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Abstract

We develop a parallel boundary integral method for simulating highly concentrated vesicle suspen-
sions in a Stokesian fluid. This method is an extension of our previous work [1]. The simulation of
high volume fraction vesicle suspensions, which are representative of real biological systems (such as
blood with 35% ∼ 50% volume fraction for RBC) presents several challenges. It requires computing
accurate vesicle-vesicle interactions at length scales where standard quadratures are too expensive. The
inter-vesicle separation can become arbitrarily small leading to vesicle collisions. Numerical errors can
accumulate over time, making long-timescale simulations inaccurate.

We tackle these challenges by developing state-of-the-art parallel algorithms for efficient computa-
tion of boundary integrals and an adaptive time-stepping scheme. We have also developed algorithms
for handling vesicle collisions, remeshing of vesicle surfaces and correcting drift in vesicle area and
volume. We study the accuracy of our method when compared to a reference solution and show con-
vergence with the spatial discretization order and the time step size. We visualize long-timescale sim-
ulations for periodic Taylor-Green vortex flow and sedimentation of polydisperse vesicle suspensions
with thousands of vesicles. For these flows, we present strong and weak scaling results on thousands
of CPU cores on the Stampede system at Texas Advanced Computing Center.

1. Introduction

Vesicles are closed phospholipid membranes suspended in a viscous solution. They are found in bio-
logical systems and play an important role in intracellular and intercellular transport. Artificial vesicles
are used in a variety of drug-delivery systems and in the study of biomembrane mechanics. Vesicle-
inspired mechanical models can be used to approximate red blood cell mechanics. For example, at
equilibrium, vesicles and healthy red blood cells have a biconcave shape that corresponds to a minimal
membrane bending energy. Under nonequilibrium conditions, as experienced in a simple shear flow,
the best-studied features of red blood cell dynamics, such as tank-treading and tumbling motions, are
shared with vesicles [2–4].

The vesicle evolution dynamics is characterized by an interplay between the membrane’s elastic
energy, surface inextensibility, vanishing in-plane shear resistance, and non-local hydrodynamic inter-
actions. Simulation of vesicles is a challenging nonlinear free boundary value problem, not amenable to
analytical solutions in all but a few simple cases; numerical simulations and experiments are the only
options for the quantitative characterization of vesicle flows.

1.1. Contributions

In this paper, we extend our previous work [1, 5, 6] on 3D vesicle flows to allow long-timescale sim-
ulation of concentrated vesicle suspensions in parallel. This requires a scalable boundary integration
framework that can efficiently handle interactions between vesicles at different length scales (singular,
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near-singular and far-field interactions). The complex dynamics of vesicle flows require time-adaptivity
and algorithms to detect and handle collisions between vesicles. In each time step, we have to reparam-
eterize the surface mesh and correct for small changes in the area and volume of the vesicles. We
summarize these contributions as follows:

• We present a singular integration scheme that has O
(

p5) setup cost and O
(

p4) cost for each
subsequent evaluation for a pth-order discretization. With the original O

(
p5) evaluation scheme,

singular integration accounted for over 90% of the total runtime; however, with the new scheme,
the setup and the singular integration stages together account for less than 20% of the total time.

• We have adapted the near-singular integration method of [7] for use with vesicles. The new
scheme supports spherical harmonics representations, uses adaptive quadrature and is imple-
mented in parallel. The modifications for spherical harmonics are not difficult but also not trivial.

• We accelerate the computation of far-field interactions using our PVFMM [8] library. The library
is highly optimized using AVX vectorization and uses MPI for distributed memory parallelism.
In addition, the library supports periodic boundary conditions and this allows us to simulate
vesicles in periodic flows.

• We present an inexpensive method for estimating the error in each of the singular, near-singular
and far-field integration schemes. We use this to adaptively adjust the order of the quadrature
scheme and achieve the desired accuracy using the least amount of work.

• We introduce an algorithm for detecting collisions between vesicles. Such collisions happen due to
the discretization errors in our numerical scheme. To avoid vesicle collisions, we have introduced
a short range repulsion term in our model and developed an efficient algorithm for evaluating
this repulsion force.

• In long-timescale simulations, errors can gradually change the surface area and volume of the
vesicles. We need to correct for this drift by adjusting the area and volume of the vesicles in each
time-step. We have developed an efficient algorithm to do this.

• The absence of in-plane shear resistance in vesicles necessitates a reparameterization scheme. The
basic algorithm was presented in [6]. In this paper we introduce some modifications to this algo-
rithm and also analyze the scheme for different parameter values. This has significantly improved
the quality for our surface meshes.

• We implement an adaptive time-stepping scheme, which is based on the work of [9, 10] in two
dimensions. We also present a new variation of this scheme that uses a more robust error estimate.
This significantly reduces the solve time over a uniform time-stepping scheme.

• We present numerical results to show convergence of our method and study the dependence of
the solution error on different parameter values when compared to a reference solution.

• We present scalability results up to several thousands CPU cores on the Stampede system at Texas
Advanced Computing Center.

1.2. Limitations

We restrict our attention to suspensions of vesicles in unbounded or periodic domains. We have ignored
inertial terms, so the overall method is restricted to low Reynolds numbers. Only vesicles with spherical
topology are considered and topological changes are not allowed. For general topologies one could, for
example, use the boundary representation and singular integral quadrature introduced in [7]. We do not
have any in-plane shear resistance in our formulation and this is a reasonable assumption for vesicles.
However, for red blood cells (RBCs) and other cells, the shear resistance can not be ignored.

2



The spatial discretization order remains fixed during a simulation and it is the same for all vesicles.
While we adaptively select the quadrature order in each time step, it is identical across all vesicles. This
has the advantage that the algorithm can be applied to a large number of vesicles at once, resulting
in better data locality and higher performance. However, for polydisperse simulations, each vesicle
may require different discretization and quadrature orders depending on the size, shape and other
properties (such as density, viscosity contrast and bending coefficient) of the vesicle.

We use a first-order time-stepping scheme. A high-order, adaptive scheme based on spectral de-
ferred correction (SDC) was presented in [9, 10] for vesicle flows in 2D and can be adapted to our 3D
solver.

The number of GMRES iterations in each time step is relatively large for high volume fraction flows,
particularly with periodic boundary conditions. Our current scheme uses an analytical preconditioner
constructed for a sphere [6]. From 2D simulations, we know that the inverse of the block diagonal part
of the linear system would be a more effective preconditioner. We will report this extension in our
future work.

1.3. Related work

An integral equation formulation for vesicle suspensions using spherical harmonic discretization was
discussed in [6] and was parallelized in [11]. However, that work did not support near-singular integra-
tion. We refer the reader to [6] for more related work on simulating vesicle flows in three-dimensions
and to [1] for work on simulations with viscosity contrast. Work on simulating the flow of concentrated
vesicle suspensions includes [12–17].

The singular integration scheme, which we have used, was first presented in [18] for Helmholtz
problems and was applied to vesicles in [6]. A more efficient scheme (with O

(
p4 log p

)
cost) based

on fast rotation of spherical harmonic expansions is discussed in [19]. For small discretization orders
(p ≤ 36), this scheme does not have any performance benefits over our scheme.

The near-singular integration scheme used in the current work was first presented in [7]. The origi-
nal scheme was designed for B-spline patches and only discussed a sequential algorithm. This method
was adapted to 2D vesicle flows in [17]. Other near-singular quadratures include the use of partition
of unity along with polar coordinate transform [16]; the use of regularized kernel with corrections dis-
cussed in [20]; and the quadrature by expansion (QBX) scheme of [21] applied to simulation of rigid
bodies in [22]. In [23], near interactions are computed through simple upsampling.

The fast multipole method (FMM) for gravitational N-body problems is discussed in [24]. FMM for
the Stokes kernel includes the work of [25] and the STKFMMLIB3D library [26]. In the current work,
we have used the kernel independent FMM (KIFMM) of [27] implemented in the PVFMM library [8].
A discussion of fast multipole accelerated boundary element methods can be found in [28].

Collision handling in 2D using a repulsion force is discussed in [29]. A purely kinematic approach
for collision handling in 3D is discussed in [16]. In this approach, a mesh point is moved away from a
surface if the separation between the mesh point and the surface is smaller than 2% of the cell radius.
In [12], a repulsion based approach is discussed for concentrated emulsions in 3D. The repulsion force
becomes infinite in magnitude as the surfaces come closer and decays exponentially with increasing
distance between the surfaces. This is similar to the form of the repulsion force that we have used and
has the drawback that it can introduce excessive stiffness in time-stepping. In [30] collisions are handled
in 2D by enforcing an inequality constraint on a gap function which measures space-time intersection
volume. This approach does not suffer from stiffness in time-stepping; however, solving the constraint
equation can be expensive.

