient

Poisson problems and discuss problems under coordinate transformations in Section 4.2.2.

In Section 4.2.3 show results for well-posedness of our formulation. We extend our formu-

lation to the incompressible Stokes equation in Section 4.2.4. In Section 4.2.5, we discuss

a boundary integral equation formulation for imposing Dirichlet boundary conditions on

non-smooth domains. We summarize the overall scheme in Section 4.2.6.
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Laplace single-layer G(r) =
1

4π

1

|r|

Laplace double-layer D(r) = − 1

4π

r

|r|3

Stokes single-layer velocity S(r) =
1

8π

(
I

|r| +
r rT

|r|3
)

Stokes single-layer pressure P(r) =
1

4π

rT

|r|3

Stokes double-layer velocity D(r) =
3

4π

(r · n) r rT

|r|5

Stokes double-layer pressure K(r) =
1

2π

(
− nT

|r|3
+

3 (r · n) rT

|r|5
)

Table 4.2 Summary of free-space kernel functions.

4.2.1 Integral Equation Formulations

We will now discuss integral equation formulations for constant-coefficient and simple

variable coefficient Poisson problems on cubic domains. Through these formulations, we

will introduce some basic concepts and notations which will be useful in developing our

formulation for complex geometries.

Constant-Coefficient Problems. We consider the constant-coefficient Poisson problem

∆u(x) = f(x), on a cubic domain X with f ∈ L2(X) and free-space boundary conditions.

The solution u(x) is given by the convolution,

u(x) =

∫
y∈X

G(x,y)f(y) (4.1)

where, G(x,y) is the free-space Green’s function for the Poisson problem. This convolu-

tion is computed numerically using the volume fast multipole method discussed in Chap-

ter 2. For homogeneous Dirichlet boundary conditions on the domain X , we must use the

Green’s function Ḡ that satisfies the same boundary conditions.

Solutions with general Dirichlet boundary conditions g = u
∣∣
∂X

can be obtained by

computing boundary integrals,

u(x) =

∫
y∈X

Ḡ(x,y)f(y) +

∫
y∈∂X

g(y)
∂

∂ny
Ḡ(x,y) (4.2)
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where, the first term is the solution with homogeneous Dirichlet boundary conditions and

the second term solves the Laplace equation with the prescribed boundary conditions.

Variable Coefficient Problems. We now consider variable-coefficient Poisson problem

of the form ∇· a(x)∇u(x) + b(x) · ∇u(x) + c(x)u(x) = f(x) with homogeneous Dirichlet

boundary conditions on ∂X . The coefficients a, b and c are sufficiently smooth and a(x) 6=
0 for all x ∈ X . Furthermore, we assume that the coefficients are such that the elliptic PDE

is well-posed. The integral equation formulation for this problem is given by writing the

solution as u = Ḡ[φ], for an unknown density φ. The notation Ḡ[φ] denotes the convolution

of Ḡ with φ. After simplification we have the volume integral equation,

aφ+ (∇a+ b) · ∇Ḡ[φ] + c Ḡ[φ] = f (4.3)

Since Ḡ[·] and∇Ḡ[·] are weakly singular integral operators, the second and third terms are

compact operators acting on φ. Therefore, Eq. (4.3) is a second-kind Fredholm integral

equation. Since we assume that the original elliptic PDE is well-posed, therefore, for f =

0, it has only the trivial solution u = 0. Then, for f = 0, Eq. (4.3) has only the trivial

solution φ = 0 and by the Fredholm alternative the non-homogeneous equation has a

unique solution. We solve the above integral equation for φ and compute the solution

u = Ḡ[φ]. Many variable coefficient elliptic PDEs can similarly be converted to second-kind

integral equations. Such VIE formulations can also be constructed for variable viscosity

Stokes problem and the Lippmann-Schwinger equation for acoustic and electro-magnetic

scattering [24].

X
y(x)

x(y)
Y

Figure 4.1 We will consider fast algorithms for Stokes problems in domains Y that can be smoothly
mapped to a unit cube X . That is, we will assume that there is a smooth diffeomorphism y : X −→
Y that maps points from X to Y and we will use it for a coordinate-transformation based scheme.
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4.2.2 Coordinate Transformations

We will now derive an integral equation formulation for the constant-coefficient Poisson

problem on non-regular domains by mapping the problem to cubic domains. We consider

a non-regular domain Y ⊂ R3 such that there exists a smooth diffeomorphism y : X −→ Y

which maps points x ∈ X = (0, 1)3 to points y(x) ∈ Y as shown in Fig. 4.1. The inverse

transformation x = y−1, maps points y ∈ Y to points x(y) ∈ X . We define the Jacobian

J = (∂yi/∂xj)ij and the metric tensor A = J −1J −T .

We consider the Poisson problem ∆u = f with homogeneous Dirichlet boundary con-

ditions on ∂Y . We apply a change of coordinates and rewrite this problem on the unit cube

X ,

∇·A∇(u ◦ y)− (∇·J −1) · J −T∇(u ◦ y) = f ◦ y in X (4.4)

u ◦ y = 0 on ∂X.

When det(J) is constant, then ∇·J −1 = 0 and the second term in Eq. (4.4) vanishes. We

make this assumption only to simplify the analysis of our formulation for the Poisson

equation in Section 4.2.3. In general, this constraint is not required and we do not assume

this in our formulation for the Stokes equation.

The integral equation formulation is now given by substituting u ◦ y = Ḡ[φ],

∇·A∇Ḡ[φ] = f ◦ y (4.5)

where, φ is an unknown density, Ḡ is the Green’s function for the Poisson problem on X

and satisfies homogeneous Dirichlet boundary conditions. Formally, we can rewrite the

above VIE as,

λφ+∇· (A− λI)∇Ḡ[φ] = f.

When ‖A− λI‖H1 is small, the linear system above is well conditioned. However, in gen-

eral, the second term in this equation may not be compact for any choice for λ. Therefore,

we cannot apply the Fredholm alternative to show existence and uniqueness of the so-

lution. Also, Eq. (4.5) requires computing second order derivatives of the potential Ḡ[φ].

When seeking solutions in the space H2, the derivatives must be understood in the weak

sense. In the following section we will provide a weak formulation for Eq. (4.5).

4.2.3 Weak-Formulation for Poisson Problem

We now derive a weak formulation for the constant-coefficient Poisson problem under

change of coordinates discussed above in Section 4.2.2 and we will show well-posedness
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of the formulation. Starting from Eq. (4.5) and assuming the solution φ ∈ L2(X), it can

be shown that ∇·A∇Ḡ[φ] ∈ L2(X). For f ∈ L2(Y ), the weak formulation is obtained by

computing an L2-inner product of Eq. (4.5) with test functions v ∈ L2(X),(
∇·A∇Ḡ[φ], v

)
L2(X)

= (f ◦ y, v)L2(X) ∀v ∈ L2(X). (4.6)

We now provide some basic results which will be used to prove existence and uniqueness

of the solution to Eq. (4.6) in Theorem 4.2.3.

Lemma 4.2.1. Let X = (0, 1)3 and Y ⊂ R3 such that there exists a smooth diffeomorphism
y : X −→ Y and det(J) is constant (where J is the Jacobian for the coordinate map y). If
f ∈ L2(Y ) and u is a weak solution to the constant-coefficient Poisson problem ∆u = f with
homogeneous Dirichlet boundary conditions on Y , then:

(a) u ∈ H2(Y )

(b) ‖u‖L2(Y ) ≤ c1‖f‖L2(Y )

(c) ‖D2u‖L2(Y ) ≤ c2‖f‖L2(Y )

(d) ‖∇u‖L2(Y ) ≤ c3‖f‖L2(Y )

where, the constants c1, c2 and c3 depend only on the coordinate map y.

Proof. (a) Applying a change of coordinates, we have that u ◦ y ∈ H1(X) is the solution

to the variable coefficient elliptic problem ∇·A∇(u ◦ y) = f ◦ y with homogeneous

Dirichlet boundary conditions on X . Since X is a convex domain, from theorem

3.2.1.2 in [54], u ◦ y ∈ H2(X); therefore u ∈ H2(Y ).

(b) Since u ∈ H1(Y ) is the unique weak solution to the Poisson problem with homo-

geneous Dirichlet boundary conditions, we can apply Theorem 6 in §6.2 of [34] to

conclude ‖u‖L2(Y ) ≤ c1‖f‖L2(Y ).

(c) Let Xe = (−1, 2)3 and fe ∈ L2(Xe) be the extension of f ◦ y ∈ L2(X) constructed

by tiling negative mirror images on either side of X . Also, let Ae ∈ C0(Xe) be the

extension ofA constructed by tiling positive mirror images on either side ofX . Then,

the solution ue ∈ H2(Xe) of the variable coefficient Poisson problem ∇·Ae∇ue =

fe with homogeneous Dirichlet boundary conditions on Xe, is an extension of u ◦
y ∈ H2(X). Since X ⊂⊂ Xe, by interior H2-regularity (Theorem 8.8 in [41]), we

have ‖ue‖H2(X) ≤ c′
(
‖ue‖L2(Xe) + ‖fe‖L2(Xe)

)
. Then, using (b) and the fact that ue
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and fe are bounded linear extensions of u ◦ y and f ◦ y respectively, we have ‖u ◦
y‖H2(X) ≤ c′′‖f ◦ y‖L2(X). Since y∗ and y−1∗ (the duals of y and y−1) are bounded

linear isomorphisms between H2(X) and H2(Y ), we have ‖D2u‖L2(Y ) ≤ ‖u‖H2(Y ) ≤
c2‖f‖L2(Y ).

(d) We note that Y has a Lipschitz boundary, u ∈ H2(Y ) and u
∣∣
∂Y

= 0. Therefore,

∇u ∈ H1(Y ) and
∫
Y ∇u = 0. Using the Poincaré-Wirtinger inequality and (c) gives

the required result, ‖∇u‖L2(Y ) ≤ c‖D2u‖L2(Y ) ≤ c3‖f‖L2(Y )

Lemma 4.2.2. Let X = (0, 1)3 and Y ⊂ R3 such that there exists a smooth diffeomorphism
y : X −→ Y . We define A = J −1J −T where J = (∂yi/∂xj)ij . We assume that det(J) is constant.
Also, let Ḡ and ḠY be the Green’s functions for the constant-coefficient Poisson problems in the
domains X and Y respectively with homogeneous Dirichlet boundary conditions. Then,

(a) ‖∇·A∇Ḡ[φ]‖L2(X) ≤ cx‖φ‖L2(X) ∀φ ∈ L2(X)

(b) ‖∇·A−1∇ḠY [f ]‖L2(Y ) ≤ cy‖f‖L2(Y ) ∀f ∈ L2(Y )

(c) ∇·A−1∇ḠY
[(
∇·A∇Ḡ[φ]

)
◦ y−1

]
= φ ◦ y−1 ∀φ ∈ L2(X)

where, the constants cx and cy depend only on the coordinate map y.

Proof. (a) We note that

∇·A∇Ḡ[φ] = A : D2Ḡ[φ] + (∇·A) · ∇Ḡ[φ]

=⇒ ‖∇·A∇Ḡ[φ]‖L2(X) ≤ ‖A‖L∞‖D2Ḡ[φ]‖L2(X) + ‖∇·A‖L∞‖∇Ḡ[φ]‖L2(X).

Then, from Lemma 4.2.1 (c) & (d), we have the required result,

‖∇·A∇Ḡ[φ]‖L2(X) ≤ (c2‖A‖L∞ + c3‖∇·A‖L∞) ‖φ‖L2(X).

(b) Following the steps used for (a), we have the required result,

‖∇·A−1∇ḠY [f ]‖L2(Y ) ≤ (c2‖A−1‖L∞ + c3‖∇·A−1‖L∞)‖f‖L2(Y ).

(c) Under change of coordinates, we have the following two relations,

(∆u) ◦ y−1=∇·A−1∇(u ◦ y−1) in Y (4.7)

(∆v) ◦ y =∇·A ∇(v ◦ y) in X. (4.8)
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Let v = u ◦ y−1. Then, from Eq. (4.8), we have

∆(u ◦ y−1) = (∇·A∇u) ◦ y−1

=⇒ u ◦ y−1 = ḠY
[
(∇·A∇u) ◦ y−1

]
. (4.9)

Let u = Ḡ[φ]. Then, from Eq. (4.7) and Eq. (4.9), we have the result (c)

φ ◦ y−1= ∇·A−1∇ḠY
[
(∇·A∇Ḡ[φ]) ◦ y−1

]
∀φ ∈ L2(X).

Theorem 4.2.3. Existence and Uniqueness of Solution. The weak formulation Eq. (4.6) has a
unique solution φ ∈ L2(X).

Proof. Since the bilinear form in Eq. (4.6) is an indefinite operator, we use the generalized

Lax-Milgram theorem. For the bilinear form B(φ, v) =
(
∇·A∇Ḡ[φ], v

)
L2(X)

, we need to

show the following,

(a) |B(φ, v)| ≤M‖φ‖2‖v‖2 ∀v, φ ∈ L2(X)

Use Hölder’s inequality and Lemma 4.2.2 (a),

|B(φ, v)| ≤ ‖∇·A∇Ḡ[φ]‖2‖v‖2 ≤ cx‖φ‖2‖v‖2

(b) sup
v∈L2(X), ‖v‖2 6=0

|B(φ, v)|
‖v‖2

≥ c‖φ‖2 ∀φ ∈ L2(X)

Choose v = ∇·A∇Ḡ[φ], then, we need to show

|B(φ, v)|
‖v‖2

= ‖∇·A∇Ḡ[φ]‖2 ≥ c‖φ‖2

Substitute f = (∇·A∇Ḡ[φ]) ◦ y−1 in Lemma 4.2.2 (b) and use Lemma 4.2.2 (c),

cy‖(∇·A∇Ḡ[φ]) ◦ y−1‖L2(Y ) ≥ ‖∇·A−1∇ḠY [(∇·A∇Ḡ[φ]) ◦ y−1]‖L2(Y ) = ‖φ ◦ y−1‖L2(Y )

Since y∗ and y−1∗ are bounded linear isomorphisms between L2(X) and L2(Y ),

‖∇·A∇Ḡ[φ]‖L2(X) ≥ c‖φ‖L2(X)

(c) sup
φ∈L2(X)

|B(φ, v)| > 0 ∀v ∈ L2(X), v 6= 0

Choose φ = (∇·A−1∇ḠY [v ◦ y−1]) ◦ y and use Lemma 4.2.2 (c),

B(φ, v) =
(
∇·A∇Ḡ[(∇·A−1∇ḠY [v ◦ y−1]) ◦ y], v

)
L2(X)

= ‖v‖L2(X) > 0
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General Boundary Conditions. For general Dirichlet boundary conditions g∂Y = u
∣∣
∂Y

,

we map the boundary data to ∂X and construct an extension gX on the entire domain X .

One way to construct this extension is using boundary integrals:

gX(x) =

∫
z∈∂X

g∂Y (y(z))
∂

∂nz
Ḡ(x, z) (4.10)

We assume that the boundary data is sufficiently regular so that gX ∈ H2(X). Then, we

solve the following weak formulation for the density φ ∈ L2(X),(
∇·A∇Ḡ[φ], v

)
L2(X)

= (f ◦ y −∇·A∇gX , v)L2(X) ∀v ∈ L2(X). (4.11)

The solution to the BVP in Y is then given by u = (Ḡ[φ] + gX) ◦ y.