The adaptive time-stepping scheme used in our work was introduced in [9, 10] for 2D vesicle flows.
They also discuss a high-order spectral deferred correction (SDC) time-stepping scheme.
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1.4. Organization of the Paper

In Section 2, we introduce the mathematical model and the integral equation formulation for vesicles
embedded in a Stokesian fluid. Then, in Section 3, we discuss the discretization and the algorithms
for numerically solving the discretized equations. Finally, in Section 4, we present convergence and
scalability results. In Table 1, we list some frequently used symbols for easy reference.

Symbol Definition
S2 Unit sphere

(θ, φ) Spherical angles
Ynm Spherical harmonic function of

degree n and order m
p Degree of spherical harmonic expansion
q Order of quadrature scheme
P Projection operator from grid values to

spherical harmonic coefficients.
Q Operator to evaluate spherical harmonic

expansion at grid points.
Nγ Number of vesicles
γi Boundary of ith vesicle
W Area element
Si The single-layer Stokes operator

over ith surface
Di The double-layer Stokes operator

over ith surface
µ Viscosity of ambient fluid
µi Viscosity of fluid in ith vesicle
ρ Density of ambient fluid
ρi Density of fluid in ith vesicle
σ Tension
fb Bending force

Symbol Definition
fσ Tension force
fr Repulsion force

Rrepul Repulsion parameter: determines
the range of repulsion force

u Velocity
u∞ Background velocity
T Time-horizon of a simulation
∆t Time-step size
E Error tolerance for time-adaptivity
E Reparameterization energy function
an Attenuation coefficients that define

reparameterization energy function
∆τmax Maximum reparameterization step size

np Number of MPI processes
εGMRES GMRES tolerance
Niter Average GMRES iterations per solve

NTstep Number of time steps
Tsolve Time to solution
Tsetup Setup time
Tsel f Singular integration time
Tnear Near-singular integration time
Tfar Far-field integration time

Trepar Reparameterization time

Table 1: Index of frequently used symbols.

2. Formulation

In this section we formally express the problem statement and give its boundary integral formulation.
The detailed derivation of this formulation is given in [31]. The schematic of a typical domain is shown
in Fig. 1.

Figure 1: The schematic of the domain.
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2.1. Differential Formulation

In the length scale of vesicles, the Reynolds number is very small and the effect of convective terms in
the Navier-Stokes equation is negligible. In the limit, the fluid dynamics are governed by the Stokes
and continuity equations

−µ∆u(x) +∇p(x) = 0 and div u(x) = 0 for all x ∈ R3\ω, (2.1)

where R3\ω is the exterior region occupied by the suspending fluid, µ is the viscosity of the suspending
fluid, u(x) denotes the fluid velocity, and p(x) denotes the pressure. Letting µi denote the viscosity of
the fluid inside the vesicles, Eq. (2.1) holds for the interior fluid, x ∈ ωi, by replacing µ with µi. We
supplement Eq. (2.1) with the no-slip boundary condition on the interface of vesicles and matching
far-field velocity as

∂X
∂t

= u(X) for all X ∈ γ, u(x)→ u∞(x) as ‖x‖ → ∞, (2.2)

where u∞ is the imposed far field velocity field. We use uppercase letters for Lagrangian variables and
lowercase letters for Eulerian variables. Moreover, since the surface of the vesicles is locally inextensible,
the surface divergence of the velocity field should vanish [6]. Therefore,

divγ u(X) = 0 for all X ∈ γ. (2.3)

The balance of momentum on the membrane of vesicles implies that the jump in the surface traction is
equal to the total force exerted by the interface onto the fluid, i.e.

JTnK = f (X) for all X ∈ γ, (2.4)

where T = −pI + µ(∇u +∇uT) is the Cauchy stress tensor, n denotes the normal vector to the surface
at point X, J·K denotes the jump across the interface, and f is the force exerted by the membrane onto
the surrounding fluid. The interfacial force is composed of bending fb and tensile fσ forces. The source
of the tensile force is the local inextensibility of the membrane. Eqs. (2.1–2.4) defines a complete set
of (nonlinear) equations that is solvable for the velocity field, tension, and the evolution of vesicle
interfaces.

Interfacial forces. Membrane’s resistance to bending and extension give rise to interfacial forces, the
derivation of which can be found in [32, 33]. For any X ∈ γi (i = 1, . . . , Nγ) we define

fb(X) = −κb

[
∆γi H + 2H(H2 − K))

]
n, (2.5)

fσ(X, σ) = σ∆γi X + gradγi
σ, (2.6)

where κb is the membrane’s bending modulus, H and K are respectively mean and Gaussian curvatures
at X, and σ is the tension. Note that the bending force fb depends only on the current configuration of
each vesicle. On the other hand, the tensile force fσ depends on both the configuration and the tension
σ, which is the Lagrange multiplier to enforce the local inextensibility constraint, Eq. (2.3). Therefore, at
any given configuration and background velocity, Eq. (2.3) needs to be solved to find the tension σ.

2.2. Boundary Integral Formulation

One can follow the standard approach of potential theory [31, 34] to reformulate Eqs. (2.1–2.4) as an
integro-differential equation on the membrane of vesicles. It follows that for all X ∈ γi (i = 1, . . . , Nγ)
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we have

u(X) =
1
αi

(
u∞(X) +

Nγ

∑
j=1
Sj[ fb + fσ](X) +Dj[u](X)

)
, (2.7)

divγi u(X) = 0, (2.8)
∂X
∂t

= u(X), (2.9)

where αi = (1 + λi)/2, Sj[ fb + fσ](X) and Dj[u](X) denote the single-layer and double-layer convolu-
tion integrals over the jth surface with the interfacial force and velocity as respective densities, evaluated
at point X. The single-layer Stokes integral over the ith surface, evaluated at point x is defined as

Si[ f ](x) :=
∫

γi

S(x, Y) f (Y)dγ(Y), S(x, Y) =
1

8πµ

1
‖r‖

(
I +

r⊗ r
‖r‖2

)
, (2.10)

where r := x − Y , I is the identity operator, ⊗ denotes the tensor product, and ‖·‖ is the Euclidean
norm. The free-space double-layer integral over the ith surface, evaluated at point x is defined as

Di[u](x) :=
∫

γi

Di(x, Y)u(Y)dγ(Y), Di(x, Y) = −3(1− λi)

4π

(r · n)(r⊗ r)
‖r‖5 . (2.11)

The subscript i for the double-layer kernel Di is to emphasize its dependence on the normal to sur-
face n(Y) and the viscosity contrast of the ith vesicle λi. Given the initial distribution of vesicles, the
Eqs. (2.7–2.11) may be used to solve for their evolution over time.

2.3. Galerkin Formulation

Using the spherical harmonic functions Ynm (defined in Eq. (A.1)) as the basis set for L2(S2), one can
represent the position and tension in this basis set

X =
∞

∑
n=0

n

∑
m=−n

X̂nmYnm and σ =
∞

∑
n=0

n

∑
m=−n

σ̂nmYnm. (2.12)

Letting (·, ·) denote the inner product in this space — in which vector fields are treated element-wise —
the Galerkin method seeks the solution to Eqs. (2.7–2.11) by

αi (u, Ynm) = (u∞, Ynm) +
Nγ

∑
j=1

(
Sj[ fb + fσ], Ynm

)
+
(
Dj[u], Ynm

)
, (2.13)

(divγi u, Ynm) = 0, for all i = 1, . . . , Nγ, (2.14)(
∂X
∂t

, Ynm

)
= (u, Ynm) (2.15)

for all n = 0, 1, . . . and |m| ≤ n. In Section 3, we first outline our approach to perform computation over
the surface of vesicles using the spherical harmonics. Afterwards, we outline a time stepping method to
update the position of vesicles and then look at different schemes to solve the resulting linear system.

3. Numerical Algorithms

We discretize the Galerkin formulation discussed in the previous section. We discuss the spatial dis-
cretization in Section 3.1 and algorithms for computing the Stokes single-layer and double-layer po-
tentials from the vesicle surface in Section 3.2. In Section 3.3 we present an algorithm for detecting
collisions between vesicles and introduce a repulsion term in our formulation to avoid such collisions.
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We present an algorithm for correcting the drift in area and volume of the vesicles in Section 3.4. In
Section 3.5, we discuss the reparameterization algorithm and analyze the scheme for different choices
of the attenuation coefficient. Then, we present a first order semi-implicit time-stepping scheme in Sec-
tion 3.6 and discuss an algorithm for selecting the optimal time step size in Section 3.7. Finally, we
summarize the overall algorithm in Section 3.8.

3.1. Spatial Discretization

We assume that each surface γ is smooth and homeomorphic to a sphere. Therefore, we can construct
a C∞ map from points on γ to points on the surface of the unit sphere S2. This mapping is not unique
and can affect the magnitude of truncation errors when the surface is discretized. We will discuss these
issues later in Section 3.5. The surface of the unit sphere can be parameterized by the spherical angles
(θ, φ) ∈ [0, π]× [0, 2π). We approximate a function f on γ (mapped to S2) using the spherical harmonic
basis Ynm up to degree p

f (θ, φ) ≈
p

∑
n=0

n

∑
m=−n

f̂nmYnm(θ, φ) (3.1)

where, f̂nm are the coefficients in the spherical harmonic expansion. Using orthonormality of the spher-
ical harmonic basis, we can determine these coefficients using the relation f̂nm = ( f , Ynm). We construct
such spherical harmonic approximations for the surface position, the tension and bending forces and
the velocity of surface points.

3.1.1. Evaluation on Nodal Basis.When computing integrals over a surface γ, we require a nodal basis
representation of the surface instead of the spherical harmonic basis discussed above. For qth-order
quadratures, we discretize the spherical angles using a (q + 1)× 2q grid of points (θi, φj) given by

θi = cos−1 xi for i = 0, · · · , q

φj = π/q j for j = 0, · · · , 2q− 1

where, xi are the roots of the Legendre polynomial of degree q + 1. We refer to this as the q-grid. We
evaluate the spherical harmonic representation f̂ at points on the q-grid as follows

fij =
p

∑
n=0

n

∑
m=−n

f̂nm Ynm(θi, φj) for all i = 0, · · · , q and j = 0, · · · , 2q− 1. (3.2)

We define a linear operator Q, which implements the above computation, so that f = Q f̂ . Since the
spherical harmonic basis functions Ynm are products of the associated Legendre polynomials Pnm(cos θ)
and the Fourier basis functions eimφ, the above transform can be computed efficiently using a tensor
product rule. We first evaluate the associated Legendre polynomials at xi = cos θi for i = 0, · · · , q. This
is followed by computing q + 1 discrete Fourier transforms in φi. The method requires O

(
p2q + pq2)

work; with O
(

p2q
)

work for computing the associated Legendre polynomials and O
(

pq2) work for
the Fourier transform. We could use FFT for computing the Fourier transform and FLT (Fast Leg-
endre Transform) for evaluating the associated Legendre polynomials to reduce the complexity to
O
(

q2 log2 q
)

work (when q ≥ p and using zero padding); however, this does not provide any no-
ticeable improvement in performance for the small discretization orders (p, q ≤ 32) used in this work.

We also use Eq. (3.2) to compute derivatives in θ and φ by replacing Ynm with ∂Ynm/∂θ and ∂Ynm/∂φ
respectively. Evaluating the derivatives on the q-grid from a spherical harmonic approximation of de-
gree p requires O

(
p2q + pq2) work.
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3.1.2. Projection to Spherical Harmonic Basis.We often have to compute a projection to the spherical har-
monic space f̂ from function values fij on the q-grid where, q ≥ p. To do this, we use the relation
f̂nm = ( f , Ynm) and compute the inner product using a quadrature rule

f̂nm =
q

∑
i=0

2q−1

∑
j=0

fij Ynm(θi, φj)
π

q
wi for all n = 0, · · · , p and |m| ≤ n. (3.3)

Here, we have used the Gauss-Legendre quadrature rule (with weights wi) to integrate in φ and trape-
zoidal rule (with weights π/q) to integrate in θ. As before for Eq. (3.2), this sum can be evaluated
efficiently using a tensor product rule and this requires O

(
p2q + pq2) work. We define a linear opera-

tor P, which computes the above projection, so that f̂ = P f .

3.2. Stokes Layer Potentials

In our boundary integral formulation, we evaluate single- and double-layer potential from Nγ surfaces,
with position X, single-layer density fs and double-layer density fd

u(X) =
Nγ

∑
k=1
Sk[ fs](X) +Dk[ fd](X). (3.4)

We evaluate this potential numerically on the p-grid for each surface. For the Galerkin formulation,
we then compute a projection to the spherical harmonic space ûnm = (u, Ynm). In the remainder of this
section, we will only discuss computation of the single-layer potential; however, the algorithms are also
applicable to computing the double-layer potential.

We consider computation of the Stokes single-layer potential Sγ[ f ](Y) from a single surface γ at a
target point Y . We can express the integral over the surface γ as an integral over the spherical angles θ
and φ as follows

Sγ[ f ](Y) =
∫

γ
S(Y , X) f dγ =

∫ π

θ=0

∫ 2π

φ=0
S(Y , X(θ, φ)) f (θ, φ) W(θ, φ) dφ dθ (3.5)

where, W(θ, φ) =
√

EG− F2 is the area element of the surface (with E, F and G denoting the coefficients
of the first fundamental form of γ). When Y is not on the surface, then the integrand is smooth and
standard quadratures (Gauss-Legendre quadrature for θ and trapezoidal quadrature for φ directions)
are sufficient. We discretize the integral in Eq. (3.5) by a quadrature rule on the q-grid

Sγ[ f ](Y) ≈
q

∑
i=0

2q−1

∑
j=0

S(Y , Xij) fij Wij
π

q
wi (3.6)

where, wi are the Gauss-Legendre quadrature weights and Xij, fij and Wij are the surface position, the
density function and the area element evaluated on the q-grid. This computation requires O

(
q2) work

for each evaluation point. The method is spectrally convergent in q; however, to be accurate, it requires
that the distance between the points on the q-grid should be smaller than the distance between the
surface and the evaluation points. Therefore, for h = min|X(θ, φ)−Y |, we must have q = O

(
h−1). The

method becomes prohibitively expensive as h becomes smaller and does not converge for h = 0. Next,
we discuss special quadratures for computing these singular and near-singular integrals efficiently.

3.2.1. Singular Integration.We use the algorithm discussed in [6] for the Stokes single-layer potential
and extended to the Stokes double-layer potential in [1]. This singular integration scheme is spectrally
convergent for both single- and double-layer potentials. Below, we briefly summarize this algorithm
for computing ûnm = (Sγ[ f ], Ynm) for a single surface γ.
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We define the linear operators R(θ, φ), which transform the coefficients in a spherical harmonic ex-
pansion to the coefficients in a rotated coordinate space with the north pole at (θ, φ). The construction
of these operators is discussed in [35]. For a spherical harmonic discretization of degree p, the appli-
cation of the operator requires O

(
p3) work for each surface. We use these operators to compute the

spherical harmonic expansions of the surface position in rotated coordinate space: X̂ ij = R(θi, φj) X̂
for each point (θi, φj) on the p-grid. Then, we evaluate the spherical harmonic expansions on the q-
grid: X ij = Q X̂ ij. Similarly, we compute the single-layer density on the q-grid in rotated coordinate
space: f ij = Q R(θi, φj) f̂ . We also compute the area elements Wij from X̂ ij. This requires evaluating
the derivatives ∂X/∂θ and ∂X/∂φ on the q-grid. Now, we compute the potential uij = u(θi, φj) on the
p-grid

uij =
(

Λq ◦ Wij ◦ S(Xij, X ij)
)
· f ij for all i = 0, · · · , p and j = 0, · · · , 2p− 1 (3.7)

where, Λq are the quadrature weights from the scheme of Graham-Sloan [18] for evaluating singular
integrals at the pole. Here, we are computing the Stokes single-layer potential at the north pole Xij

from each point on the q-grid with position X ij and density f ij scaled by the area elements and the
quadrature weights at each grid point. Finally, we compute the projection from u on the p-grid to the
spherical harmonic space û = P u.