4.2.4 Formulation for Stokes Flow

We will now discuss incompressible Stokes flow problems. We will introduce some basic

notation and the fundamental solutions for the constant coefficient Stokes equation. Then,

we will derive a VIE formulation for Stokes flow under coordinate transformation.

Constant-Coefficient Problem. The constant-coefficient Stokes problem is given by the

momentum equation, ∆u(x) − ∇p(x) = f(x) and the incompressibility constraint,

∇·u(x) = 0. The pressure p(x) and velocity u(x) are the unknowns to be determined.

For free-space boundary conditions, the Green’s function S for the velocity and P for the

pressure are well known (see Table 4.2). S is also called the Stokeslet. The free-space

solution is then given by u = S[f ] and p = P[f ].

Unlike the Poisson problem, for computing solutions for Stokes flow with Dirichlet

boundary conditions on a unit cube, we cannot use the method of images. Adding an

image of the Stokeslet cancels only the normal component of the velocity. Similarly, sub-

tracting an image of the Stokeslet cancels only the tangential component of the velocity.

To completely cancel the potential from a Stokeslet on a half-plane, requires its image, a

Stokes doublet and a source doublet at the location of the image [14]. The method has

also been extended to two parallel plates in [69]. Another method for half-space uses

Papkovich-Neuber potentials [46]. However, we are not aware of any work which extends

the method of images to more general geometries for the Stokes equation. Therefore, for

Dirichlet boundary conditions on a cubic domain, we will use a boundary integral equa-

tion (BIE) formulation. This formulation will be discussed in Section 4.2.5. In the follow-

ing discussion we assume that the velocity and pressure Green’s functions, for the Stokes
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problem with homogeneous Dirichlet boundary conditions on the unit cube X , are imple-

mented by the operators S̄[·] and P̄[·] respectively.

Coordinate Transformations. We now derive a formulation for Stokes flow in a non-

regular domain Y ⊂ R3 with homogeneous Dirichlet boundary conditions by extending

the discussion in Section 4.2.2. The variable viscosity Stokes equation is given by,

∇·µ
(
∇u+∇uT

)
−∇p = f in Y and (4.12a)

∇·u = 0 in Y, (4.12b)

where, the viscosity µ is a non-zero scalar variable; u and p are the unknown velocity and

pressure. Let X = (0, 1)3 and y : X −→ Y be a smooth diffeomorphism (see Fig. 4.1).

We apply a coordinate transform to map this problem to the cubic domain X and rewrite

Eq. (4.12) as follows,

∇y·(µ ◦ y)
(
∇yu ◦ y + (∇yu ◦ y)T

)
−∇yp ◦ y = fX in X and (4.13a)

∇y·u ◦ y = 0 in X, (4.13b)

where, ∇y·v = trace
(
(∇v)J−1

)
and ∇yv = J−T∇v denote the divergence and gradient

with respect to y and fX = f ◦ y. For the transformed problem, we represent the solution

velocity field and pressure by uX and pX on X. We map uX and pX to the solution of our

original problem in Y by the following transformation,

u ◦ y = J det(J)−1uX and p ◦ y = det(J)−1pX. (4.14)

The mapping for the velocity field has been chosen in such a way that u is divergence-free

if-and-only-if the velocity field uX is divergence-free. In our integral equation formulation,

this allows us to construct uX in X by using a divergence-free fundamental solution S̄ and

the mass conservation equation is satisfied implicitly for the solution u in Y . The mapping

for pressure has been chosen in such a way that for scaling transformations (i.e. J = sI for

a constant scalar s), S̄ is the fundamental solution for the transformed problem in X with

constant µ. Therefore, the convolution with S̄ directly solves the transformed problem.

The solution uX and pX are constructed by computing a convolution with an unknown

density φ, so that uX = S̄[φ] and pX = P̄[φ]. Substituting in Eq. (4.14) and rewriting the

momentum conservation equation in Eq. (4.13) gives the following VIE formulation,

∇y·(µ◦y)
(
∇yJ det(J)−1S̄[φ] + (∇yJ det(J)−1S̄[φ])T

)
−∇y det(J)−1P̄[φ] = fX inX. (4.15)

As discussed before, the mass conservation equation is satisfied implicitly since

∇y·J det(J)−1S̄[φ] = 0. We apply chain rule in Eq. (4.15) to move the derivatives to the
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kernel functions. We do this to avoid having to compute derivatives numerically. Then,

the VIE can be written as follows,

c0φ+ c1S̄[φ] + c2∇S̄[φ] + c3∇∇S̄[φ] + c4P̄[φ] + c5∇P̄[φ] = fX in X, (4.16)

where, c0, c1, · · · , c5 are the coefficients defined pointwise in X ; ∇S̄[·] and ∇P̄[·] denote

the convolution with the gradient of the Stokes single-layer velocity and pressure kernels,

and ∇∇S̄[·] denotes the convolution with the Hessian of the Stokes single-layer kernel.

Once we have solved Eq. (4.16) for the density φ, the solution uX in X is given by uX =

S̄X [φ] and the solution u for the original problem in Y is given by u = J det(J)−1uX ◦ x.

In the previous discussion, we have assumed that S̄ is the fundamental solution which

satisfies homogeneous Dirichlet boundary conditions. Since for the Stokes equation, S̄ is

not known analytically, we will use a boundary integral equation formulation to achieve

the same effect. We discuss this in the following section.

4.2.5 Dirichlet Boundary Conditions on Cube

We now discuss boundary integral equation formulations for constructing solutions to ho-

mogeneous Poisson and Stokes equations with prescribed Dirichlet boundary conditions.

From Green’s third identity, for a harmonic function u in X , we have the relation,

u(x) =

∫
y∈∂X

u(y)
∂G(y,x)

∂n
− G(y,x)

∂u(y)

∂n
for all x ∈ X \ ∂X (4.17)

where, G is any fundamental solution (Green’s function) of the Laplace equation in X and

n is the outward unit normal vector at y. For the Laplace equation and other scalar elliptic

PDEs on cubic domains, it is possible to construct a Green’s function such that Ḡ(y,x) = 0

for all y ∈ ∂X and x ∈ X . This can be done using the method of images. Then, the solution

u with Dirichlet boundary conditions g = u
∣∣
∂X

is given by the double-layer formulation,

u(x) =

∫
y∈∂X

g(y)
∂Ḡ(y,x)

∂n
for all x ∈ X \ ∂X. (4.18)

However, in the general case, when a boundary condition dependent Green’s function is

not known analytically or cannot be constructed directly (such as for Stokes), we try to

use boundary integral equation formulations to construct such solutions. We discuss such

formulations below.
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Single-Layer Formulation. We try to constructed a solution to the homogeneous elliptic

PDE with prescribed Dirichlet boundary conditions using the convolution of an unknown

boundary density function σ with the single-layer kernel function G. The potential is given

by u = G∂X [σ], where, the notation G∂X [·] denotes the convolution of the Green’s function

G with a density function on ∂X . The solution constructed in this way satisfies the homo-

geneous elliptic PDE everywhere in X . To determine the unknown density σ, we need to

solve the boundary integral equation (BIE): G∂X [σ](x) = g(x) for all x ∈ ∂X . This formu-

lation requires inverting a compact integral operator and therefore leads to ill-conditioned

discretizations.

Double-Layer Formulation. Similarly, a double-layer formulation can be used to con-

struct a solution u = D∂X [σ], using an unknown boundary density σ and the double-layer

kernel function D. The density σ must be determined by solving the BIE: 1
2σ +D∂X [σ] = g

on ∂X . For domains with smooth boundaries, this is a second-kind integral equation and

it leads to discretizations with bounded condition numbers. Such discretizations can be

solved efficiently using iterative solver.

For domains with non-smooth boundaries, such as cubic domains with edges and

corners, discretizations of both the single-layer and double-layer formulations converge

slowly with mesh refinement due to the presence of corner singularities. A common

method for dealing with corner singularities is to use a graded mesh near corners and

edges. While this is often an acceptable solution in 2D, it becomes very expensive in 3D.

Another approach uses explicit representation of the corner solutions using non-integer

powers [91]; however, there is no existing work in 3D. In the following discussion, we

present a direct BIE formulation for such domains.

Direct Formulation. For domains with non-smooth boundaries, we directly use

Eq. (4.17) to construct the solution. For the solutions that we are seeking, we expect to

be able to accurately resolve both u
∣∣
∂X

and ∂u/∂n
∣∣
∂X

with standard Galerkin discretiza-

tions. In the RHS of Eq. (4.17), we replace u with the Dirichlet boundary data g = u
∣∣
∂X

and replace ∂u/∂n with an unknown density σ. Therefore, we will construct solutions of

the form u = D∂X [g] − G∂X [σ] in X . This gives the relation G∂X [σ] = −1
2g + D∂X [g] on

∂X , which we solve to obtain σ. While this formulation resolves the issues with corners

and edges, it requires inverting the single-layer convolution operator which leads to ill-

conditioned discretizations with the condition number worsening with mesh refinement.

We will discuss preconditioning strategies to try to alleviate this drawback. We will next
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discuss the direct formulation for the Stokes equation.

Direct Formulation for Incompressible Stokes Flow. For the homogeneous Stokes equa-

tion, Green’s third identity can be written as,

u = D∂X [u]− S∂X [µ(∇u+∇uT )− pI] in X, (4.19)

where, S∂X [·] denotes the convolution with the Stokeslet and D∂X [·] denotes the convolu-

tion with the Stokes double-layer kernel function on the domain boundary ∂X . Replacing

uwith the Dirichlet boundary data g = u
∣∣
∂X

and the Cauchy stress tensor µ(∇u+∇uT )−pI
with an unknown density σ in the RHS gives an expression for the velocity field,

u = D∂X [g]− S∂X [σ] in X. (4.20)

On the boundary of the domain, this gives the relation for the unknown density σ,

S∂X [σ] = D∂X [g]− 1

2
g on ∂X. (4.21)

Once the unknown density σ is determined, we can then compute the velocity field us-

ing Eq. (4.20). Similarly, pressure p can be computed by substituting S and D with the

corresponding single-layer and double-layer pressure kernels P and K in Eq. (4.20).

Inhomogeneous Stokes Equation with Dirichlet Boundary Conditions. For the

constant-coefficient Stokes equation with non-zero body force f in the momentum equa-

tion and Dirichlet boundary conditions u
∣∣
∂X

= g, we construct a solution of the form,

u = SX [f ] +D∂X [σd]− S∂X [σs], (4.22)

where, σs and σd are the single-layer and the double-layer densities on ∂X given by,

σd = g − SX [f ]
∣∣
∂X

and S∂X [σs] = D∂X [σd]−
1

2
σd. (4.23)

By setting g = 0, we can use this formulation to compute S̄[f ], the result of convolution

with the Green’s function S̄ which satisfies homogeneous Dirichlet boundary conditions.

4.2.6 Overall Formulation for Stokes Flow

We now summarize the overall formulation for Stokes flow in a non-regular domain Y

with general Dirichlet boundary conditions.
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Convolution Operators. We denote the convolution of a volume density φ with the

Stokeslet S on the cubic domain X by the notation SX [φ]. Similarly, we also define the

volume convolution with other kernel functions (∇S , ∇∇S , P , ∇P). These convolutions

are implemented using our volume FMM discussed in Chapter 2.

The convolution of a boundary density σ with S on the cubic domain is denoted by

S∂X [σ]. Similarly, we also define the boundary convolution with other kernel functions

(∇S, ∇∇S , P , ∇P , ∇D, ∇∇D, K, ∇K). These are also computed numerically using FMM

similar to the volume convolutions.

We denote the velocity and pressure Green’s functions for the constant coefficient

Stokes equation with homogeneous Dirichlet (zero velocity) boundary conditions on the

cubic domain by S̄ and P̄ respectively. The convolution with S̄ and P̄ cannot be computed

directly since these kernel functions are not known analytically. Instead, we construct the

result of the volume convolution with φ as S̄X [φ] = SX [φ] + D∂X [σd] − S∂X [σs], where,

σd = −SX [φ]
∣∣
∂X

and σs is given by the solution of the BIE: S∂X [σs] = D∂X [σd]− 1
2σd.

VIE Formulation for Stokes Flow with Dirichlet Boundary Conditions. We consider

the incompressible Stokes equation: ∇·µ
(
∇u+∇uT

)
− ∇p = f and ∇·u = 0 in the

domain Y with Dirichlet boundary conditions u
∣∣
∂Y

= g. We will now derive a VIE formu-

lation resulting from the mapping of this problem to a cubic domain X (see Fig. 4.1).

As discussed in Section 4.2.4, for homogeneous Dirichlet boundary conditions, we

reformulate this problem on the cubic domain X by mapping the velocity u and pressure

p in Y to uX and pX respectively in X using the transformation in Eq. (4.14). We also map

the body force f in Y to fX = f ◦ y in X . For the transformed problem in X , we have the

Dirichlet boundary conditions uX
∣∣
∂X

= gX := J−1 det(J)g ◦ y.

We construct the solution uX and pX to the transformed problem using an unknown

volume density φ and unknown single-layer and double-layer boundary densities σs and

σd as follows,

uX = S̄X [φ] +D∂X [σd]− S∂X [σs], (4.24a)

pX = P̄X [φ] +K∂X [σd]− P∂X [σs]. (4.24b)

Applying the transformation in Eq. (4.14), then substituting in Eq. (4.13) and simplifying

gives a VIE for the unknown density φ as following,

c0φ+ c1S̄X [φ] + c2∇S̄X [φ] + c3∇∇S̄X [φ] + c4P̄X [φ] + c5∇P̄X [φ] = fX − f1, (4.25)
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where, the volume density f1 is given by,

f1 =c1D∂X [σd] + c2∇D∂X [σd] + c3∇D∂X [σd] + c4K∂X [σd] + c5∇K∂X [σd]

− (c1S∂X [σs] + c2∇S∂X [σs] + c3∇S∂X [σs] + c4P∂X [σs] + c5∇P∂X [σs]) . (4.26)

Here, the coefficients c0, c1, · · · , c5 are same as those in Eq. (4.16).

In Eq. (4.24), the kernel function S̄ satisfies homogeneous Dirichlet boundary condi-

tions. Therefore, for the given Dirichlet boundary conditions uX
∣∣
X

= gX , we require that

u1 = D∂X [σd]−S∂X [σs] should satisfy the Dirichlet boundary conditions u1

∣∣
∂X

= gX . From

the direct formulation, discussed in the previous section, we have the double-layer bound-

ary density σd = gX . The single-layer boundary density σs is given by the solution of the

BIE: S∂X [σs] = D∂X [σd]− 1
2σd.

Summary of Steps. The steps for solving the VIE formulation above are as follows:

1. Set fX = f ◦ y and gX = J−1 det(J)g ◦ y.

2. Set σd = gX and compute σs by solving the BIE: S∂X [σs] = D∂X [σd]− 1
2σd.

3. Compute f1 by evaluating Eq. (4.26).

4. Solve the VIE Eq. (4.25) for the unknown density φ. The convolution operations

in the VIE require kernel functions which satisfy homogeneous Dirichlet boundary

conditions. Therefore, each evaluation of the LHS of the VIE requires solving a BIE.

5. Construct uX by evaluating Eq. (4.24) and map it to Y using the relation u =

J det(J)−1uX ◦ x.

For the boundary and volume integral equations discussed in this section, we will use

a discontinuous Galerkin formulation on adaptive meshes to discretize these problems.