The above algorithm uses a q-grid for the singular quadrature rule instead of the p-grid used in [6].
We observed that depending on the desired accuracy of the result, we often need to use an upsampled
grid such that q > p. We will discuss choosing the optimal value for q in Section 3.2.4. The algorithm
requires O

(
p5) work for computing all the rotations, O

(
p2(p2q + pq2)

)
work for evaluating spherical

harmonic expansions on q-grid and O
(

p2q2) work for evaluating the Stokes operator and computing
the weighted inner-product with the density. Overall, this requires O

(
p5 + p3q2) work each time we

compute û.
In our semi-implicit time-stepping scheme, we use GMRES to solve for the new surface position.

Each GMRES iteration involves computing u for the same surface position X but different densities f .
Therefore, we modify the above algorithm to instead precompute the operator matrix

Sij =
(

Λq ◦ Wij ◦ S(Xij, X ij)
)
·Q R(θi, φj) for all i = 0, · · · , p and j = 0, · · · , 2p− 1

Ŝ = P S

where, Ŝ is a (p + 1)2 × (p + 1)2 matrix. In each GMRES iteration, we can now compute û = Ŝ f̂ .
Computing Ŝ still requires O

(
p5 + p3q2) work per surface; however, each subsequent application of Ŝ

only requires O
(

p4) work. This results in a significant improvement in performance over the original
scheme.

3.2.2. Near-Singular Integration.For computing interactions between a surface γ and a target point Y ,
such that Y is not on the surface but at a distance smaller than hn from the surface, we use a near-
singular integration scheme. The scheme is adapted from the method of [7]. The value of hn depends
on the order q of the Nyström scheme used in Eq. (3.6). For a given q, the optimal choice for hn has to be
determined empirically; however, we observed that the optimal value can be estimated by the relation
hn =

√
A/q where, A is the maximum surface area of any vesicle. For this choice of hn, we still get

spectral convergence with the Nyström scheme (for target points at a distance hn or greater from the
surface), since distance between points on the q-gridO

(√
A/q

)
decreases faster than hn as we increase

q. For points closer than hn to the surface, the near-singular integration algorithm has the following
sequence of steps.

(a) Identifying Near Points: The first step in the near-singular integration scheme is to identify, all pairs
of surface and target points (γi, Y) that are separated by a distance smaller than hn. We can do this
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Figure 2: Left: 2D schematic of vesicle surface (γ) and the surface discretization points. The Nyström scheme is accurate
for target points at a distance hn or greater from the surface. To compute velocity at the point Y , we determine the nearest
point Y0 on the surface. We compute the velocity at Y0 using a singular quadrature scheme and interpolation on the
surface. Using the Nyström scheme, we compute the velocity at a sequence of points Y1, · · · , YL on the line through
Y0 and Y . We compute the velocity at Y by interpolating the velocity at Y0, · · · , YL. Right: Quadratic patch created
by interpolating a 3× 3 grid of surface points. We show the first iteration for computing the projection of the target
point Y on this patch. We start at the center of the patch with (u, v) = (0, 0) and compute the update (du, dv) by
approximating the surface by the tangent plane passing through X p(u, v). Then we search for the surface point nearest
to Y along the line (u, v)− (u + du, v + dv) in parameter space. We iterate until we reach the edge of the patch or the
updates are small enough (|(du, dv)| ≤ 1E-6).

by comparing the distance between every target point and every point on the discretized surface
(q-grid). For Ntrg target points and Nγ surfaces, this requires O

(
NtrgNγ

)
work and can be very

expensive when Nγ and Ntrg are large. A more efficient method is to sort all the surface discretiza-
tion points, then for each target point we can find the surface points close to it by searching in a
sorted array. This can be implemented in a number of ways, such as: using radix sort to bin points
in hn × hn × hn size boxes; using an octrees of depth log2 hn

−1; or sorting points on a space-filling
curve. In our implementation, we use the last approach since it is easy to parallelize. We compute
the Morton Id with depth log2 hn

−1 for each surface point and sort these using a parallel sorting
algorithm [36]. The parallel sorting algorithm requires O

(
N/np log N/np + N/np log np

)
time for

N points on np processes. For each target point, we compute its Morton Id and also the neighboring
26 Morton Ids. We find all the surface points with these 27 Morton Ids using binary search and
compare the distance between these surface points and the target point. We make pairs of each
vesicle surface and target point such that the surface has a discretization point closer than hn from
the target point.

To do this in parallel on distributed memory systems, during the local binary search, the target
points must be on the same MPI process as the surface points. Therefore, we also sort the target
points by their Morton Id and partition them across MPI processes using the same partitioning as
for the surface points. Another advantage of doing this is that we can now process all the target
points with the same Morton Id together and avoid repeated binary searches in the array of surface
points. For our parallel implementation, we also have to add ghost Morton Ids to the array of
surface points so that for each target point we have all the 27 adjacent Morton Ids available locally
on the MPI process. We identify these ghost Morton Ids and communicate them using point-to-
point communication. In addition, once we form pairs of surface and target points, we have to
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send these to the process where the surface originated before the parallel sort. The rest of the near-
singular integration algorithm can then proceed independently on each MPI process.

(b) Projection on the Surface: For each pair of surface γ and near target point Y , we determine the projec-
tion Y0 of the target point on the surface (see Fig. 2). To do this, we determine the surface discretiza-
tion point that is closest to Y and select the 3× 3 grid of points in the surface mesh around this
point. If one of the poles is the nearest point, then we select the pole and eight other points adjacent
to the pole to form the 3× 3 grid. We create a quadratic surface interpolant X p(u, v) from this grid,
such that X p(0, 0) is the nearest grid point to Y . Now, we use an iterative scheme to find the point
on this interpolant that is closest to the target point Y . We start from the center of the patch (u = 0
and v = 0). In each iteration, we linearize the interpolant X p around u and v so that

X p(u + du, v + dv) ≈ X p(u, v) +∇X p(u, v) [du dv]T (3.8)

We want to find the least squares solution to X p(u + du, v + dv) = Y . Substituting in the above
equation and solving for [du dv], we have

[du dv]T = (∇X p)+ (Y − X p) (3.9)

where, (∇X p)+ is the pseudo-inverse of ∇X p(u, v). To avoid overshooting (due to the curvature
of the surface) we now search along the line (u, v)− (u + du, v + dv) in parameter space; i.e. we
try to find η0 ∈ [0, 1] such that X p(u + η0 du, v + η0 dv) is nearest to Y . We build a quadratic
interpolant p(η) such that p(η) = |X p(u + η du, v + η dv)− Y | for η = 0, 0.5, 1 and compute η0 =
arg minη∈[0,1] p(η). We update (u, v)+=η0(du, dv) and repeat the above process until we reach
the edge of the patch or the updates |(du, dv)| are smaller than a given tolerance (about 1E-6).
When the method converges, we obtain the projection Y0 = X p(u, v) of Y on the surface γ. In our
experiments, the method converged to single-precision accuracy in about 10 iterations.

(c) Interpolation: For each surface γ, we compute the Stokes singular integral û as discussed in Sec-
tion 3.2.1 and evaluate it on the q-grid. Now, for each near point (Y) of γ, we interpolate the
singular potential at the projection Y0 using the quadratic surface interpolant described above to
obtain u0 = u(Y0). We construct a set of points Y1, · · · , YL on the line through Y0 and Y ; distributed
evenly between distances hn and 2hn from point Y0. Since these points are at a distance greater than
or equal to hn, we can use the Nyström scheme to compute the potential u1, · · · , uL at the points
Y1, · · · , YL respectively. We now construct a Lagrange polynomial interpolant of degree L for the
potential {u0, · · · , uL} at points {Y0, · · · , YL}. Finally, we evaluate this interpolant at Y to obtain the
potential uY = u(Y). In our implementation, we have used the interpolation order L = 8.

The algorithm assumes that the interpolation points Y1, · · · , YL are at a distance greater than hn from
γ so that the potential at these points is smooth. However, this may not be true when the surface
has large deformations. In this case, we need to use a larger q so that hn is smaller and therefore,
the interpolation points are separated from the surface by a distance greater than hn. This requires
adaptively choosing the appropriate q and is discussed in Section 3.2.4.

The steps (a) and (b) are part of the setup phase and are compute once per time step; however, step (c)
must be evaluated each time the layer potential is computed. For Nγ surfaces, Ntrg near target points
and qth-order quadratures (where q > p), step (a) requiresO

(
Nγq2/np log

(
Nγq2/np

)
+ Nγq2/np log np

)
time, step (b) requires O

(
Ntrg/np

)
time and step (c) requires O

(
NtrgLq2/np

)
time on np processors.