We implement the convolution operators using our volume FMM discussed in Chapter 2

and solve the discretized integral equations using GMRES. We discuss the details of our

solver in the following section.

4.3 Numerical Methods

In this section, we will discuss the numerical algorithms for solving the integral equa-

tion formulations discussed in Section 4.2. We will first discuss a discontinuous Galerkin
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discretization scheme in Section 4.3.1. Then, we will discuss the construction of the con-

volution operators in Section 4.3.2. In Section 4.3.3, we will discuss the solver for the BIE

formulation and in Section 4.3.4, we will discuss the VIE solver. We will restrict our dis-

cussion to the case for Stokes equation; however, the algorithms also apply to the Poisson

equation.

4.3.1 Discretization

To discretize our boundary and volume integral equations, we will use a high-order dis-

continuous Galerkin scheme on adaptive meshes. We use an adaptive octree to partition

the domain X into smaller subdomains such that X = ∪iωi where, each subdomain ωi is

a leaf node in the tree. For a function f defined at each point in X , we discretize using a

piecewise polynomial representation of the function. On each leaf node ωl, we use an nth

order polynomial approximation,

f(x, y, z) ≈
∑

i+j+k<n

f̂ijklTi(x)Tj(y)Tk(z) for all (x, y, z) ∈ ωl, (4.27)

where, Ti(x) is the Chebyshev polynomial of degree i in x and f̂ijkl are the coefficient in the

Chebyshev approximation. The coefficients are computed using an orthogonal projection

f̂ijkl = (f, Tijk)ωl . We denote the projection by f̂ = PNvf , where f̂ is the vector of Nv

coefficients in the piecewise polynomial approximation. Once the coefficients are known,

we can evaluate the piecewise polynomial representation at any point in the domain. We

can also compute gradients by differentiating the polynomial representation. This is useful

when computing the Jacobian J from the coordinate map y(x). We use this to discretize

the coordinate map y(x), the body force density f , the coefficients in the VIE formulation,

the unknown density function φ and the solution u.

We similarly construct discretizations for functions defined on the boundary ∂X . We

use Chebyshev polynomials to approximate the function on the faces of the leaf nodes

in the tree. For a function g on ∂X , we denote the projection to the space of piecewise

polynomials by ĝ = PNbg, where ĝ is the vector of Nb coefficients. We use this to discretize

the Dirichlet boundary data g, the boundary density functions σs and σd and the boundary

solution u.

When constructing a piecewise polynomial approximation of the boundary data or

volume data, we specify an error tolerance εtree and the maximum depth L for the octree.

We recursively refine leaf nodes in the octree until the truncation error in the Chebyshev

approximation on each leaf node is smaller than εtree or we reach the maximum depth L.
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Next, we discuss the construction of the convolution operators which take a piece-

wise polynomial discretization as the input density and return a piecewise polynomial

discretization of the potential.

4.3.2 Convolution Operators

In Chapter 2, we discussed the implementation of our PVFMM library for evaluating vol-

ume potentials on cubic domains. For a given kernel function G (with free-space boundary

conditions) and an input density function f defined at each point in X , our volume FMM

algorithm projects f to the space of piecewise polynomials, computes the convolution with

G and returns the result as piecewise polynomial approximation. In short, it implements

the discretized convolution operation: û = PNvG[PNvf ].

We have similarly extended our volume FMM to also compute boundary integrals

on the faces of the cubic domain. The details of the algorithm are exactly the same as

discussed in Chapter 2; however, instead of computing integrals over the volume of the

octree leaf nodes, we can also compute integrals over the faces of the leaf nodes. Just as for

the volume FMM, the translation operators for the near-interaction are precomputed using

special quadratures for singular and near singular integrals and the far-field interactions

are computed using the kernel independent FMM [109]. Therefore, our FMM algorithm

implements the discretized convolution operation over boundary data. The result of the

convolution can be evaluated either on the boundary of the domain û = PNbG[PNbσ] or

evaluated on the entire domain û = PNvG[PNbσ].

For Stokes flow, we have implemented convolution operators for Stokes single-layer

velocity (S[·]) and pressure (P[·]) kernels, their gradient (∇S[·] and ∇P[·]) and the

Hessian (∇∇S[·]). In addition, for the boundary convolutions, we also implement the

Stokes double-layer velocity (D[·]) and pressure (K[·]) kernels, their gradient (∇D[·] and

∇K[·]) and the Hessian (∇∇D[·]). We use these convolution operators to discretize our

boundary and volume integral equations. We will next discuss the solvers for our BIE and

VIE formulations.

4.3.3 Boundary Integral Equation Solver

We now discuss our solver for the BIE formulation. For the homogeneous Stokes equa-

tion with Dirichlet boundary conditions, we use the direct formulation discussed in Sec-

tion 4.2.5. We discretize Eq. (4.21) by projecting g to the space of piecewise polynomials

88



and replacing the convolution operators by their discrete versions,

PNbS∂X [σ̂] = PNbD∂X [PNbg]− 1

2
PNbg. (4.28)

We solve this BIE using GMRES to obtain the discretized unknown density σ̂. Then, we

compute the velocity field in X by evaluating the discretized form of Eq. (4.20) as follows,

û = PNvD∂X [PNbg]− PNvS∂X [σ̂]. (4.29)

We can similarly evaluate the pressure and gradients of the pressure and the velocity fields

by substituting the corresponding kernel functions in Eq. (4.29).

In Table 4.3, we show convergence results for our method for a Stokes flow problem

with Dirichlet boundary conditions on a unit cube. The boundary data for this example is

generated by placing a single Stokeslet outside of the domain X . For comparison, we also

show results for the single-layer and double-layer formulations using the same mesh re-

finement. We observe that due to corner singularities in the solution, the single-layer and

double-layer schemes converge slowly; achieving only 3-digits of accuracy. However, our

scheme based on direct formulation converges to nearly 8-digits. Since the single-layer

convolution operator is ill-conditioned, both the single-layer formulation and the direct

formulation require excessively large number of GMRES iterations Nσ. For εGMRES = 1E-9,

we require over 200 GMRES iterations. On the other hand, the double-layer formulation

being a second-kind integral equation is well-conditioned and converges in just 29 itera-

tions. Consequently, the double-layer formulation is significantly faster than the single-

layer and the direct formulations. Comparing the solve time for different discretization

orders, we observe that for the same accuracy, using high-order discretization requires

significantly fewer leaf octant Noct. Therefore, the higher order scheme is up to 2× faster.

Preconditioner. To improve the convergence rate of the GMRES solve, we have imple-

mented a block-diagonal preconditioner. We precompute the inverse of the single-layer

convolution operator matrix for a single leaf node. Since we use the free-space Green’s

function (Stokeslet), the convolution operator is translation invariant and also scale in-

variant (up to a constant scaling factor). Therefore, we compute just one preconditioner

matrix block each for the faces, the edges and the corners of the cubic domain. In Fig. 4.2,

we plot the GMRES residual as a function of the number of GMRES iterations for the un-

preconditioned (Direct) and the preconditioned (Direct + Precond) schemes. For compar-

ison, we also show results for the double-layer formulation (DL). We observe significant

improvement in the convergence rate using the block-diagonal preconditioner; with the
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Double-Layer Single-Layer Direct
εtree εGMRES m q Noct Nσ L∞ Tsolve Nσ L∞ Tsolve Nσ L∞ Tsolve

1E-0 4E-3 4 8 1 6 1.6E-2 0.1 12 9.8E-3 0.1 22 1.0E-2 0.2

1E-1 4E-5 8 8 8 14 2.5E-3 0.2 39 2.6E-3 0.2 54 1.1E-3 0.8

1E-2 4E-6 10 8 50 17 1.4E-3 1.7 66 2.0E-3 5.3 83 2.7E-5 6.9

1E-3 1E-7 10 8 99 23 1.2E-3 5.0 123 2.3E-3 23.8 139 1.8E-6 28.4

1E-4 5E-8 12 8 323 24 9.5E-4 9.9 132 2.0E-3 51.9 158 1.7E-7 60.4

1E-5 1E-9 14 8 820 29 1.1E-3 37.5 182 1.7E-3 233.4 203 1.4E-8 248.2

1E-0 4E-3 4 10 1 6 8.5E-3 0.1 12 7.1E-3 0.1 22 5.2E-3 0.1

1E-1 4E-5 8 10 8 14 1.7E-3 0.2 42 2.2E-3 0.2 60 3.3E-4 1.2

1E-2 4E-6 10 10 22 17 1.6E-3 1.0 73 1.9E-3 4.0 96 3.4E-5 5.5

1E-3 1E-7 10 10 64 23 1.2E-3 4.3 118 1.8E-3 21.1 142 5.8E-7 25.8

1E-4 5E-8 12 10 99 24 9.6E-4 5.0 150 2.0E-3 31.1 166 1.2E-7 31.1

1E-5 1E-9 14 10 253 29 7.5E-4 19.2 193 1.6E-3 131.1 204 2.1E-8 136.9

Table 4.3 Convergence results for Stokes equation with Dirichlet boundary conditions on a cu-
bic domain using different BIE formulations. We report relative L∞ norm of the error and show
convergence as we decrease the tolerance for mesh refinement εtree, increase the order of multipole
expansion m and decrease the GMRES tolerance εGMRES. We show results for different spatial dis-
cretization orders q. We also report the number of leaf nodes in the octree Noct, the number of
GMRES iterations Nσ and the total solve time Tsolve.

convergence rate being comparable to that of the double-layer formulation. However, we

also notice that the convergence rate deteriorate slightly as we increase mesh refinement.

This is because, with mesh refinement, the diagonal blocks act on a smaller region of the

domain.

Stokes Equation with Non-Zero Body Force. We now consider the constant-coefficient

Stokes equation inX with non-zero body force f in the momentum equation and Dirichlet

boundary conditions u
∣∣
∂X

= g. We compute the solution using the formulation in Eqs.

(4.22, 4.23). The discrete solution is computed by first constructing piecewise polynomial

approximations f̂ = PNvf and ĝ = PNbg. Then, we compute the discrete double-layer

density,

σ̂d = ĝ − PNbSX [f̂ ]. (4.30)

To compute the single-layer density, we solve the following discretized BIE using GMRES,

PNbS∂X [σ̂s] = PNbD∂X [σ̂d]−
1

2
σ̂d. (4.31)
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Figure 4.2 We plot the GMRES residual as a function of the number of GMRES iterations. In
each plot, we show results for the double-layer formulation (DL), the direct formulation (Direct)
and the direct formulation with block-diagonal preconditioner (Direct+Precond). From left to right,
the plots show results for 2, 3 and 4-levels for mesh refinement.

Then, we compute the discretized solution û as follows,

û = PNvSX [f̂ ] + PNvD∂X [σ̂d]− PNvS∂X [σ̂s]. (4.32)

On cubic domains (and other domains with non-smooth boundaries), the result of

SX [f ] has unbounded second derivatives at the edges and corners of the domain. This af-

fects the convergence rate of our scheme. To resolve this issue, we construct a C0 extension

fe of f by using reflections of f from each face of the cubic domain. This scheme requires

extra work to compute convolutions with the extended density; however, this cost is not

significant.

No-Extension Extension
q m εtree εGMRES Noct Nσ L∞ Tsolve Nσ L∞ Tsolve

12 6 1E-01 1E-03 160 21 9.5E-02 2.9 20 9.5E-02 3.2

12 8 1E-02 1E-05 160 33 5.4E-03 4.9 30 5.4E-03 4.2

12 10 1E-04 1E-07 160 47 1.2E-04 10.1 45 1.2E-04 9.7

12 12 1E-05 1E-08 216 55 1.6E-05 20.9 52 1.6E-05 18.9

12 14 1E-06 1E-09 216 61 7.8E-07 39.6 59 2.4E-09 36.1

12 14 1E-08 1E-11 986 85 2.2E-07 121.2 84 2.5E-10 122.9

Table 4.4 Convergence results for Stokes equation with f 6= 0 and Dirichlet boundary conditions.
We compare results with and without extension of the volume force density f . We show convergence
in the relative L∞ norm of the error as we increase the multipole order m, decrease tolerance εtree
for mesh refinement and decrease tolerance εGMRES for the GMRES solver. For both schemes, we also
report the number of GMRES iterations Nσ and the total solve time on 16-CPU cores.

In Table 4.4, we report convergence results for an analytical test case for Stokes flow

with f 6= 0 and Dirichlet boundary conditions on a cubic domain. We observe that the
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scheme without extension for volume force density f converges to only 7-digits, while,

the scheme using the extended density converges to nearly 10-digits. The total solve time

Tsolve for both schemes is similar and the extra cost associated with convolution over the

extended density is not noticeable.

4.3.4 Volume Integral Equation Solver

We now discuss our solver for the Stokes equation with non-zero body force and general

Dirichlet boundary conditions on a non-regular domain Y . The integral equation formu-

lation for the problem reformulated on the cubic domain X is given in Section 4.2.6. We

discretize and solve this formulation using the steps described below.

Let fX be the volume force density and gX be the Dirichlet boundary data mapped to

the cubic domain as defined in Section 4.2.6. We construct piecewise polynomial approxi-

mations f̂X = PNvfX and ĝX = PNbgX . We evaluate the coefficients c0, c1, · · · , c5 in the VIE

(Eq. (4.25)) at the Chebyshev node points in each leaf node of the octree. We set σ̂d = ĝX

and solve Eq. (4.31) for the unknown single-layer boundary density σ̂s. Next, we evaluate

f̂1 as follows,

f̂1 =PNvc1D∂X [σ̂d] + PNvc2∇D∂X [σ̂d] + PNvc3∇D∂X [σ̂d] + PNvc4K∂X [σ̂d] + PNvc5∇K∂X [σ̂d]

− (PNvc1S∂X [σ̂s] + PNvc2∇S∂X [σ̂s] + PNvc3∇S∂X [σ̂s] + PNvc4P∂X [σ̂s] + PNvc5∇P∂X [σ̂s]) .

(4.33)

To compute PNvc1D∂X [σ̂d], we first compute the convolution using our volume FMM and

evaluate the result at the Chebyshev node points in each leaf node. We compute the prod-

uct with the coefficient c1 at each node point and then compute the orthogonal projection

to the space of piecewise polynomials. We similarly compute the remaining terms.

Then, we solve the following discretized VIE using GMRES for the unknown density

function φ̂,

c0φ̂+ PNvc1S̄X [φ̂] + PNvc2∇S̄X [φ̂] + PNvc3∇∇S̄X [φ̂]

+PNvc4P̄X [φ̂] + PNvc5∇P̄X [φ̂] = f̂X − f̂1.
(4.34)

To compute c0φ̂, we evaluate φ̂ at the Chebyshev node points on each leaf node in the tree,

compute the pointwise product with c0 and then compute a projection to the space of piece-

wise polynomials. The remaining terms are computed as discussed before for Eq. (4.33),

except that instead of the convolution over boundary data, now the convolution is over the

volume density φ. Also, notice that the convolution operations are not with the free-space

kernel function S, but instead with S̄ which has zero Dirichlet boundary conditions. We
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implement convolution with S̄ by following the steps in Eqs. (4.30–4.32) for zero boundary

data. This requires solving a BIE in each evaluation of the LHS of Eq. (4.34).

Finally, once we have computed the unknown volume density φ̂ and the unknown

boundary densities σ̂s and σ̂d, we evaluate ûX as follows,

ûX = PNv S̄X [φ̂] + PNvD∂X [σ̂d]− PNvS∂X [σ̂s], (4.35)

and construct the solution û using the mapping u = J det(J)−1uX ◦ x.