Here, L = 8 is the order of the Lagrange interpolation discussed above. In our formulation, the target
points are the same as the surface discretization points (the p-grid) and therefore Ntrg = O

(
Nγ p2).
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3.2.3. Far-Field Integration.Computing the summation in Eq. (3.4), using the Nyström integration scheme

in Eq. (3.6), requires O
(

N2
γ p2q2

)
work for Nγ surfaces with spherical harmonic discretization of de-

gree p and qth-order quadrature scheme. This is an N-body problem with O
(

Nγ p2) target points
and O

(
Nγq2) source points; with the source densities scaled by the area element and the quadrature

weights.
We can accelerate the above computation by using the Fast Multipole Method (FMM) [24] and com-

pute solutions inO
(

Nγ(q2 + p2)
)

work. We use our PVFMM library [8], which is an optimized, parallel
implementation of the Kernel Independent FMM scheme of [27]. For N = Nγ(p2 + q2) source and tar-
get points, our algorithm requires O

(
N/np log(N/np) + N/np log np

)
setup time for tree construction

andO
(

N/np + (N/np)2/3 log np

)
time for each subsequent evaluation on np processes. In addition to

free-space boundary conditions, the library can also compute periodic solutions by creating an infinite
periodic tiling of the source density. The far-field computation is by far the most expensive computation
in our scheme and the use of the PVFMM library allows us to compute solutions efficiently and scale
our scheme to a large number of compute nodes.

Using FMM requires that we compute interactions between all pairs of source and target points.
Therefore, we have to use direct summation to compute interactions with the near target points for each
surface, subtract it from the FMM solution and then add the contributions from the singular and near-
singular integration schemes discussed above. Computing these summations requires an additional
O
(

Ntrgq2) work, where Ntrg = O
(

Nγ p2); therefore, we still retain linear work complexity in Nγ.
While it may be more efficient to exclude these self- and near-interactions when computing the FMM
sum, it is very complicated and would require implementing an entirely new FMM library.

3.2.4. Integration Error.We can estimate the error in the integration scheme discussed above by checking
with a known eigenvalue of the double-layer operator. We evaluate the following double-layer integral

u(Y) =
Nγ

∑
k=1
Dk[ f ](Y) (3.10)

where, the density f = 1 on each surface. For closed and non-overlapping surfaces, this integral has an
analytical solution: u(Y) = 1 when Y is enclosed by any surface; u(Y) = 0.5 when Y is on any surface;
and u(Y) = 0 when Y is in the exterior of all surfaces. We use this analytical solution to estimate the
error for each of the singular, near-singular and far-field integration schemes in each time-step. We then
adjust the order of the quadrature schemes, by incrementing the order by one (q ← q + 1) if the error
is larger than the required accuracy and decrease the order by one (q ← q − 1) if the error is smaller
than the required accuracy. While we use the same quadrature order for the near-singular and far-field
integration schemes, the order for the singular quadrature scheme can be different.

3.3. Collision Handling

During the course of a numerical simulation, two vesicles may intersect. This happens due to various
discretization errors introduced in the simulation. When this happens, it leads to non-physical behavior
and the simulation may even break (GMRES may fail to converge).

In every time step, after computing the updated vesicle position, we check if the vesicles intersect.
To do this, for each surface mesh point X, we find the surfaces near this point and for every such surface
γ, we determine the normal projection X0 of X on γ. This is already done as part of the near-singular
integration discussed in Section 3.2.2 and therefore, we need to do this only once per time step. We
compute the dot-product of the outward surface normal vector nX0 at X0 with the vector X − X0. If
the dot-product nX0 · (X − X0) ≤ 0, then we know that the vesicles either touch or intersect. Note
that this can sometimes fail since we only check for intersection at the mesh points on the vesicles and
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Figure 3: Left: To determine if two vesicles intersect, for each point X, we compute its normal projection X0 on
the other vesicle. If the vesicles intersect, then nX0 · (X − X0) ≤ 0. We also add a repulsion force given by fr(X) =∫

Y∈γ K(X−Y). Right: Plot of the repulsion force fr(X) as a function of the distance |X−X0| for the repulsion function
given in Eq. (3.13). The parameter Rrepul controls the range of the repulsion force. The repulsion becomes infinitely large
as the surfaces approach each other and decays rapidly as the distance between them increase. At |X − X0| = 3Rrepul ,
the repulsion force | fr(X)| ∼ 1E-5.

also because the quadratic patch is only an approximation of the actual vesicle surface. If we determine
that the vesicles intersect, we reject the solution for that time step, reduce the time step by half and
recompute the solution.

Despite the above adaptive time-stepping, there are still cases where it is not possible to avoid col-
lision between surfaces. To address this issue, we introduce a repulsion force between the vesicles.
The repulsion term is added along with the bending and tensile forces in our Galerkin formulation in
Eq. (2.13) as follows

αi (u, Ynm) = (u∞, Ynm) +
Nγ

∑
j=1

(
Sj[ fb + fσ + fr], Ynm

)
+
(
Dj[u], Ynm

)
(3.11)

where, the force fr can be any highly localized repulsive force. We define fr(X) by the convolution of
the surface with a kernel function,

fr(X) =
∫

Y∈γ
K(X − Y), where K(X) =

(
3Rrepul

4

2|X|5 +
Rrepul

2

|X|3

)
exp

(
−|X|2
Rrepul

2

)
X (3.12)

where, K is the repulsion kernel function and the constant Rrepul is related to the range of the repulsion
force. We choose the repulsion kernel in such a way that the repulsion force becomes infinite as two
surfaces approach each other. This allows the surfaces to come arbitrarily close but guarantees that they
will not touch. The kernel function also decays quickly as the distance between the surfaces increases
to ensure that the repulsion only comes into play when the surfaces are very close together.

Since the evaluation points are very close to the vesicle surface, a Nyström discretization of the inte-
gral in Eq. (3.12) will converge very slowly. Instead, we compute this integral analytically by assuming
that the vesicle surface is nearly flat in the vicinity of the target point. The repulsion force can then be
approximated as,

fr(X) ≈
Rrepul

2

|X − X0|3
exp

(
−|X − X0|2

Rrepul
2

)
(X − X0) (3.13)
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When Rrepul is smaller, the repulsion force is more localized but the equations become stiffer and we
need to use smaller time step size. In our simulations we choose Rrepul = 2E-2.

3.4. Area and Volume Correction

The area and volume of a vesicle determine their dynamical behavior through reduced volume [37].
To avoid drift in these values we correct the area A and volume V at each time step by solving the
following constraint minimization problem for each vesicle γ

arg min
s.t. A(X)=A0,V(X)=V0

1
2
‖X − X?‖2

L2(γ), (3.14)

where X? is the candidate position obtained through time-stepping and reparametrization, whose area
and volume may have drifted from A0 and V0. One approach in solving this minimization problem is to
linearize the constraints and solve the equality constrained quadratic program directly. The variations
of the area and volume of a surface with displacement δX are given by [38, Section 9.4]

dA(X, δX) = −2
∫

γ(X)
H δX · n dγ = −2 (H, ψ) , (3.15)

dV(X, δX) =
∫

γ(X)
δX · n dγ = (1, ψ) . (3.16)

In the last terms above, we restricted δX to the normal direction δX = ψn because these first variations
only depend on the normal perturbation to the surface. The linearized minimization problem is then

arg min
s.t. dA(X,ψ)=δA

dV(X,ψ)=δV

1
2
(ψ, ψ) (3.17)

where δA = A0 − A(X) and δV = V0 −V(X). The Lagrangian for Eq. (3.17) is

L(ψ, α, β) = (ψ, ψ) + α (dA(X, ψ)− δA) + β (dV(X, ψ)− δV) . (3.18)

The derivative of L with respect to the Lagrange multipliers recovers the linearized constraints and the
derivative with respect to ψ is

dL
dX

(φ) = (ψ− 2Hα + β, φ) , (3.19)

which gives a linear system for the KKT conditions. The linear system can be simplified to a small
system for the Lagrange multipliers:[−4 (H, H) 2 (H, 1)

2 (1, H) − (1, 1)

] [
α
β

]
=

[
δA
δV

]
. (3.20)

After computing α and β, we evaluate ψ = 2αH − β and move the surface to X + ψn. Due to the
linearization step we may need to iterate a few times to satisfy the constraint up to the given accuracy.
In our experiments, this step typically converges in two or three iterations.