Preconditioner. In many cases, we observed slow convergence of the GMRES solver for

Eq. (4.34). Therefore, we have tried to precondition the solver using two different schemes

described below.

• Diagonal Preconditioner. We divide Eq. (4.34) throughout by c0.

• Block-Diagonal Preconditioner. We precondition using the inverse of the diagonal

blocks (for each leaf node) in Eq. (4.34).

The block-diagonal preconditioner requires us to precompute and store the diagonal

blocks for each leaf node in the tree which adds significant computational and memory

overheads compared to the diagonal preconditioner. We found that both preconditioners

had similar effect on the convergence rate of the GMRES solve; therefore, we choose to use

the diagonal preconditioner since it is less expensive to apply.

4.4 Numerical Results

In Section 4.3.3, we presented convergence results for Stokes flow on cubic domains with

Dirichlet boundary conditions. In this section, we will show results for the VIE solver

on complex geometries with Dirichlet boundary conditions. All results presented in this

chapter are on a single node with dual eight-core Intel Xeon E5-2687W CPUs running at

3.1GHz and 64GB of memory.

In Table 4.5, we show convergence results for our VIE solver for two different ge-

ometries shown in Fig. 4.3. We solve the incompressible Stokes equation with constant

viscosity (µ∆u − ∇p = f and ∇·u = 0 in Y with viscosity µ = 1) and Dirichlet boundary

conditions (u
∣∣
∂Y

= g). The velocity fields are generated analytically. The boundary con-

dition is determined by evaluating the velocity field on the boundary of the domain ∂Y .

The body force is determined by evaluating f = ∆u. We show convergence in the relative

L∞ norm of the error as we increase m and decrease εGMRES and εtree. For both geometries,
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Figure 4.3 Complex geometry shapes used for convergence results in Table 4.5. The colors show
the magnitude of the analytical velocity field.

Geometry1 Geometry2
q m εtree εGMRES Noct Nφ Nσ L∞ Tsolve Noct Nφ Nσ L∞ Tsolve

10 6 2E-2 2E-2 8 7 14 3.4E-03 4.2 8 18 14 2.5E-2 7.9

10 6 7E-4 7E-4 8 13 22 1.2E-03 7.9 8 30 22 3.7E-3 17.0

10 8 2E-5 2E-5 216 19 41 1.5E-05 96.2 216 51 40 4.6E-5 243.3

10 10 8E-7 8E-7 216 26 53 8.8E-07 276.6 216 75 52 1.5E-6 734.8

10 12 3E-8 3E-8 2541 34 84 6.9E-09 4130.9 2506 97 83 4.3E-8 10863.0

10 14 1E-9 1E-9 2723 41 97 3.7E-10 9336.4 2744 123 97 1.4E-9 27032.3

Table 4.5 Convergence results for constant viscosity Stokes flow with Dirichlet boundary condi-
tions on Geometry1 (Fig. 4.3: left) and Geometry2 (Fig. 4.3: right). We show convergence in the
relative L∞ norm of the error as we increase the multipole orderm, decrease tolerance εtree for mesh
refinement and decrease tolerance εGMRES for the GMRES solver. For both shapes, we also report
the number of GMRES iterations Nφ for the VIE solve, the average number of GMRES iterations
Nσ for the boundary solves and the total solve time on 16-CPU cores.

we show convergence to 9-digits of accuracy. The number of GMRES iterations Nφ for the

VIE solve are not excessively large even for the highly elongated Geometry2 (Fig. 4.3). We

also report the total time to solution Tsolve. Of this, most of the time (70% − 89%) is spent

in the BIE solver since we have to solve the BIE Nφ times, each requiringNσ iterations on

average.

We show similar results in Fig. 4.4 and Table 4.6 for Stokes flow in a curved duct with

prescribed inlet and outlet velocity fields. Since we do not know the analytical velocity

field, we compute errors by comparing with a reference solution. We observe convergence
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q m εGMRES Noct Nφ Nσ L∞ Tsolve

10 6 2E-2 8 35 14 5.7E-2 14

10 6 7E-4 8 47 21 1.1E-2 26

10 8 2E-5 64 67 36 2.5E-3 158

10 10 8E-7 64 86 45 5.4E-4 433

10 10 8E-7 456 88 55 5.3E-5 1574

10 12 3E-8 2528 110 84 5.8E-7 15299

Figure 4.4 Stokes flow in a curved duct
with square cross section for given in-
let and outlet velocity fields. We also
visualize the isosurfaces with the same
velocity magnitude.

Table 4.6 For the flow in Fig. 4.4, we show convergence
in the relative L∞ norm as we increase the multipole
order m, reduce GMRES tolerance εGMRES and increase
mesh refinement. The error is computed by compar-
ing with a reference solution computed using m = 14,
εGMRES = 1E-9 and 4-levels of mesh refinement.

to about 6-digits for m = 12, εGMRES = 3E-8 and 4-levels of mesh refinement.

4.5 Conclusions

We have presented new VIE formulations for Poisson and Stokes equations. These formu-

lations map constant and variable coefficient elliptic PDEs in certain complex geometries

to cubic domains. This allows us to use our volume fast multipole method, presented in

Chapter 2, to compute volume integrals on the cubic domain and boundary integrals on

the boundary of the cube. The discretized integral equation is then solved using GMRES.

We have also discussed the direct boundary integral equation formulation for Dirichlet

boundary conditions on a cubic domain. Standard double-layer formulations converge

slowly and require excessive refinement due to the presence of edges and corners in the

domain. We have showed that our formulation does not have this drawback. Furthermore,

we have presented a block-diagonal preconditioner to accelerate solution of the BIE using

GMRES.

We have showed convergence results for constant viscosity Stokes flow in complex

geometries using our VIE formulation. Our formulation works well and the number of

GMRES iterations remain small even for highly elongated geometries.

While we have presented results only for Stokes flow with constant viscosity, our for-

mulation also applies to the case with variable viscosity. In addition, more sophisticated

preconditioners can be constructed for both boundary integral equations and volume in-

tegral equations. In particular, for the boundary integral solver, we plan to develop multi-

95



grid preconditioners.
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5 Parallel Simulation of Concentrated Vesicle
Suspensions

In this chapter, we describe a parallel boundary integral method for the numerical simula-

tion of highly concentrated vesicle suspensions in a Stokesian fluid. We develop efficient

parallel algorithms for singular and near-singular integration and accelerate far-field com-

putation using our parallel FMM discussed in Chapter 2. We also discuss an adaptive

time-stepping scheme and algorithms for collision handling, mesh reparameterization,

area-volume correction.

5.1 Introduction

Vesicles are fluid filled membranes. The membrane is phospholipid bilayer with the hy-

drophobic tail of the molecules pointing towards the membrane and the hydrophilic head

facing away from the membrane. The dynamics of vesicle flows are used to study the

rheology of blood and other complex biofluids.

The method described here is an extension of previous work of [105, 88]. A bound-

ary integral method for simulation of vesicle flows in three-dimensions was developed in

[105]. In [88], this was extended to allow viscosity contrast between the fluid inside and

outside of the vesicles.

We extend this method to allow long-timescale simulations of concentrated vesicle

suspensions in parallel. The simulation of high volume fraction vesicle suspensions, which

are representative of real biological systems (such as blood with 35% ∼ 50% volume frac-

tion for RBCs), presents several challenges. It requires computing accurate vesicle-vesicle

interactions at length scales where standard quadratures are too expensive. The inter-

vesicle separation can become arbitrarily small leading to vesicle collisions. Numerical

errors can accumulate over time, making long-timescale simulations inaccurate.

Overcoming these challenges requires a scalable boundary integration framework

which can efficiently handle interactions between vesicles at different length scales (sin-
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gular, near-singular and far-field interactions). The complex dynamics of vesicle flows

require time-adaptivity and algorithms to detect and handle collisions between vesicles.

5.1.1 Contributions

Our main contributions are summarized as follows:

• We present a singular integration scheme which hasO
(
p5
)

setup cost andO
(
p4
)

cost

for each subsequent evaluation for pth order discretization. With the original O
(
p5
)

evaluation scheme, singular integration accounted for over 90% of the total runtime;

however, with the new scheme, the setup and the singular integration stages together

account for less than 20% of the total time.

• We present a new near-singular integration scheme based on the method of [110].

This allows us to efficiently simulate high volume-fraction vesicle flows without the

need for expensive upsampling required in the original scheme. The new scheme is

implemented in parallel and has good scalability.

• We accelerate the computation of far-field interactions using our PVFMM library dis-

cussed in Chapter 2. The library is highly optimized using AVX vectorization and

uses MPI for distributed memory parallelism. In addition, the library supports peri-

odic boundary conditions and this allows us to simulate vesicles in periodic flows.

• We present an inexpensive method for estimating the error in each of the singular,

near-singular and far-field integration schemes. We use this to adaptively adjust the

order of the quadrature scheme and achieve the desired accuracy using the least

amount of work.

• We introduce an algorithm for detecting collisions between vesicles. Such collision

happen due to the discretization errors in our numerical scheme and ideally should

not happen. These collisions can break simulations and make it impossible to sim-

ulate flows with high vesicle concentrations. To avoid vesicle collisions, we have

introduced a short range repulsion term in our model and developed an efficient

algorithm for evaluating this repulsion force.

• In long-timescale simulations, errors can gradually change the surface area and vol-

ume of the vesicles. We need correct for this drift by adjusting the area and volume

of the vesicles in each time-step. We have developed an efficient algorithm to do this.

98



• The absence of in-plane shear resistance in vesicles necessitates a reparameterization

scheme. The basic algorithm was presented in [105]. In this chapter we introduce

some modifications to this algorithm and also analyze the scheme for different pa-

rameter values. This has significantly improved the quality for our surface meshes.

• We implement an adaptive time-stepping scheme which is based on the work of [85,

84]. We also present a new variation of this scheme which uses a more robust error

estimate. This significantly reduces the solve time over a uniform time-stepping

scheme.

• We present numerical results to show convergence of our method and study the

dependence of the solution error on different parameter values when compared to a

reference solution.

• We visualize long-timescale simulations for periodic Taylor-Green vortex flow and

sedimentation of polydisperse vesicle suspensions with thousands of vesicles. We

present scalability results for these simulations up to several thousands CPU cores

on the Stampede system at Texas Advanced Computing Center.

5.1.2 Limitations

We restrict our attention to suspensions of vesicles in unbounded or periodic domains. We

have ignored inertial terms, so the overall method is restricted to low Reynolds numbers.

Only vesicles with spherical topology are considered and topological changes are not al-

lowed. For general topologies one could, for example, use the boundary representation

and singular integral quadrature introduced in [110]. We do not have any in-plane shear

resistance in our formulation and this is a reasonable assumption for vesicles. However,

for red blood cells (RBCs) and other cells, the shear resistance cannot be ignored.

The spatial discretization order is fixed and while we select the quadrature order for

boundary integration adaptively, it is the same for all vesicles. This has the advantage that

the algorithm can be applied to a large number of vesicles at once, resulting in better data

locality and higher performance. However, for polydisperse simulations, each vesicle may

require a different discretization order depending on the size and properties of the vesicle.

In the current method, we are forced to use the highest discretization order and quadrature

order for all vesicles.

We use a first-order adaptive time-stepping scheme. A spectral deferred correction

(SDC) method, presented in [85, 84] for 2D vesicles, is well suited for high-order, adaptive
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time-stepping and leverages the Globally-Implicit first-order scheme presented here.

The number of GMRES iterations in each time step is relatively large for high volume

fraction flows, particularly with periodic boundary conditions. Our current scheme uses

an analytical preconditioner constructed for a sphere [105]. We believe that the inverse of

the block diagonal part of the linear system would be a more effective preconditioner.

5.1.3 Related Work

A detailed review of related work on three-dimensional simulation of vesicle flows and

flows with viscosity contrast can be found in [105] and [88] respectively. Work on simulat-

ing flow of concentrated vesicle suspensions includes [71, 72, 114, 115, 113, 83].

An O
(
p4 log p

)
scheme for singular integration is based on fast rotation of spherical

harmonic expansions is discussed in [45]. The near-singular integration scheme used in

the current work was first presented in [110] and applied to 2D vesicle flows in [83]. Other

near-singular quadratures include the use of partition of unity along with polar coordinate

transform [113]; the use of regularized kernel with corrections discussed in [100]; and the

quadrature by expansion (QBX) scheme of [62] applied to simulation of rigid bodies in [2].

In [25], near interactions are computed through simple upsampling.

The fast multipole method (FMM) for gravitational N-body problems is discussed in

[26]. FMM for the Stokes kernel includes the work of [101] and the STKFMMLIB3D li-

brary [42]. In the current work, we have used the kernel independent FMM (KIFMM) of

[109] implemented in the PVFMM library [75]. A discussion of fast multipole accelerated

boundary element methods can be found in [70].

Collision handling in 2D using repulsion is discussed in [37]. In 3D, a repulsion based

scheme similar to ours is discussed in [71]. In [113], collisions are handled by moving the

mesh points away when surfaces are closer than 2% of the cell radius.

A novel adaptive time-stepping scheme which we use in this work was introduced in

[85, 84]. They also discuss a high-order spectral deferred correction (SDC) time-stepping.

5.1.4 Organization of the Chapter

In Section 5.2, we introduce the mathematical model and the integral equation formula-

tion for vesicles embedded in a Stokesian fluid. Then, in Section 5.3, we discuss the dis-

cretization and the algorithms for numerically solving the discretized equations. Finally,

in Section 5.4, we present convergence and scalability results. In Table 5.1, we list some

frequently used symbols for easy reference.
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Symbol Definition
S2 Unit sphere

(θ, φ) Spherical angles
Ynm Spherical harmonic function of

degree n and order m
p Degree of spherical harmonic expansion
q Order of quadrature scheme
Nγ Number of vesicles
γi Boundary of ith vesicle
W Area element
Si The single-layer Stokes operator

over ith surface
Di The double-layer Stokes operator

over ith surface
µ Viscosity of ambient fluid
µi Viscosity of fluid in ith vesicle
ρ Density of ambient fluid
ρi Density of fluid in ith vesicle
σ Tension
fb Bending force
fσ Tension force
fr Repulsion force

Symbol Definition
Rrepul Repulsion parameter: determines

the range of repulsion force
u Velocity
u∞ Background velocity
T Time-horizon of a simulation
∆t Time-step size
E Error tolerance for time-adaptivity
E Reparameterization energy function
an Attenuation coefficients which define

reparameterization energy function
∆τmax Maximum reparameterization step size
np Number of MPI processes

εGMRES GMRES tolerance
Niter Average GMRES iterations per solve
NTstep Number of time steps
Tsolve Time to solution
Tsetup Setup time
Tself Singular integration time
Tnear Near-singular integration time
Tfar Far-field integration time
Trepar Reparameterization time

Table 5.1 Index of frequently used symbols.

5.2 Formulation

We have used the formulation of [88] and we briefly summarize it in this section.

Differential Formulation. We assume that the vesicle membrane γ has zero thickness,

is locally inextensible and offers resistance to bending. In the length scales of vesicles,

we can safely neglect the inertia term and assume the surrounding fluid to be Stokesian.