3.5. Reparameterization

As a simulation progresses, due to the absence of in-plane shear resistance in vesicles, the quality of
the mesh eventually deteriorates. The grid points may cluster in some regions and become sparse in
other regions. When unchecked, this leads to unresolvable high frequencies in the spherical harmonic
expansion of the vesicle shape and interfacial forces. The distortion of the mesh may also adversely
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Figure 4: Comparison of different reparameterization schemes. Fig. 4(a) shows the mesh and the singular integration
error for a simulation without reparameterization. The reparameterized mesh for different schemes are shown in Figs. 4(b)
to 4(e). For each scheme, we also show the spectrum for the original mesh X and the reparameterized mesh Y in Figs. 4(f)
to 4(i). The decay of the quality measure E with reparameterization iterations is shown in Figs. 4(j) to 4(m). The
reparameterization scheme with the attenuation coefficients an = n2 works best as it has small truncation error (10−4)
for the spherical harmonic expansion and also has about 6-digits of accuracy for double-layer singular integration.

affect the accuracy of the singular integration scheme. In [6], this is solved by reparameterization of the
vesicle surface after each time step. Below, we briefly outline this scheme.

The vesicle surface γ parameterized by spherical coordinates is given by the map X(s) : S2 → R3.
Let F : R3 → R denote the implicit representation of the surface such that F(γ) = 0 and ∇ F does not
vanish. Our goal is the to choose an alternate parameterization Y(s) : S2 → R3 for the surface such
that it minimizes the quality measure E(Y) = (Y , Y)E with the inner product defined as (X, Y)E :=
∑

p
n=0 ∑n

m=−n a2
n (X, Ynm) (Y , Ynm). Therefore, to obtain Y we need to solve the following constrained

minimization problem:

arg min
Y∈C∞(S2)

E(Y) subject to F(Y(s)) = 0 for all s ∈ S2. (3.21)

This is reformulated as a pseudo-transient continuation [39] problem and discretized using an explicit
first order scheme (see [6] for details) as follows,

Yk+1 = Yk − vk∆τ where, vk =
(I − nk ⊗ nk)∇ E(Yk)

‖(I − nk ⊗ nk)∇ E(Yk)‖∞
(3.22)

We select the reparameterization step size ∆τ to be the minimum of ∆τmax and (Yk, vk)E / (vk, vk)E. This
ensures that the first order reparameterization scheme does not introduce errors larger than O (∆τmax)
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and having ∆τ ≤ ∆τmax and (Yk, vk)E / (vk, vk)E guarantees that in each iteration of the algorithm
E(Yk+1) ≤ E(Yk), i.e. the quality measure E(Y) always decreases. We stop the algorithm when ∆τ
becomes smaller than a specified tolerance.

In Fig. 4, we analyze the performance of the reparameterization algorithm for different choices of
the attenuation coefficients an in the definition of the quality measure E. Fig. 4(a) shows the mesh
with degree p = 16 from a simulation without reparameterization. We reparameterize this mesh using
different schemes in Figs. 4(b) to 4(e). For each mesh we also visualize the singular integration error
computed using the method discussed at the end of Section 3.2.4 for the singular-integration scheme
of order q = 32. In Figs. 4(f) to 4(i), we plot the spectrum of the spherical harmonic expansion of the
reparameterized mesh Y and compare it to that of the original mesh X and the coefficients 1/an. For
each reparameterization scheme, we show the decay for the quality measure E with the number of
reparameterization iterations in Figs. 4(j) to 4(m). We observe that for scheme an = n, the spectrum for
the reparameterized surface does not decay fast enough and therefore, the surface is not resolved accu-
rately in regions of high curvature. The schemes with an = n16 and an = H(n− 2p/3) affect only the
high-order components in the spherical harmonic expansion. In this case, while the surface is resolved
accurately, the scheme does not fix the clustering of mesh points and this affects the accuracy for the
singular integration scheme. The scheme an = H(n− 2p/3) was used in our previous papers. While
it worked well for low-order discretizations, our present study shows that it does not work well for
high-order discretizations. Finally, the scheme with an = n2 has small truncation error for the spherical
harmonic expansion and also achieves high accuracy for singular integration. In the remainder of this
paper, we always use this reparameterization scheme.

3.6. Semi-Implicit Time-Stepping

At time tn, we denote the membrane position by Xn. To compute the updated surface position Xn+1

at time tn+1, we use the semi-implicit time-stepping scheme of [1]. Next, we briefly summarize this
scheme.

The interfacial forces fb(X) and fσ(X, σ) are defined at each point on the membrane γ. The bending
and tension operators are defined as S [ fb(X)] and S [ fσ(X, σ)] respectively. We linearized the bending
and tension operators around Xn as follows,

Bu = SXn [ fb(Xn) + fb
′(Xn)u∆t], (3.23)

Tσ = SXn [ fσ(Xn, σ)]. (3.24)

The discrete spectral version of these operator are given by: B̂ û = P B Q û and T̂ σ̂ = P T Q σ̂.
Similarly, we also define the following discrete spectral operators: D̂ û = P DXn [Q û] and d̂ivγ (û) =
P divγ (Q û). The operators B, T and D are implemented using the quadrature scheme described in
Section 3.2. The Galerkin formulation in Eqs. (2.13–2.15) is now discretized to give the globally semi-
implicit time-stepping scheme,

αiûi = û∞
i +

Nγ

∑
j=1

(
B̂ijûj + T̂ijσ̂j + D̂ijûj

)
for all i = 1, . . . , Nγ, (3.25)

d̂ivγ û = 0, (3.26)

Xn+1 = Xn + u∆t. (3.27)

The subscripts i and j in operators B̂ij, T̂ij and D̂ij denote that the operators are applied to the jth surface
and the target points are on the ith surface. We use GMRES to solve this linear system for the tension σ,
velocity u and the updated position Xn+1.
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3.7. Adaptive Time-Stepping

Our adaptive time-stepping scheme is based on the work of [9, 10]. Even though we have a first order
time-stepping scheme, we present the algorithm for choosing the time step size for a general kth-order
scheme. In each step of the simulation, we use an estimate of the error en incurred in the current iteration
with time step size ∆tn to determine the optimal time step size ∆tn+1 for the next step. The error en is
estimated in one of the following two ways:

• We determine the new position X̂n and Xn using different numerical schemes. From the vesicle
position Xn−1 at time tn−1, we compute X̂n by taking one time step of size ∆tn and compute Xn
by taking two time steps of size ∆tn/2. Then, we defined the error estimate as en := ‖Xn − X̂n‖2.

• We measure the change in invariant quantities such as the surface area An and volume Vn. We
define the error estimate as en := max(|∆A|/A, |∆V|/V).

In the first case, we have to perform extra computation to determine two numerical solutions for the
position and this can be expensive. In the second case, it requires very little computation to determine
the change in area and volume between time steps. While the second error estimate worked well in
2D, it is not robust enough 3D and we observed several instances where the method underestimated
the error. Therefore, in this work we always use the first error estimate. In both cases, the total error
also depends on other factors such as truncation errors, accuracy of the Stokes operator (FMM and
quadratures) and the GMRES tolerance used to enforce inextensibility. For a kth-order time-stepping
scheme, the error is observed to scale with ∆tn as en = O

(
∆tk+1

n + εother ∆tn

)
. Therefore, have to

ensure that εother is also small enough.
For a long time scale simulation with time-horizon T and an overall error tolerance E , we present an

algorithm to determine the optimal step size ∆tn at each time step. In (n + 1)th time step, we choose the
step-size ∆tn+1 such that the error en+1 is as close as possible to the maximum allowed error but does
not exceed this error. Therefore, we want en+1/∆tn+1 = βE/T, where β < 1 is a safety factor. In our
experiments, we choose β = 0.9.

We assume that for a kth-order time-stepping scheme, the error scales with ∆tn as en = O
(

∆tk+1
n

)
.

We also assume that the constants in this order estimate do not change significantly between consecu-
tive time steps. Then, we have, ∆tk+1

n+1/en+1 = ∆tk+1
n /en. We substitute en+1/∆tn+1 = βE/T to obtain

the new time step size ∆tn+1,

∆tn+1 = ∆tn

(
β
E
T

∆tn

en

)1/k

Then, we compute the solution Xn+1 at time tn+1 = tn + ∆tn+1. We measure the error en+1 and check
if it satisfies the condition en+1/∆tn+1 ≤ E/T. If the condition is satisfied, we accept the solution and
proceed to the next time step. If the condition is not satisfied, we reject the solution and update the time
step size as follows,

∆tn+1 = ∆tn+1

(
β
E
T

∆tn+1

en+1

)1/k

We repeat the above process with this updated time step size.

3.8. Algorithm Summary and Computational Cost

For a simulation of Nγ vesicles, the initial conditions are defined by the position and shape of the
vesicles using pth-order spherical harmonic discretization X̂. For each surface, we provide the bending
modulus, the excess density and the viscosity contrast of the fluid inside the vesicle compared to the
fluid outside. We also specify the boundary conditions (periodic with period length or free space),
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the background velocity field u∞ and the time-horizon for the simulation T. In addition, we provide
the following simulation parameters: the error tolerance for time-adaptivity E , the initial time step
size ∆t, the tolerance for each GMRES solve εGMRES, the maximum reparameterization step size ∆τmax,
the distance parameter for repulsion Rrepul , the initial quadrature q order and the required accuracy
for singular, near-singular and far-field integration. The discretization order p and the tolerance for
time-adaptivity E are decided based on the accuracy requirements for the simulation. We choose the
GMRES tolerance εGMRES and the quadrature accuracy to be about 1E-6 or smaller. The choice of the
initial time step size ∆t and the initial quadrature order q has little effect since they are determined
adaptively. The reparameterization step size ∆τmax is set to roughly match the accuracy of the surface
discretization (∼ 1E-3 in our experiments). The repulsion distance Rrepul must be large enough so that
the repulsion force can be resolved using pth-order spherical harmonics. The results in Fig. 5(f) can
serve as a guideline for selecting Rrepul for different values of p.

To compute the new surface position X̂+ after time ∆t, we solve the linear system discussed in
Section 3.6. To do this, we setup the RHS for the linear system and initialize the linear operator. Con-
structing the linear operator requires setting up the operators for the linearized interfacial forces and
the Stokes single and double-layer potentials. Detailed discussion of linearized interfacial forces can
be found in [1, 6]. For the Stokes layer potentials, we perform the setup for each of the singular, near-
singular and far-field integration algorithms discussed in Section 3.2. This involves: computing the
singular integration matrices; identifying the pairs of vesicles and their near target points, computing
projection of these target points on the vesicle surface; and constructing the octree for the FMM. During
the setup for near-singular integration, we also check for vesicle collision, compute the repulsion force
and add it to the RHS. We also check the accuracy of the quadratures using the scheme described in
Section 3.2.4 and update the order of the quadratures. Then, we solve this linear system using GMRES
to obtain the new position X̂+ and the surface tension σ̂+. Each GMRES iteration involves computing
the linearized interfacial forces and then evaluating the Stokes layer potential.

For adaptive time-stepping, we perform three GMRES solves as discussed in Section 3.7 to estimate
the solution error. If the error is smaller than E∆t/T, then we accept the new solution and advance the
time by ∆t; otherwise, we reject the solution. Then, we update the time step size to be used in the next
iteration. After each successful update, we apply the area and volume correction algorithm discussed
in Section 3.4 and reparameterize the surface discretization as described in Section 3.5. We repeat the
above steps until t = T.

A summary of the computational cost associated with the different stages of our algorithm is given
in Table 2.

4. Results

We present some numerical results to show the accuracy and time-to-solution on a single node in Sec-
tion 4.1 and strong and weak scalability of our method in Sections 4.2 and 4.3 respectively. All results
are presented for the Stampede system at the Texas Advanced Computing Center (TACC). It is a Linux
cluster consisting of 6,400 compute nodes connected by 56Gb/s FDR Mellanox InfiniBand network in
a fat tree configuration. Each compute node has dual eight-core Intel Xeon E5-2680 CPUs running at
2.7GHz and 32GB of memory. In addition, most nodes have an Intel Xeon Phi SE10P co-processor, while
a few have an NVIDIA K20 GPU co-processor; however, our current implementation can not utilize
these accelerators.

4.1. Single Node Results

We present results for two vesicles in shear flow as shown in Figs. 5(a) to 5(d). The fluid inside and
outside the vesicles is identical, the vesicles have a reduced volume of 0.85 and bending modulus of
0.01 and the simulation has a time-horizon of T = 160. The experiment is designed to underline the
significance of high-order spatial discretization, time-adaptivity, near-singular integration, reparame-
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NTstep ×
Nγ

np
p3(p2 + q2) + (singular)

Setup Tsetup = NTstep ×
Nγ

np
q2
(

log
Nγ

np
q2 + log np

)
+ (near-singular)

NTstep ×
Nγ

np
q2
(

log
Nγ

np
q2 + log np

)
(far-field)

Singular Integration Tsel f = NTstep × Niter ×
Nγ

np
p4

Near-singular Integration Tnear = NTstep × Niter ×
Nγ

np
p2q2

Far-field Integration Tnear = NTstep × Niter ×
Nγ

np
(p2 + q2) + (computation)

NTstep × Niter ×
(

Nγ

np
q2
)2/3

log np (communication)

Reparameterization Trepar = NTstep × Nrepar ×
Nγ

np
p3

Table 2: Time complexity for Nγ vesicles with pth-order surface discretization, qth-order quadratures (such that p < q),
NTstep GMRES solves of the implicit time-stepping scheme with Niter GMRES iterations per solve on np processors. We
denote the average number of reparameterization iterations in each time step by Nrepar.

terization and collision handling. The simulation reveals significant inter-vesicle interactions and the
vesicles undergo large deformations. The vesicles are closest at t = 136 (see Fig. 5(c)). Without repul-
sion, we require a discretization order of at least p = 32 to accurately resolve this flow. For lower orders,
the spatial discretization errors cause the vesicles to intersect and this causes the simulation to break.

4.1.1. Convergence Analysis.We study dependence of the solution error on the discretization order (p),
the tolerance for time-adaptivity (E ) and the repulsion distance (Rrepul). All solutions are computed
using the first order implicit time-stepping scheme and using the block-diagonal preconditioner. We
use a fixed GMRES tolerance of εGMRES = 1E-7 for the implicit solver. All boundary integrals are com-
puted using 2× upsampling of the mesh; i.e. the quadrature order for singular, near-singular and
far-field integration is q = 2p for pth-order surface discretization. We reparameterize using the attenu-
ation coefficients an = n2 with reparameterization time step size ∆τmax = 1E-4 and reparameterization
termination condition ∆τ < 1E-5.

Reference Solution. We construct a reference solution without repulsion (Rrepul = 0), using adaptive
time-stepping with E = 0.1 and with discretization order p = 32. Computing the reference solution
required about two days of compute time on a single node of Stampede. Attaining similar accuracy
without time-adaptivity would be 5×more expensive.

Time-Adaptivity and Relation Between E and ∆t. In Fig. 5(e), for fixed p = 32 and no repulsion, we plot
the time step size ∆t during the second half of the simulation (80 ≤ t ≤ 160). We vary the tolerance for
time-adaptivity (E ) and observe an approximately linear relationship between ∆t and E due to the first
order semi-implicit time-stepping scheme.

Effect of Repulsion Distance Rrepul . In Fig. 5(f), we introduce repulsion between the surfaces and plot
the error in the vesicle position (compared with the reference solution) at the end of the simulation as a
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(a) t = 90 (b) t = 120 (c) t = 136 (d) t = 145

(e) p = 32, Rrepul = 0
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Figure 5: Convergence results for two vesicles in shear flow. The reference solution shown in figures Figs. 5(a) to 5(d)
is computed using discretization order p = 32, time-adaptivity error tolerance E = 0.1 and no repulsion force. In
Fig. 5(e), we show the time step size ∆t at different points during the simulation for the reference solution (E = 0.1) and
also larger values of E while keeping p = 32 fixed. The first order behavior of the time-stepping scheme can be observed.
We also observe a smaller time step size in regions where vesicle-vesicle interactions become significant. Fig. 5(f) shows
the dependence of error in vesicle position (compared to the reference solution) when a short range repulsion force in
added between the vesicles. The repulsion force allows us to use lower order discretizations and does not introduce
significant errors for Rrepul ≤ 0.04. For different discretization orders, we show the linear dependence of the vesicle
position error with the tolerance for time-adaptivity E in Figs. 5(g) and 5(h) for the cases without repulsion and with
repulsion (Rrepul = 0.04) respectively.
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function of the repulsion distance (Rrepul) for different discretization orders and time-adaptivity toler-
ance E = 0.2. Due to reparameterization, we can not directly compare the position of the surface grid
points; therefore, we compare the surface center of mass ci =

∫
γi

dγi for the ith vesicle. We report the
maximum error in the position for any vesicle at the end of the simulation and this error is normalized
by the vesicle length. We observe that for p = 32, adding repulsion does not cause any noticeable
increase in error for Rrepul < 0.04. This is because the range of the repulsive force is smaller than the
separation between the vesicles. We observe a steady increases in error with Rrepul for Rrepul ≥ 0.04.
By adding repulsion, we are also able to compute solutions with lower order spatial discretizations. In
general, the repulsion distance should be at least of the order of the distance between the grid points
so that the repulsion force can be resolved on the vesicle surface. For Rrepul = 0.04, we can compute
solutions with p ≥ 12 and this does not appear to significantly affect the solution accuracy.