The ambient fluid has viscosity µ and the fluid inside the ith vesicle has viscosity µi. The

dynamics of the ambient fluid are governed by the incompressible Stokes equation,

−µ∆u(x) +∇p(x) = 0 and divu(x) = 0 for all x ∈ R3\ω, (5.1)

where R3\ω is the exterior region occupied by the suspending fluid, u(x) denotes the fluid

velocity, and p(x) denotes the pressure. Replacing µwith µi in Eq. (5.1) gives the governing

equation for x ∈ ωi (the fluid inside the ith vesicle). Due to no-slip at the vesicle boundary,

we have the relation
∂x

∂t
= u(x) for all x ∈ γ, u(x)→ u∞(x) as ‖x‖ → ∞, (5.2)
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where u∞ is the imposed far field velocity field. The inextensibility of the vesicle mem-

brane implies that the surface divergence of the velocity field should be zero

divγ u(x) = 0 for all x ∈ γ. (5.3)

Due to balance of momentum, the traction jump at the vesicle surface is balanced by the

interfacial forces,

JTnK = fb(x) + fσ(x) for all x ∈ γ, (5.4)

where T = −pI+µ(∇u+∇uT ) is the Cauchy stress tensor, n is the surface normal at point

x, J·K denotes the jump across the interface, fb and fσ are the bending and tensile forces

exerted by the membrane on the fluid.

Boundary Integral Formulation. Eqs. (5.1–5.4) can be reformulated as,

u(x) =
1

αi

u∞(x) +

Nγ∑
j=1

Sj [fb + fσ](x) +Dj [u](x)

 , (5.5)

divγi u(x) = 0, (5.6)
∂x

∂t
= u(x) for all x ∈ γ. (5.7)

where αi = (1 + λi)/2. The notation Si[·](x) denotes the single-layer integral over the ith

surface and is defined as,

Si[f ](x) :=

∫
γi

S(x,y)f(y) dγ(y), S(x,y) =
1

8πµ

1

‖r‖

(
I +

r ⊗ r

‖r‖2
)
, (5.8)

where, r := x− y. Di[·](x) is the double-layer integral over the ith surface,

Di[u](x) :=

∫
γi

Di(x,y)u(y) dγ(y), Di(x,y) = −3(1− λi)
4π

(r · n)(r ⊗ r)

‖r‖5 . (5.9)

Galerkin Formulation. The spherical harmonic function of degree n (n = 0, 1, 2, · · · ) and

order m (|m| ≤ n) is defined as

Ynm(θ, φ) =
1√
2π
Pnm(cos θ)eimφ (5.10)

where, Pnm is the normalized associated Legendre polynomial of degree n and order m.

The normalization is such that
∫ 1

−1 Plm(x)Pnm(x) dx = δlm for any fixed m. The Galerkin

formulation is then derived from Eqs. (5.5–5.7) by computing the inner product (·, ·) with
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the spherical harmonic functions Ynm,

αi (u, Ynm) = (u∞, Ynm) +

Nγ∑
j=1

(Sj [fb + fσ], Ynm) + (Dj [u], Ynm) , (5.11)

(divγi u, Ynm) = 0, for all i = 1, . . . , Nγ , (5.12)(
∂x

∂t
, Ynm

)
= (u, Ynm) (5.13)

for all n = 0, 1, . . . and |m| ≤ n.

5.3 Numerical Algorithms

We discretize the Galerkin formulation discussed in the previous section. We discuss the

spatial discretization in Section 5.3.1 and algorithms for computing the Stokes single-layer

and double-layer potentials from the vesicle surface in Section 5.3.2. In Section 5.3.3 we

present an algorithm for detecting collisions between vesicles and introduce a repulsion

term in our formulation to avoid such collisions. We present an algorithm for correcting

the drift in area and volume of the vesicles in Section 5.3.4. In Section 5.3.5, we discuss

the reparameterization algorithm and analyze the scheme for different choices of the at-

tenuation coefficient. Then, we present a first order semi-implicit time-stepping scheme

in Section 5.3.6 and discuss an algorithm for selecting the optimal time step size in Sec-

tion 5.3.7. Finally, we summarize the overall algorithm in Section 5.3.8.

5.3.1 Spatial Discretization

We assume that each surface γ is smooth and homeomorphic to a sphere. Therefore, we

can construct a C∞ map from points on γ to points on the surface of the unit sphere S2.

This mapping is not unique and can affect the magnitude of truncation errors when the

surface is discretized. We will discuss these issues later in Section 5.3.5. The surface of

the unit sphere can be parameterized by the spherical angles (θ, φ) ∈ [0, π] × [0, 2π). We

approximate a function f on γ (mapped to S2) using the spherical harmonic basis Ynm up

to degree p

f(θ, φ) ≈
p∑

n=0

n∑
m=−n

f̂nmYnm(θ, φ) (5.14)

where, f̂nm are the coefficients in the spherical harmonic expansion. Using orthonormality

of the spherical harmonic basis, we can determine these coefficients using the relation
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f̂nm = (f, Ynm). We construct such spherical harmonic approximations for the surface

position, the tension and bending forces and the velocity of surface points.

Evaluation on Nodal Basis. When computing integrals over a surface γ, we require a

nodal basis representation of the surface instead of the spherical harmonic basis discussed

above. For qth order quadratures, we discretize the spherical angles using a (q + 1) × 2q

grid of points (θi, φj) given by

θi = cos−1 xi for i = 0, · · · , q
φj = π/q j for j = 0, · · · , 2q − 1

where, xi are the roots of the Legendre polynomial of degree q + 1. We refer to this as

the q-grid. We evaluate the spherical harmonic representation f̂ at points on the q-grid as

follows

fij =

p∑
n=0

n∑
m=−n

f̂nm Ynm(θi, φj) for all i = 0, · · · , q and j = 0, · · · , 2q − 1. (5.15)

We define a linear operator Y q which implements the above computation, so that f = Y q f̂ .

Since the spherical harmonic basis functions Ynm are products of the associated Legendre

polynomials Pnm(cos θ) and the Fourier basis functions eimφ, the above transform can be

computed efficiently using a tensor product rule. We first evaluate the associated Legen-

dre polynomials at xi = cos θi for i = 0, · · · , q. This is followed by computing q+1 discrete

Fourier transforms in φi. The method requires O
(
p2q + pq2

)
work; with O

(
p2q
)

work for

computing the associated Legendre polynomials and O
(
pq2
)

work for the Fourier trans-

form. We could use FFT for computing the Fourier transform and FLT (Fast Legendre

Transform) for evaluating the associated Legendre polynomials to reduce the complexity

toO
(
q2 log2 q

)
work (when q ≥ p and using zero padding); however, this does not provide

any noticeable improvement in performance for the small discretization orders (p, q ≤ 32)

used in this work.

We also use Eq. (5.15) to compute derivatives in θ and φ by replacing Ynm with

∂Ynm/∂θ and ∂Ynm/∂φ respectively. Evaluating the derivatives on the q-grid from a spher-

ical harmonic approximation of degree p requires O
(
p2q + pq2

)
work.

Projection to Spherical Harmonic Basis. We often have to compute a projection to the

spherical harmonic space f̂ from function values fij on the q-grid where, q ≥ p. To do this,
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we use the relation f̂nm = (f, Ynm) and compute the inner product using a quadrature rule

f̂nm =

q∑
i=0

2q−1∑
j=0

fij Ynm(θi, φj)
π

q
wi for all n = 0, · · · , p and |m| ≤ n. (5.16)

Here, we have used the Gauss-Legendre quadrature rule (with weightswi) to integrate in φ

and trapezoidal rule (with weights π/q) to integrate in θ. As before for Eq. (5.15), this sum

can be evaluated efficiently using a tensor product rule and this requires O
(
p2q + pq2

)
work. We define a linear operator Y p

proj which computes the above projection, so that

f̂ = Y p
proj f .

5.3.2 Stokes Layer Potentials

In our boundary integral formulation, we evaluate single- and double-layer potential from

Nγ surfaces, with position x, single-layer density fs and double-layer density fd

u(x) =

Nγ∑
k=1

Sk[fs](x) +Dk[fd](x). (5.17)

We evaluate this potential numerically on the p-grid for each surface. For the Galerkin for-

mulation, we then compute a projection to the spherical harmonic space ûnm = (u, Ynm).

In the remainder of this section, we will only discuss computation of the single-layer po-

tential; however, the algorithms are also applicable to computing the double-layer poten-

tial.

We consider computation of the Stokes single-layer potential Sγ [f ](y) from a single

surface γ at a target point y. We can express the integral over the surface γ as an integral

over the spherical angles θ and φ as follows

Sγ [f ](y) =

∫
γ

S(y,x) f dγ =

∫ π

θ=0

∫ 2π

φ=0

S(y,x(θ, φ)) f(θ, φ) W (θ, φ) dφ dθ (5.18)

where, W (θ, φ) =
√
EG− F 2 is the area element of the surface (with E, F and G de-

noting the coefficients of the first fundamental form of γ). When y is not on the surface,

then the integrand is smooth and standard quadratures (Gauss-Legendre quadrature for

θ and trapezoidal quadrature for φ directions) are sufficient. We discretize the integral in

Eq. (5.18) by a quadrature rule over the q-grid

Sγ [f ](y) ≈
q∑
i=0

2q−1∑
j=0

S(y,xij) fij Wij
π

q
wi (5.19)

where, wi are the Gauss-Legendre quadrature weights and xij , fij and Wij are the surface
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position, the density function and the area element evaluated on the q-grid. This computa-

tion requires O
(
q2
)

work for each evaluation point. The method is spectrally convergent

in q; however, to be accurate, it requires that the distance between the points on the q-

grid should be smaller than the distance between the surface and the evaluation points.

Therefore, for h = min|x(θ, φ) − y|, we must have q = O
(
h−1
)
. The method becomes

prohibitively expensive as h becomes smaller and does not converge for h = 0. Next,

we discuss special quadratures for computing these singular and near-singular integrals

efficiently.

Singular Integration. We use the algorithm discussed in [105] for the Stokes single-layer

potential and extended to the Stokes double-layer potential in [88]. This singular integra-

tion scheme is spectrally convergent for both single- and double-layer potentials. Below,

we briefly summarize this algorithm for computing ûnm = (Sγ [f ], Ynm) for a single surface

γ.

We define the linear operators R(θ, φ) which transforms the coefficients in a spherical

harmonic expansion to the coefficients in a rotated coordinate space with the north pole

at (θ, φ). The construction of these operators is discussed in [43]. For spherical harmonic

discretization of degree p, the application of the operator requires O
(
p3
)

work for each

surface. We use these operators to compute the spherical harmonic expansions of the sur-

face position in rotated coordinate space: x̂ij = R(θi, φj) x̂ for each point (θi, φj) on the

p-grid. Then, we evaluate the spherical harmonic expansions on the q-grid: xij = Y q x̂ij .

Similarly, we compute the single-layer density on the q-grid in rotated coordinate space:

f ij = Y q R(θi, φj) f̂ . We also compute the area elements W ij from x̂ij . This requires eval-

uating the derivatives ∂x/∂θ and ∂x/∂φ on the q-grid. Now, we compute the potential

uij = u(θi, φj) on the p-grid

uij =
(
Λq ◦ W ij ◦ S(xij ,x

ij)
)
· f ij for all i = 0, · · · , p and j = 0, · · · , 2p− 1

(5.20)

where, Λq are the quadrature weights from the scheme of Graham-Sloan [47] for evaluating

singular integrals at the pole. Here, we are computing the Stokes single-layer potential at

the north pole xij from each point on the q-grid with position xij and density f ij scaled

by the area elements and the quadrature weights at each grid point. Finally, we compute

the projection from u on the p-grid to the spherical harmonic space û = Y p
proj u.

The above algorithm uses a q-grid for the singular quadrature rule instead of the p-

grid used in [105]. We observed that depending on the desired accuracy of the result, we
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often need to use an upsampled grid such that q > p. Later in this section, we will discuss

how we select the optimal value for q. The algorithm requires O
(
p5
)

work for computing

all the rotations, O
(
p2(p2q + pq2)

)
work for evaluating spherical harmonic expansions on

q-grid and O
(
p2q2

)
work for evaluating the Stokes operator and computing the weighted

inner-product with the density. Overall, this requires O
(
p5 + p3q2

)
work each time we

compute û.

In our semi-implicit time-stepping scheme, we use GMRES to solve for the new sur-

face position. Each GMRES iteration involves computing u for the same surface position x

but different densities f . Therefore, we modify the above algorithm to instead precompute

the operator matrix

Sij =
(
Λq ◦ W ij ◦ S(xij ,x

ij)
)
· Y q R(θi, φj) for all i = 0, · · · , p and j = 0, · · · , 2p− 1

Ŝ = Y p
proj S

where, Ŝ is a (p+1)2× (p+1)2 matrix. In each GMRES iteration, we can now compute û =

Ŝ f̂ . Computing Ŝ still requiresO
(
p5 + p3q2

)
work per surface; however, each subsequent

application of Ŝ only requires O
(
p4
)

work. This results in a significant improvement in

performance over the original scheme.

Near-Singular Integration. For computing interactions between a surface γ and a target

point y, such that y is not on the surface but at a distance smaller than hn from the surface,

we use a near-singular integration scheme. The scheme is adapted from the method of

[110]. The value of hn depends on the order q of the Nyström scheme used in Eq. (5.19).

For a given q, the optimal choice for hn has to be determined empirically; however, we

observed that the optimal value can be estimated by the relation hn =
√
A/q where, A

is the maximum surface area of any vesicle. For this choice of hn, we still get spectral

convergence with the Nyström scheme (for target points at a distance hn or greater from

the surface), since distance between points on the q-grid O
(√

A/q
)

decreases faster than

hn as we increase q. For points closer than hn to the surface, the near-singular integration

algorithm has the following sequence of steps.

(a) Identifying Near Points: The first step in the near-singular integration scheme is to

identify, all pairs of surface and target points (γi,y) that are separated by a distance

smaller than hn. We can do this by comparing the distance between every target

point and every point on the discretized surface (q-grid). For Ntrg target points and

Nγ surfaces, this requires O (NtrgNγ) work and can be very expensive when Nγ and

Ntrg are large. A more efficient method is to sort all the surface discretization points,
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Figure 5.1 Left: 2D schematic of vesicle surface (γ) and the surface discretization points. The Nys-
tröm scheme is accurate for target points at a distance hn or greater from the surface. To compute
velocity at the point y, we determine the nearest point y0 on the surface. We compute the velocity
at y0 using a singular quadrature scheme and interpolation on the surface. Using the Nyström
scheme, we compute the velocity at a sequence of points y1, · · · ,yL on the line through y0 and
y. We compute the velocity at y by interpolating the velocity at y0, · · · ,yL. Right: Quadratic
patch created by interpolating a 3 × 3 grid of surface points. We show the first iteration for com-
puting the projection of the target point y on this patch. We start at the center of the patch with
(u, v) = (0, 0) and compute the update ( du, dv) by approximating the surface by the tangent
plane passing through xp(u, v). Then we search for the surface point nearest to y along the line
(u, v)− (u+ du, v+ dv) in parameter space. We iterate until we reach the edge of the patch or the
updates are small enough (|( du, dv)| ≤ 1E-6).

then for each target point we can find the surface points close to it by searching in a

sorted array. This can be implemented in a number of ways, such as: using radix sort

to bin points in hn × hn × hn size boxes; using an octree of depth log2 hn
−1; or sorting

points on a space-filling curve. In our implementation, we use the last approach

since it is easy to parallelize. We compute the Morton Id with depth log2 hn
−1 for

each surface point and sort these using a parallel sorting algorithm [96]. The parallel

sorting algorithm requires O (N/np logN/np +N/np log np) time for N points on np
processes. For each target point, we compute its Morton Id and also the neighboring

26 Morton Ids. We find all the surface points with one of these 27 Morton Ids using

binary search and compare the distance between these surface points and the target

point. We make a pair of the target point and the surface for any surface with a

discretization point closer than hn from the target point.
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When we do this in parallel (distributed memory systems), the target points must be

on the same MPI process as the surface points when doing the local binary search.

Therefore, we also sort the target points by their Morton Id and partition them across

MPI processes using the same partitioning as for the surface points. Another ad-

vantage of doing this is that we can now process all the target points with the same

Morton Id together and avoid repeated binary searches in the array of surface points.

For our parallel implementation, we also have to add ghost Morton Ids to the array

of surface points so that for each target point we have all the 27 adjacent Morton

Ids available locally on the MPI process. We identify these ghost Morton Ids and

communicate them using point-to-point communication. In addition, once we form

pairs of surface and target points, we have to send these to the process where the

surface originated before the parallel sort. The rest of the near-singular integration

algorithm can then proceed independently on each MPI process.

(b) Projection on the Surface: For each pair of surface γ and near target point y, we deter-

mine the projection y0 of the target point on the surface (see Fig. 5.1). To do this, we

determine the surface discretization point which is closest to y and select the 3 × 3

grid of points in the surface mesh around this point. If one of the poles is the nearest

point, then we select the pole and eight other points adjacent to the pole to form the

3 × 3 grid. We create a quadratic surface interpolant xp(u, v) from this grid, such

that xp(0, 0) is the nearest grid point to y. Now, we use an iterative scheme to find

the point on this interpolant which is closest to the target point y. We start from the

center of the patch (u = 0 and v = 0). In each iteration, we linearize the interpolant

xp around u and v so that

xp(u+ du, v + dv) ≈ xp(u, v) +∇xp(u, v) [ du dv]T (5.21)

We want to find the least squares solution to xp(u+ du, v+ dv) = y. Substituting in

the above equation and solving for [ du dv], we have

[ du dv]T = (∇xp)+ (y − xp) (5.22)

where, (∇xp)+ is the pseudo-inverse of ∇xp(u, v). To avoid overshooting (due to the

curvature of the surface) we now search along the line (u, v)− (u+ du, v+ dv) in pa-

rameter space; i.e. we try to find η0 ∈ [0, 1] such that xp(u+η0 du, v+η0 dv) is nearest

to y. We build a quadratic interpolant p(η) such that p(η) = |xp(u+η du, v+η dv)−y|
for η = 0, 0.5, 1 and compute η0 = arg minη∈[0,1] p(η). We update (u, v)+=η0( du, dv)

and repeat the above process until we reach the edge of the patch or the updates
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|( du, dv)| are smaller than a given tolerance (about 1E-6). When the method con-

verges, we obtain the projection y0 = xp(u, v) of y on the surface γ. In our experi-

ments, the method converged to single-precision accuracy in about 10 iterations.

(c) Interpolation: For each surface γ, we compute the Stokes singular integral û as dis-

cussed in the previous section and evaluate it on the q-grid. Now, for each near point

y of γ, we interpolate the singular potential at the projection y0 using the quadratic

surface interpolant described above to obtain u0 = u(y0). We construct a set of

points y1, · · · ,yL on the line through y0 and y; distributed evenly between distances

hn and 2hn from point y0. Since these points are at a distance greater than or equal

to hn, we can use the Nyström scheme to compute the potential u1, · · · ,uL at the

points y1, · · · ,yL respectively. We now construct a Lagrange polynomial interpolant

of degree L for the potential {u0, · · · ,uL} at points {y0, · · · ,yL}. Finally, we evalu-

ate this interpolant at y to obtain the potential uy = u(y). In our implementation,

we have used the interpolation order L = 8.

The algorithm assumes that the interpolation points y1, · · · ,yL are at a distance

greater than hn from γ so that the potential at these points is smooth. However, this

may not be true when the surface has large deformations. In this case, we need to use

a larger q so that hn is smaller and therefore, the interpolation points are separated

from the surface by a distance greater than hn. This requires adaptively choosing the

appropriate q and is discussed later in this section.

The steps (a) and (b) are part of the setup phase and are compute once per time step;

however, step (c) must be evaluated each time the layer potential is computed. For Nγ

surfaces, Ntrg near target points and qth order quadratures (where q > p), step (a) re-

quiresO
(
Nγq

2/np log
(
Nγq

2/np
)

+Nγq
2/np log np

)
time, step (b) requiresO (Ntrg/np) time

and step (c) requires O
(
NtrgLq

2/np
)

time on np processors. Here, L = 8 is the or-

der of the Lagrange interpolation discussed above. In most cases, we can approximate

Ntrg = O
(
Nγp

2
)
.

Far-Field Integration. Computing the summation in Eq. (5.17), using the Nyström in-

tegration scheme in Eq. (5.19), requires O
(
N2
γp

2q2
)

work for Nγ surfaces with spherical

harmonic discretization of degree p and qth order quadrature scheme. This is an N-body

problem withO
(
Nγp

2
)

target points andO
(
Nγq

2
)

source points; with the source densities

scaled by the area element and the quadrature weights.
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We can accelerate the above computation by using the Fast Multipole Method

(FMM) [26] and compute solutions in O
(
Nγ(q

2 + p2)
)

work. We use our PVFMM li-

brary [75] which is an optimized, parallel implementation of the Kernel Independent

FMM scheme of [109]. For N = Nγ(p
2 + q2) source and target points, our algo-

rithm requires O (N/np log(N/np) +N/np log np) setup time for tree construction and

O
(
N/np + (N/np)

2/3 log np
)

time for each subsequent evaluation on np processes. In addi-

tion to free-space boundary conditions, the library can also compute periodic solutions by

creating an infinite periodic tiling of the source density. The far-field computation is by far

the most expensive computation in our scheme and the use of the PVFMM library allows

us to compute solutions efficiently and scale our scheme to a large number of compute

nodes.

Using FMM requires that we compute interactions between all pairs of source and tar-

get points. Therefore, we have to use direct summation to compute interactions with the

near target points for each surface, subtract it from the FMM solution and then add the con-

tributions from the singular and near-singular integration schemes discussed above. Com-

puting these summations requires an additionalO
(
Ntrgq

2
)

work, where Ntrg = O
(
Nγp

2
)
;

therefore, we still retain linear work complexity in Nγ . While it may be more efficient to

exclude these self- and near-interactions when computing the FMM sum, it is very com-

plicated and would require implementing an entirely new FMM library.

Integration Error. We can estimate the error in the integration scheme discussed above

by checking with a known eigenvalue of the double-layer operator. We evaluate the fol-

lowing double-layer integral

u(y) =

Nγ∑
k=1

Dk[f ](y) (5.23)

where, the density f = 1 on each surface. For closed and non-overlapping surfaces, this

integral has an analytical solution: u(y) = 1 when y is enclosed by any surface; u(y) = 0.5

when y is on any surface; and u(y) = 0 when y is in the exterior of all surfaces. We use this

analytical solution to estimate the error for each of the singular, near-singular and far-field

integration schemes in each time-step. We then adjust the order of the quadrature schemes,

by incrementing the order by one (q ← q+1) if the error is larger than the required accuracy

and decrease the order by one (q ← q− 1) if the error is smaller than the required accuracy.

While we use the same quadrature order for the near-singular and far-field integration

schemes, the order for the singular quadrature scheme can be different.
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5.3.3 Collision Handling
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Figure 5.2 Left: To determine if two vesicles intersect, for each point x, we compute its normal
projection x0 on the other vesicle. If the vesicles intersect, then nx0 · (x − x0) ≤ 0. We can
also add a repulsion force given by fr(x) =

∫
y∈γK(x − y). Right: Plot of the repulsion force

fr(x) as a function of the distance |x − x0| for the repulsion function given in Eq. (5.26). The
parameter Rrepul controls the range of the repulsion force. The repulsion becomes infinitely large
as the surfaces approach each other and decays rapidly as the distance between them increase. At
|x− x0| = 3Rrepul, the repulsion force |fr(x)| ∼ 1E-5.

During the course of a numerical simulation, two vesicles may intersect. This happens

due to various discretization errors introduced in the simulation. When this happens, it

leads to non-physical behavior and the simulation may even break (GMRES may fail to

converge).

In every time step, after computing the updated vesicle position, we check if the vesi-

cles intersect. To do this, for each surface mesh point x, we find the surfaces near this point

and for every such surface γ, we determine the normal projection x0 of x on γ. This is al-

ready done as part of the near-singular integration discussed in Section 5.3.2 and therefore,

we need to do this only once per time step. We compute the dot-product of the outward

surface normal vector nx0 at x0 with the vector x−x0. If the dot-product nx0 ·(x−x0) ≤ 0,

then we know that the vesicles either touch or intersect. Note that this can sometimes fail

since we only check for intersection at the mesh points on the vesicles and also because

the quadratic patch is only an approximation of the actual vesicle surface. If we determine

that the vesicles intersect, we reject the solution for that time step, reduce the time step by

half and recompute the solution.

Despite the above adaptive time-stepping, there are still cases where it is not possible
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to avoid collision between surfaces. To address this issue, we introduce a repulsion force

between the vesicles. The repulsion term is added along with the bending and tensile

forces in our Galerkin formulation in Eq. (5.11) as follows

αi (u, Ynm) = (u∞, Ynm) +

Nγ∑
j=1

(Sj [fb + fσ + fr], Ynm) + (Dj [u], Ynm) (5.24)

where, the force fr can be any highly localized repulsive force. We define fr(x) by the

convolution of the surface with a kernel function,

fr(x) =

∫
y∈γ

K(x− y), where K(x) =

(
3Rrepul

4

2|x|5 +
Rrepul

2

|x|3
)

exp

( −|x|2
Rrepul

2

)
x

(5.25)

where, K is the repulsion kernel function and the constant Rrepul is related to the range of

the repulsion force. We choose the repulsion kernel in such a way that the repulsion force

becomes infinite as two surfaces approach each other. This allows the surfaces to come

arbitrarily close but guarantees that they will not touch. The kernel function also decays

quickly as the distance between the surfaces increases to ensure that the repulsion only

comes into play when the surfaces are very close together.

Since the evaluation points are very close to the vesicle surface, a Nyström discretiza-

tion of the integral in Eq. (5.25) will converge very slowly. Instead, we compute this in-

tegral analytically by assuming that the vesicle surface is nearly flat in the vicinity of the

target point. The repulsion force can then be approximated as,

fr(x) ≈ Rrepul
2

|x− x0|3
exp

(−|x− x0|2
Rrepul

2

)
(x− x0) (5.26)

When Rrepul is smaller, the repulsion force is more localized but the equations become

stiffer and we need to use smaller time step size. In our simulations we choose Rrepul =

2E-2.

5.3.4 Area and Volume Correction

The area and volume of a vesicle determine their dynamical behavior through reduced

volume [1]. To avoid drift in these values we correct the area A and volume V at each time

step by solving the following constraint minimization problem for each vesicle γ

arg min
s.t. A(x)=A0,V (x)=V0

1

2
‖x− x?‖2L2(γ), (5.27)

where x? is the candidate position obtained through time-stepping and reparametrization,

whose area and volume may have drifted from A0 and V0. One approach in solving this
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minimization problem is to linearize the constraints and solve the equality constrained

quadratic program directly. The variations of the area and volume of a surface with dis-

placement δx are given by [28, Section 9.4]

dA(x, δx) = −2

∫
γ(x)

H δx ·ndγ = −2 (H,ψ) , (5.28)

dV (x, δx) =

∫
γ(x)

δx ·ndγ = (1, ψ) . (5.29)

In the last terms above, we restricted δx to the normal direction δx = ψn because these

first variations only depend on the normal perturbation to the surface. The linearized

minimization problem is then

arg min

s.t. dA(x,ψ)=δA
dV (x,ψ)=δV

1

2
(ψ,ψ) (5.30)

where δA = A0 −A(x) and δV = V0 − V (x). The Lagrangian for Eq. (5.30) is

L(ψ, α, β) = (ψ,ψ) + α (dA(x, ψ)− δA) + β (dV (x, ψ)− δV ) . (5.31)

The derivative of L with respect to the Lagrange multipliers recovers the linearized con-

straints and the derivative with respect to ψ is

dL
dx

(φ) = (ψ − 2Hα+ β, φ) , (5.32)

which gives a linear system for the KKT conditions. The linear system can be simplified to

a small system for the Lagrange multipliers:[
−4 (H,H) 2 (H, 1)

2 (1, H) − (1, 1)

][
α

β

]
=

[
δA

δV

]
. (5.33)

After computing α and β, we evaluate ψ = 2αH − β and move the surface to x + ψn.

Due to the linearization step we may need to iterate a few times to satisfy the constraint

up to the given accuracy. In our experiments, this step typically converges in two or three

iterations.

5.3.5 Reparameterization

As a simulation progresses, due to the absence of in-plane shear resistance in vesicles, the

quality of the mesh eventually deteriorates. The grid points may cluster in some regions

and become sparse in other regions. When unchecked, this leads to unresolvable high fre-

quencies in the spherical harmonic expansion of the vesicle shape and interfacial forces.

The distortion of the mesh may also adversely affect the accuracy of the singular integra-
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Figure 5.3 Comparison of different reparameterization schemes. Fig. 5.3a shows the mesh and
the singular integration error for a simulation without reparameterization. The reparameterized
mesh for different schemes are shown in Figs. 5.3b to 5.3e. For each scheme, we also show the
spectrum for the original mesh x and the reparameterized mesh y in Figs. 5.3f to 5.3i. The decay
of the quality measure E with reparameterization iterations is shown in Figs. 5.3j to 5.3m. The
reparameterization scheme with the attenuation coefficients an = n2 works best as it has small
truncation error (10−4) for the spherical harmonic expansion and also has about 6-digits of accuracy
for double-layer singular integration.

tion scheme. In [105], this is solved by reparameterization of the vesicle surface after each

time step. Below, we briefly outline this scheme.

The vesicle surface γ parameterized by spherical coordinates is given by the map x(s) :

S2 → R3. Let F : R3 → R denote the implicit representation of the surface such that

F (γ) = 0 and∇F does not vanish. Our goal is the to choose an alternate parameterization

y(s) : S2 → R3 for the surface such that it minimizes the quality measure E(y) = (y,y)E

with the inner product defined as (x,y)E :=
∑p

n=0

∑n
m=−n a

2
n (x, Ynm) (y, Ynm). Therefore,
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to obtain y we need to solve the following constrained minimization problem:

arg min
y∈C∞(S2)

E(y) subject to F (y(s)) = 0 for all s ∈ S2. (5.34)

This is reformulated as a pseudo-transient continuation [61] problem and discretized using

an explicit first order scheme (see [105] for details) as follows,

yk+1 = yk − vk∆τ where, vk =
(I − nk ⊗ nk)∇E(yk)

‖(I − nk ⊗ nk)∇E(yk)‖∞
(5.35)

We select the reparameterization step size ∆τ to be the minimum of ∆τmax and

(yk,vk)E / (vk,vk)E . This ensures that the first order reparameterization scheme does not

introduce errors larger than O (∆τmax) and having ∆τ ≤ ∆τmax and (yk,vk)E / (vk,vk)E

guarantees that in each iteration of the algorithmE(yk+1) ≤ E(yk), i.e. the quality measure

E(y) always decreases. We stop the algorithm when ∆τ becomes smaller than a specified

tolerance.

In Fig. 5.3, we analyze the performance of the reparameterization algorithm for dif-

ferent choices of the attenuation coefficients an in the definition of the quality measure

E. Fig. 5.3a shows the mesh with degree p = 16 from a simulation without reparame-

terization. We reparameterize this mesh using different schemes in Figs. 5.3b to 5.3e. For

each mesh we also visualize the singular integration error computed using the method

discussed at the end of Section 5.3.2 for the singular-integration scheme of order q = 32. In

Figs. 5.3f to 5.3i, we plot the spectrum of the spherical harmonic expansion of the reparam-

eterized mesh y and compare it to that of the original mesh x and the coefficients 1/an. For

each reparameterization scheme, we show the decay for the quality measure E with the

number of reparameterization iterations in Figs. 5.3j to 5.3m. We observe that for scheme

an = n, the spectrum for the reparameterized surface does not decay fast enough and

therefore, the surface is not resolved accurately in regions of high curvature. The schemes

with an = n16 and an = H(n− 2p/3) affect only the high-order components in the spheri-

cal harmonic expansion. In this case, while the surface is resolved accurately, the scheme

does not fix the clustering of mesh points and this affects the accuracy for the singular

integration scheme. The scheme an = H(n − 2p/3) was used in [105]. While it worked

well for low-order discretizations, our present study shows that it does not work well for

high-order discretizations. Finally, the scheme with an = n2 has small truncation error for

the spherical harmonic expansion and also achieves high accuracy for singular integration.

In the remainder of this chapter, we always use this reparameterization scheme.
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5.3.6 Semi-Implicit Time-Stepping

At time tn, we denote the membrane position by xn. To compute the updated surface

position xn+1 at time tn+1, we use the semi-implicit time-stepping scheme of [88]. Next,

we briefly summarize this scheme.

The interfacial forces fb(x) and fσ(x, σ) are defined at each point on the membrane

γ. The bending and tension operators are defined as S[fb(x)] and S[fσ(x, σ)] respectively.

We linearized the bending and tension operators around xn as follows,

Bu = Sxn [fb(x
n) + fb

′(xn)u∆t], (5.36)

Tσ = Sxn [fσ(xn, σ)]. (5.37)

The discrete spectral version of these operator are given by: B̂ û = Y p
proj B Y p û and

T̂ σ̂ = Y p
proj T Y p σ̂. Similarly, we also define the following discrete spectral operators:

D̂ û = Y p
proj Dxn [Y p û] and d̂ivγ (û) = Y p

proj divγ (Y p û). The operators B, T and D

are implemented using the scheme described in Section 5.3.2. The Galerkin formulation in

Eq. (5.11)e-ves:vel-gal-3 is now discretized to give the globally semi-implicit time-stepping

scheme,

αiûi = û∞i +

Nγ∑
j=1

(
B̂ijûj + T̂ijσ̂j + D̂ijûj

)
for all i = 1, . . . , Nγ , (5.38)

d̂ivγ û = 0, (5.39)

xn+1 = xn + u∆t. (5.40)

The subscripts i and j in operators B̂ij , T̂ij and D̂ij denote that the operators are applied

to the jth surface and the target points are on the ith surface. We solve this linear system of

equations for the tension σ, velocity u and the updated position xn+1.

5.3.7 Adaptive Time-Stepping

Our adaptive time-stepping scheme is based on the work of [85, 84]. Even though we have

a first order time-stepping scheme, we present the algorithm for choosing the time step size

for a general kth order scheme. In each step of the simulation, we use an estimate of the

error en incurred in the current iteration with time step size ∆tn to determine the optimal

time step size ∆tn+1 for the next step. The error en is estimated in one of the following two

ways:

• We determine the new position x̂n and xn using different numerical schemes. From
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the vesicle position xn−1 at time tn−1, we compute x̂n by taking one time step of size

∆tn and compute xn by taking two time steps of size ∆tn/2. Then, we defined the

error estimate as en := ‖xn − x̂n‖2.

• We measure the change in invariant quantities such as the surface area An and vol-

ume Vn. We define the error estimate as en := max(|∆A|/A, |∆V |/V ).

In the first case, we have to perform extra computation to determine two numerical solu-

tions for the position and this can be expensive. In the second case, it requires very little

computation to determine the change in area and volume between time steps. While the

second error estimate worked well in 2D, it is not robust enough 3D and we observed

several instances where the method underestimated the error. Therefore, in this work we

always use the first error estimate. In both cases, the total error also depends on other

factors such as truncation errors, accuracy of the Stokes operator (FMM and quadratures)

and the GMRES tolerance used to enforce inextensibility. For a kth order time-stepping

scheme, the error is observed to scale with ∆tn as en = O
(
∆tk+1

n + εother ∆tn
)
. Therefore,

have to ensure that εother is also small enough.

For a long time scale simulation with time-horizon T and an overall error tolerance

E , we present an adaptive time-stepping algorithm for determining the optimal time step

size ∆tn for each iteration. In (n + 1)th time step, we choose the step-size ∆tn+1 such that

the error en+1 is as close as possible to the maximum allowed error but does not exceed

this error. Therefore, we want en+1/∆tn+1 = βE/T , where β < 1 is a safety factor. In our

experiments, we choose β = 0.9.

We assume that for a kth order time-stepping scheme, the error scales with ∆tn as

en = O
(
∆tk+1

n

)
. We also assume that the constants in this order estimate do not change

significantly between consecutive time steps. Then, we have, ∆tk+1
n+1/en+1 = ∆tk+1

n /en. We

substitute en+1/∆tn+1 = βE/T to obtain the new time step size ∆tn+1,

∆tn+1 = ∆tn

(
β
E
T

∆tn
en

)1/k

Then, we compute the solution xn+1 at time tn+1 = tn + ∆tn+1. We measure the error en+1

and check if it satisfies the condition en+1/∆tn+1 ≤ E/T . If the condition is satisfied, we

accept the solution and proceed to the next time step. If the condition is not satisfied, we

reject the solution and update the time step size as follows,

∆tn+1 = ∆tn+1

(
β
E
T

∆tn+1

en+1

)1/k

We repeat the above process with this updated time step size.
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5.3.8 Algorithm Summary and Computational Cost

We start a simulation with Nγ vesicles. The position and shape of the vesicles is defined

by the spherical harmonic discretization x̂ of degree p. For each surfaces, we provide

the bending modulus, the excess density and the viscosity contrast of the fluid inside the

vesicle compared to the fluid outside. In addition, we provide the following simulation

parameters: the time-horizon T , the initial time step size ∆t, the error tolerance for time-

adaptivity E , the tolerance for each GMRES solve εGMRES, the maximum reparameterization

step size ∆τmax, the distance parameter for repulsion Rrepul, the initial quadrature q or-

der for singular, near-singular and far-field integration, the boundary conditions (periodic

with period length or free space) and the background velocity u∞.

To compute the new surface position x̂+ after time ∆t, we solve the linear system dis-

cussed in Section 5.3.6. To do this, we setup the RHS for the linear system and initialize

the linear operator. Constructing the linear operator requires setting up the operator for

linearized interfacial forces and the Stokes single and double-layer potentials. Detailed

discussion of linearized interfacial forces can be found in [88, 105]. For the Stokes layer

potentials, we perform the setup for each of the singular, near-singular and far-field in-

tegration algorithms discussed in Section 5.3.2. This involves: computing the singular

integration matrices; identifying the pairs of vesicles and their near target points, com-

puting projection of these target points on the vesicle surface; and constructing the octree

for FMM. During the setup for near-singular integration, we also check for vesicle colli-

sion, compute the repulsion force and add it to the RHS. We also check the accuracy of the

quadratures using the scheme described at the end of Section 5.3.2 to update the order of

the quadratures. Then, we solve this linear system using GMRES to obtain the new po-

sition x̂+ and the surface tension σ̂+. In each GMRES iteration, the linearized interfacial

forces are computed and then the Stokes layer potential is evaluated.

For adaptive time-stepping, we perform three GMRES solves as discussed in Sec-

tion 5.3.7 to estimate the solution error. If the error is smaller than E∆t/T , then we accept

the new solution and advance the time by ∆t; otherwise, we reject the solution. Then, we

update the time step size to be used in the next iteration.

We now apply the area and volume correction algorithm discussed in Section 5.3.4.

We reparameterize the surface discretization as described in Section 5.3.5. We repeat the

above process until t = T .

We summarize the computational cost associated with different stages of our algo-

rithm in Table 5.2.
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NTstep ×
Nγ

np
p3(p2 + q2) + (singular)

Setup Tsetup = NTstep ×
Nγ

np
q2

(
log

Nγ

np
q2 + log np

)
+ (near-singular)

NTstep ×
Nγ

np
q2

(
log

Nγ

np
q2 + log np

)
(far-field)

Singular Integration Tself = NTstep ×Niter ×
Nγ

np
p4

Near-singular Integration Tnear = NTstep ×Niter ×
Nγ

np
p2q2

Far-field Integration Tnear = NTstep ×Niter ×
Nγ

np
(p2 + q2) + (computation)

NTstep ×Niter ×
(
Nγ

np
q2

)2/3

log np (communication)

Reparameterization Trepar = NTstep ×Nrepar ×
Nγ

np
p3

Table 5.2 Time complexity for Nγ vesicles with pth order surface discretization, qth order quadra-
tures (such that p < q), NTstep GMRES solves of the implicit time-stepping scheme with Niter

GMRES iterations per solve on np processors. We denote the average number of reparameterization
iterations in each time step by Nrepar.

5.4 Results

We present some numerical results to show the accuracy and time-to-solution on a sin-

gle node in Section 5.4.1 and strong and weak scalability of our method in Sections 5.4.2

and 5.4.3 respectively. All results are presented for the Stampede system at the Texas Ad-

vanced Computing Center (TACC). It is a Linux cluster consisting of 6,400 compute nodes

connected by 56Gb/s FDR Mellanox InfiniBand network in a fat tree configuration. Each

compute node has dual eight-core Intel Xeon E5-2680 CPUs running at 2.7GHz and 32GB

of memory. In addition, most nodes have an Intel Xeon Phi SE10P co-processor, while a

few have an NVIDIA K20 GPU co-processor; however, our current implementation cannot

utilize these accelerators.

5.4.1 Single Node Results

We present results for two vesicles in shear flow as shown in Figs. 5.4a to 5.4d. The fluid

inside and outside the vesicles is identical, the vesicles have a reduced volume of 0.85

and bending modulus of 0.01 and the simulation has a time-horizon of T = 160. The
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experiment is designed to underline the significance of high-order spatial discretization,

time-adaptivity, near-singular integration, reparameterization and collision handling. The

simulation reveals significant inter-vesicle interactions and the vesicles undergo large de-

formations. The vesicles are closest at t = 136 (see Fig. 5.4c). Without repulsion, we re-

quired a discretization order of at least p = 32 to resolve this flow with sufficient accuracy

to avoid collision between the vesicles. For lower orders, the spatial discretization errors

cause the vesicles to intersect and this causes the simulation to break.

Convergence Analysis. We study dependence of the solution error on the discretization

order (p), the tolerance for time-adaptivity (E) and the repulsion distance (Rrepul). All

solutions are computed using the first order implicit time-stepping scheme and using the

block-diagonal preconditioner. We use a fixed GMRES tolerance of εGMRES = 1E-7 for the

implicit solver. All boundary integrals are computed using 2× upsampling of the mesh; i.e.

the quadrature order for singular, near-singular and far-field integration is q = 2p for pth

order surface discretization. We reparameterize using the attenuation coefficients an = n2

with reparameterization time step size ∆τmax = 1E-4 and reparameterization termination

condition ∆τ < 1E-5.

Reference Solution: We construct a reference solution without repulsion (Rrepul = 0), us-

ing adaptive time-stepping with E = 0.1 and with discretization order p = 32. Computing

the reference solution required about two days of compute time on a single node of Stam-

pede. Attaining similar accuracy without time-adaptivity would be 5×more expensive.

Time-Adaptivity and Relation Between E and ∆t: In Fig. 5.4e, for fixed p = 32 and no

repulsion, we plot the time step size ∆t during the second half of the simulation (80 ≤ t ≤
160). We vary the tolerance for time-adaptivity (E) and observe an approximately linear

relationship between ∆t and E due to the first order semi-implicit time-stepping scheme.

Effect of Repulsion Distance Rrepul: In Fig. 5.4f, we introduce repulsion between the

surfaces and plot the error in the vesicle position (compared with the reference solution)

at the end of the simulation as a function of the repulsion distance (Rrepul) for different

discretization orders and time-adaptivity tolerance E = 0.2. Due to reparameterization,

we cannot directly compare the position of the surface grid points; therefore, we compare

the surface center of mass ci =
∫
γi

dγi for the ith vesicle. We report the maximum error in

the position for any vesicle at the end of the simulation and this error is normalized by the

vesicle length. We observe that for p = 32, adding repulsion does not cause any noticeable

increase in error forRrepul < 0.04. This is because the range of the repulsive force is smaller

than the separation between the vesicles. We observe a steady increases in error withRrepul
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Figure 5.4 Convergence results for two vesicles in shear flow. The reference solution shown in
figures Figs. 5.4a to 5.4d is computed using discretization order p = 32, time-adaptivity error
tolerance E = 0.1 and no repulsion force. In Fig. 5.4e, we show the time step size ∆t at different
points during the simulation for the reference solution (E = 0.1) and also larger values of E while
keeping p = 32 fixed. The first order behavior of the time-stepping scheme can be observed. We
also observe a smaller time step size in regions where vesicle-vesicle interactions become significant.
Fig. 5.4f shows the dependence of error in vesicle position (compared to the reference solution) when
a short range repulsion force in added between the vesicles. The repulsion force allows us to use
lower order discretizations and does not introduce significant errors forRrepul ≤ 0.04. For different
discretization orders, we show the linear dependence of the vesicle position error with the tolerance
for time-adaptivity E in Figs. 5.4g and 5.4h for the cases without repulsion and with repulsion
(Rrepul = 0.04) respectively.
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for Rrepul ≥ 0.04. By adding repulsion, we are also able to compute solutions with lower

order spatial discretizations. In general, the repulsion distance should be at least of the

order of the distance between the grid points so that the repulsion force can be resolved on

the vesicle surface. For Rrepul = 0.04, we can compute solutions with p ≥ 12 and this does

not appear to significantly affect the solution accuracy.

Relation Between E and Position Error: In Figs. 5.4g and 5.4h, we plot the error in vesicle

position as a function of the time-adaptivity tolerance E for Rrepul = 0 and Rrepul = 0.04

respectively. In both cases we observe an approximately linear relationship between the

position error and E .

p E Rrepul error NTstep Niter Tsolve Tsetup Tself Tnear Tfar Trepar

32 0.2 0.0 4.1E-3 3270 34 64321 23592 2724 6684 22925 4208

32 0.4 0.0 1.1E-2 1116 40 25864 8184 1104 2417 9228 3285

32 0.8 0.0 2.0E-2 441 50 13087 3316 558 1007 4500 2907

32 1.6 0.0 3.3E-2 216 67 8902 1670 363 572 2966 2802

32 2.4 0.0 5.4E-2 153 81 8828 1219 310 471 2522 3844

32 0.2 0.0 4.1E-3 3270 34 64321 23592 2724 6684 22925 4208

24 0.4 1E-2 1.3E-2 1191 39 8474 1933 262 954 3283 1157

16 0.8 2E-2 2.8E-2 513 36 1091 127 29 97 358 263

12 1.6 4E-2 4.3E-2 228 45 333 21 8 21 100 90

8 2.4 6E-2 4.3E-2 174 27 106 5 2 4 30 38

Table 5.3 We present convergence results for the shear flow problem visualized in Figs. 5.4a to 5.4d.
For different values of error tolerance E , we report the error in vesicle position compared to a ref-
erence solution computed with E = 0.1, p = 32 and no repulsion. We also report the number
of solves of the implicit time-stepping scheme NTstep, the average number of GMRES iterations
needed for each solveNiter and the time-to-solution Tsolve. In addition, we report a breakdown of the
time spent in different stages of the algorithm: the cost for reparameterization Trepar, the cost for
singular Tself , near-singular Tnear and far-field Tfar interactions and their setup cost Tsetup. We
compare results for high-order discretization and no repulsion with low order discretizations which
are made possible due to introduction of a repulsion term. For about 5% error in vesicle position,
using low order discretization (p = 8) is over 80× faster when compared with a solution computed
using p = 32.

Timing Results. In Table 5.3, we present detailed results for the above shear flow test

case. In addition to the error in vesicle position, we also report the number of solves of the

implicit time-stepping scheme NTstep, the average number of GMRES iterations Niter, the

overall solve time Tsolve and a detailed breakdown of the time spent in different stages of

the algorithm. We report two sets of results.
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Fixed Spatial Discretization Order p = 32: In the first set, we report results for a fixed

discretization order p = 32, no repulsion and varying tolerance values for time-adaptivity

E . Due to the first order time-stepping scheme, we observe an approximately linear rela-

tionship between the number of time steps NTstep and inverse of the error tolerance 1/E .

At the same time, we observe that with increasing time step size (due to increasing E), the

number of GMRES iterations per time step increase significantly. This happens because

the semi-implicit scheme becomes more ill-conditioned. Therefore, we do not observe the

expected speedup in Tsolve with increasing E . The interactions between vesicles computed

through single-layer and double-layer Stokes kernel functions are evaluated at every GM-

RES iteration while the setup phase is execute once for each time step. Therefore, for a fixed

discretization order p, we observe that Tsetup scales as O (NTstep) while Tself , Tnear and Tfar

scale as O (NTstepNiter). We also note that the reparameterization time Trepar shows lit-

tle variation with E . This is because for larger E even though we reparameterize fewer

times (since NTstep is smaller), a larger time step size means that we require many more

reparameterization iterations.

Optimal Spatial Discretization Order: In the second set of results in Table 5.3, we add a

short range repulsion force between the surfaces to prevent collision between them. This

allows us to use lower order discretizations and obtain a faster time to solution. Com-

paring these results with high-order discretizations, we observe that the error in vesicle

position and number of time steps NTstep remain the same for the same value of E . How-

ever, the number of GMRES iterations are much smaller for low order discretizations. We

believe this is due to the smaller size of the linear system being solved. In addition, each

GMRES iteration has drastically lower computational cost for smaller discretization orders

p since we haveO
(
Nγp

4
)

cost for singular and near-singular integration andO
(
Nγp

2
)

cost

for far-field interactions. The setup stage (with O
(
Nγp

5
)

cost for computing the singular

integration operator) and the reparameterization algorithm (with O
(
Nγp

3
)

cost per iter-

ation) are also significantly less expensive for smaller p. For the same solution accuracy,

we observe nearly two orders of magnitude speedup when using low order discretizations

with repulsion compared to high-order discretizations without repulsion.
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5.4.2 Strong Scaling

In this section, we present strong scaling results for the periodic Taylor-vortex flow simu-

lation shown in Fig. 5.5. We used the following background velocity field

u∞(x, y, z) = α sin

(
2πx

L

)
cos

(
2πy

L

)
sin

(
2πz

L

)
î +

α cos

(
2πx

L

)
sin

(
2πy

L

)
sin

(
2πz

L

)
ĵ

(5.41)

where, L = 17 is the period length of the domain and α = 0.1 is a scaling factor. The

domain has 1408 biconcave shaped vesicles with 35% volume fraction. Each vesicle has an

approximate diameter of 1.89, a height of 0.54, a reduced volume of 0.65 and a bending

modulus of 0.1. For this simulation, we used 16th order spherical harmonic discretization

with 50th order quadratures for singular integration and 24th order quadratures for near-

singular and far-field integration for about 5-digits of accuracy. We used our adaptive

time-stepping scheme with an error tolerance of E = 0.02 for time-horizon T = 2. The

linear system for the semi-implicit time-stepping scheme was solved using GMRES with

a relative tolerance of 1E-5. For time-horizon T = 2, we needed 18 GMRES solves and

each solve required an average of Niter = 139 iterations for discretization order p = 16 and

Niter = 311 iterations for p = 32.

(a) t = 0 (b) t = 125 (c) t = 500

Figure 5.5 A simulation of 1408 vesicles in a periodic Taylor-vortex flow. The vesicles have a
volume fraction of 35% and each vesicle has a biconcave shape with a reduced volume of 0.65.
For this simulation, we used 16th order discretization with 50th order quadratures for singular
integration and 24th order quadratures for near-singular and far-field integration. We used adaptive
time-stepping with error-factor E/T = 0.01 and with a tolerance of 1E-5 for the GMRES solve.
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Figure 5.6 Strong scalability results for the periodic Taylor-vortex flow in Fig. 5.5. We present
results for discretization order p = 16 on the left and p = 32 on the right. In both cases, we
used 50th order quadratures for singular integration and 24th order quadratures for near-singular
and far-field integration. We solved the problem for a time-horizon T = 2 and the adaptive time-
stepping scheme required 18 GMRES solves. On average, each GMRES solve requires Niter = 138

iterations for p = 16 and Niter = 311 iterations for p = 32.

In Fig. 5.6, we report the total CPU time (wall-time×CPU cores). For p = 16 (figure on

the left), we scale from 16 CPU cores (1 compute node) to 1024 cores (64 compute nodes).

For p = 32 (figure on the right), 4× more memory is required for storing the singular

integration operators and therefore we start from 256 CPU cores (16 compute node) and

scale up to 2048 cores (128 compute nodes). For p = 16, we achieve a 26.5× speedup in

the total wall-time or 41.4% strong scaling efficiency and for p = 32, we achieve a 3.8×
speedup in the total wall-time or 47.9% strong scaling efficiency. Overall, we observe that

the case with p = 32 is about 10×more expensive that p = 16.

We also provide a breakdown of the time spent in the different stages of our algorithm.

The cost of the setup stage is dominated by the computation of singular integration matrix

for each surface. Since the setup is performed only once for every Niter evaluations, the

setup cost is dwarfed by the evaluation cost (singular, near-singular and far-field integra-

tion) and requires just 3% ∼ 6% of the runtime. The singular integration requires very

little work (about 1% for p = 16 and 3% for p = 32 of runtime) due to our O
(
p4
)

scheme.

Due to the dense packing of the vesicles, we need to compute near-singular integration

for a large number of target points. Therefore, near-singular integration is relatively ex-
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pensive and requires about 23% ∼ 33% of the CPU time; however, it scales well since it is

compute bound and requires very little communication. The far-field computation is the

most expensive stage in our scheme and requires 46% ∼ 63% of the total CPU time. It is

implemented using FMM and gives good performance up to 256 cores for p = 16 and up

to 1024 cores for p = 32. As we increase the number of CPU cores further, the problem size

per core is too small to remain efficient and we begin to lose performance. The reparame-

terization does not require any communication and is inexpensive compared to the overall

solve time. The remaining time (about 8% ∼ 11%) is mostly spent inside the GMRES solve

in PETSc.

(a) t = 0 (b) t = 4 (c) t = 30

Figure 5.7 A simulation showing sedimentation of vesicles under gravitational force. We start
with 512 vesicles arranged in an 8 × 8 × 8 lattice at where, each vesicle has a reduced volume of
0.85, bending modulus of 0.05 and has excess density ρi − ρ = 1.0 (and gravitational acceleration
g = 1.0). We used our adaptive time-stepping scheme with error factor E/T = 0.02 and a spatial
discretization order p = 16.

5.4.3 Weak Scaling

In Fig. 5.8, we present weak scaling results for a polydisperse sedimentation flow on 16K

CPU cores. We used 16th order discretization, a fixed step-size of ∆t = 0.01 and a time-

horizon T = 0.2. For the semi-implicit scheme, we used a GMRES tolerance of 1E-5 and

the average number of GMRES iterations varied from 64 iterations for the smallest problem

size to 25 iterations for the largest problem size. We present two sets of results for different

127



16 64 256 1k 4K 16K
0

200

400

600

800

1,000

CPU cores→

w
al

l-
ti

m
e
→

Setup Self
Near Far

Reparam Other

50GFLOP/s

20TFLOP/s

16 64 256 1k 4K 16K
0

400

800

1,200

1,600

2,000

CPU cores→

122GFLOP/s

53TFLOP/s

cores Nγ Niter Tsolve GFLOP/s
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1024 1024 44 571 2675

4096 4096 37 681 6246

16384 16384 31 943 20173

cores Nγ Niter Tsolve GFLOP/s

16 112 57 1384 122

64 448 48 1223 404

256 1792 41 1732 1350

1024 7168 34 1713 4832

4096 28672 30 1532 15206

16384 114688 25 1872 53350

Figure 5.8 Weak scalability results for polydisperse sedimentation similar to the flow visualized in
Fig. 5.7 on 16K CPU cores. We compute solutions for a time-horizon T = 0.2 using a fixed time
step size ∆t = 0.01. We used discretization order p = 16 and singular, near-singular and far-field
quadratures of order q = 28. The vesicles have a reduced volume of 0.85, bending modulus in the
range [0.05, 0.1], viscosity contrast in the range [0.5, 5] and an excess density of 1. We show results
for two different problem sizes: on the left for 1 vesicle per core and on the right for 7 vesicles per
core. For each case, we present a bar graph showing the breakdown of the solve time into each of the
different stages of the algorithm. We also report the average number of GMRES iteration Niter and
the overall performance in GFLOP/s for each test case.

grain sizes. In the first case (Fig. 5.8:left), we have one vesicle per CPU core. We achieve

50GFLOP/s on 16 cores and 20TFLOP/s on 16K cores; i.e. 400× increase in performance for

1024× increase in the number of processors. In the second case (Fig. 5.8:right), we have

seven vesicle per CPU core. We achieve 122GFLOP/s on 16 cores and 53TFLOP/s on 16K

cores; i.e. 437× increase performance for 1024× increase in the number of processors.

We have presented a detailed breakdown of the time in different stages of the algo-

rithm as we scale from 16 cores to 16K cores. The solve time is dominated by the far-field

integration stage which accounts for 74% ∼ 86% of the total time. Unlike the Taylor-Green

vortex flow discussed in Section 5.4.2, for sedimentation flow, the near-singular integration
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requires very little work (about 2% ∼ 5% of Tsolve). This is due to the relatively lower den-

sity of vesicles resulting in fewer near-singular interactions between vesicles. The setup

and self interaction stages requires about 4% ∼ 8% and 1% ∼ 2% of the solve time respec-

tively. The reparameterization time Trepar ranges from 0.3% ∼ 10% of the total time.

5.5 Conclusions

We have presented new algorithms for fast simulation of vesicle in a Stokesian fluid. These

include efficient singular, near-singular and far-field integration algorithms for computing

single- and double-layer Stokes potentials. We have developed algorithms for detecting

collision between vesicles and to handle such collisions in a robust way by adding a re-

pulsion force between the surfaces. We have also developed an algorithm for correcting

the area and volume of vesicles in long-time scale simulations. We have analyzed our sur-

face reparameterization algorithm to determine the optimal choice of the quality measure

function. We have implemented an adaptive time-stepping scheme which allows us to

choose the optimal time step size. This has significantly improved time-to-solution while

still achieving the desired error tolerance. These algorithms have enabled us to compute

accurate, long-time scale simulations for flows with high volume fraction of vesicles.

We have presented convergence studies to show first order convergence in the time

step size. We also analyzed the effect of our collision handling scheme (using repulsion

force) on the solution accuracy. Our algorithms are extremely efficient and show good

strong and weak scalability on distributed memory architectures.
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6 Conclusions

6.1 Summary of Contributions

Particle and Volume Potentials. We have described our implementation of the PVFMM

software library for computing particle and volume potentials. It can be used to compute

pairwise interactions in N-body problems, accelerate boundary integral formulations and

construct solutions of elliptic PDEs with a range of boundary conditions on the unit cube.

We have developed novel performance optimizations and new parallel algorithms which

allow us to achieve high performance and scalability on large high performance comput-

ing systems. Our library is many times faster compared to other particle N-body codes

and PDE solvers on cubic domains.

Variable Coefficient PDEs. We have developed volume integral equation (VIE) formu-

lations for variable coefficient elliptic PDEs. We developed an efficient solver for such

formulations by using PVFMM to compute volume integrals and GMRES to solve the dis-

cretized system. We have applied this formulation to simulate incompressible Stokes flow

in highly porous media geometries. We have demonstrated that our method achieves high

performance and scalability up to 2K compute nodes on the Stampede system (TACC).

Furthermore, we have developed novel VIE formulations for Poisson and Stokes equa-

tions under coordinate transformations. This formulation maps problems on certain non-

regular geometries to cubic domains which can then be solved using our VIE solver. We

have demonstrated the efficacy of this scheme for incompressible Stokes flow on highly

irregular geometries.

Concentrated Vesicle Flows. We have presented a boundary integral equation formula-

tion for simulating the dynamics of concentrated vesicle suspensions in a Stokesian fluid.

We have developed an efficient and scalable solver for this formulation. Our method uses

special quadratures to compute singular and near-singular boundary integral efficiently

and uses our particle FMM to accelerate the far-field interactions. We have also developed
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an adaptive time-stepping scheme, a repulsion based scheme for handling vesicle colli-

sions and algorithms for surface re-meshing. We performed long time scale simulations

of flows with high volume-fraction of vesicles in parallel. Such simulations are useful in

studying the rheology of human blood and other complex biofluids.

6.2 Future Work

Here we have only scratched the surface of what is possible with such integral equation

formulations. Our methods can be extended to many other problems in electrostatics, elas-

ticity and electromagnetic and acoustic scattering. There are many applications in science

and engineering which can benefit from these state-of-the-art solvers.

In the future, we plan to integrate our solver for vesicle flows with our VIE solver

to simulate vesicle flow in confined geometries such as blood capillaries and microfluidic

devices. Such simulations will lead to better understanding of hematological disorders

and designing of new microfluidic devices for blood fractionation, which can help in early

diagnosis of certain cancers by detecting circulating tumor cells.

An efficient semi-Lagrangian advection diffusion solve based on our PVFMM frame-

work was developed in [7]. This can be coupled with our solver for vesicle flows for

studying transport phenomenon in complex fluids.

One of the remaining challenges is the development of solvers for problems with large

variations in coefficients. Fast direct solvers can be used for static problems where a com-

pressed representation of the solution operator is precomputed and then applied in linear

time. However, the precomputation is expensive and cannot be used for time-varying

problems. A possible solution for such problems is to use our volume integral equation

solver for computing the potential at each time step. This approach can be used for com-

plex fluids and multiphase flows. We plan to work on approximate preconditioners to

accelerate the solution of integral equations for problems with large variations in coeffi-

cients.
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