Relation Between E and Position Error. In Figs. 5(g) and 5(h), we plot the error in vesicle position as a
function of the time-adaptivity tolerance E for Rrepul = 0 and Rrepul = 0.04 respectively. In both cases
we observe an approximately linear relationship between the position error and E .

p E Rrepul error NTstep Niter Tsolve Tsetup Tsel f Tnear Tfar Trepar

32 0.2 0.0 4.1E-3 3270 34 64321 23592 2724 6684 22925 4208
32 0.4 0.0 1.1E-2 1116 40 25864 8184 1104 2417 9228 3285
32 0.8 0.0 2.0E-2 441 50 13087 3316 558 1007 4500 2907
32 1.6 0.0 3.3E-2 216 67 8902 1670 363 572 2966 2802
32 2.4 0.0 5.4E-2 153 81 8828 1219 310 471 2522 3844
32 0.2 0.0 4.1E-3 3270 34 64321 23592 2724 6684 22925 4208
24 0.4 1E-2 1.3E-2 1191 39 8474 1933 262 954 3283 1157
16 0.8 2E-2 2.8E-2 513 36 1091 127 29 97 358 263
12 1.6 4E-2 4.3E-2 228 45 333 21 8 21 100 90

8 2.4 6E-2 4.3E-2 174 27 106 5 2 4 30 38

Table 3: We present convergence results for the shear flow problem visualized in Figs. 5(a) to 5(d). For different values of
error tolerance E , we report the error in vesicle position compared to a reference solution computed with E = 0.1, p = 32
and no repulsion. We also report the number of solves of the implicit time-stepping scheme NTstep, the average number
of GMRES iterations needed for each solve Niter and the time-to-solution Tsolve. In addition, we report a breakdown of
the time spent in different stages of the algorithm: the cost for reparameterization Trepar, the cost for singular Tsel f , near-
singular Tnear and far-field Tfar interactions and their setup cost Tsetup. We compare results for high-order discretization
and no repulsion with results for low order discretizations, which are made possible due to the addition of a repulsion
term. For about 5% error in vesicle position, using low order discretization (p = 8) is over 80× faster when compared
with a solution computed using p = 32.

4.1.2. Timing Results.In Table 3, we present detailed results for the above shear flow test case. In addi-
tion to the error in vesicle position, we also report the number of solves of the implicit time-stepping
scheme NTstep, the average number of GMRES iterations Niter, the overall solve time Tsolve and a detailed
breakdown of the time spent in different stages of the algorithm. We report two sets of results.

Fixed Spatial Discretization Order p = 32. In the first set, we report results for a fixed discretization order
p = 32, no repulsion and varying tolerance values for time-adaptivity E . Due to the first order time-
stepping scheme, we observe an approximately linear relationship between the number of time steps
NTstep and inverse of the error tolerance 1/E . At the same time, we observe that with increasing time
step size (due to increasing E ), the number of GMRES iterations per time step increase significantly.
This happens because the semi-implicit scheme becomes more ill-conditioned. Therefore, we do not
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observe the expected speedup in Tsolve with increasing E . The interactions between vesicles computed
through single-layer and double-layer Stokes kernel functions are evaluated at every GMRES iteration
while the setup phase is execute once for each time step. Therefore, for a fixed discretization order p,
we observe that Tsetup scales as O

(
NTstep

)
while Tsel f , Tnear and Tfar scale as O

(
NTstepNiter

)
. We also

note that the reparameterization time Trepar shows little variation with E . This is because for larger E
even though we reparameterize fewer times (since NTstep is smaller), a larger time step size means that
we require many more reparameterization iterations.

Optimal Spatial Discretization Order. In the second set of results in Table 3, we add a short range repul-
sion force between the surfaces to prevent collision between them. This allows us to use lower order
discretizations and obtain a faster time to solution. Comparing these results with high-order discretiza-
tions, we observe that the error in vesicle position and number of time steps NTstep remain the same
for the same value of E . However, the number of GMRES iterations are much smaller for low order
discretizations. We believe this is due to the smaller size of the linear system being solved. In addition,
each GMRES iteration has drastically lower computational cost for smaller discretization orders p since
we have O

(
Nγ p4) cost for singular and near-singular integration and O

(
Nγ p2) cost for far-field inter-

actions. The setup stage (with O
(

Nγ p5) cost for computing the singular integration operator) and the
reparameterization algorithm (with O

(
Nγ p3) cost per iteration) are also significantly less expensive

for smaller p. For the same solution accuracy, we observe nearly two orders of magnitude speedup
when using low order discretizations with repulsion compared to high-order discretizations without
repulsion.

4.2. Strong Scaling

In this section, we present strong scaling results for the periodic Taylor-vortex flow simulation shown
in Fig. 6. We used the following background velocity field

u∞(x, y, z) = α sin
( 2πx

L
)

cos
(

2πy
L

)
sin
( 2πz

L
)

ex + α cos
( 2πx

L
)

sin
(

2πy
L

)
sin
( 2πz

L
)

ey (4.1)

where, L = 17 is the period length of the domain and α = 0.1 is a scaling factor. The domain has 1408
biconcave shaped vesicles with 35% volume fraction. Each vesicle has an approximate diameter of 1.89,
a height of 0.54, a reduced volume of 0.65 and a bending modulus of 0.1. For this simulation, we used
16th-order spherical harmonic discretization with 50th-order quadratures for singular integration and
24th-order quadratures for near-singular and far-field integration for about 5-digits of accuracy. We
used our adaptive time-stepping scheme with an error tolerance of E = 0.02 for time-horizon T = 2.
The linear system for the semi-implicit time-stepping scheme was solved using GMRES with a relative
tolerance of 1E-5. For time-horizon T = 2, we needed 18 GMRES solves and each solve required an
average of Niter = 139 iterations for discretization order p = 16 and Niter = 311 iterations for p = 32.

In Fig. 7, we report the total CPU time (wall-time×CPU cores). For p = 16 (figure on the left), we
scale from 16 CPU cores (1 compute node) to 1024 cores (64 compute nodes). For p = 32 (figure on the
right), 4×more memory is required for storing the singular integration operators and therefore we start
from 256 CPU cores (16 compute node) and scale up to 2048 cores (128 compute nodes). For p = 16,
we achieve a 26.5× speedup in the total wall-time or 41.4% strong scaling efficiency and for p = 32, we
achieve a 3.8× speedup in the total wall-time or 47.9% strong scaling efficiency. Overall, we observe
that the case with p = 32 is about 10×more expensive that p = 16.

We also provide a breakdown of the time spent in the different stages of our algorithm. The cost
of the setup stage is dominated by the computation of singular integration matrix for each surface.
Since the setup is performed only once for every Niter evaluations, the setup cost is dwarfed by the
evaluation cost (singular, near-singular and far-field integration) and requires just 3% ∼ 6% of the
runtime. The singular integration requires very little work (about 1% for p = 16 and 3% for p = 32 of
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(a) t = 0 (b) t = 125 (c) t = 500

Figure 6: A simulation of 1408 vesicles in a periodic Taylor-vortex flow. The vesicles have a volume fraction of 35% and
each vesicle has a biconcave shape with a reduced volume of 0.65. For this simulation, we used 16th-order discretization
with 50th-order quadratures for singular integration and 24th-order quadratures for near-singular and far-field inte-
gration. We used adaptive time-stepping with error-factor E/T = 0.01 and with a tolerance of 1E-5 for the GMRES
solve.
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Figure 7: Strong scalability results for the periodic Taylor-vortex flow in Fig. 6. We present results for discretization
order p = 16 on the left and p = 32 on the right. In both cases, we used 50th-order quadratures for singular integration
and 24th-order quadratures for near-singular and far-field integration. We solved the problem for a time-horizon T = 2
and the adaptive time-stepping scheme required 18 GMRES solves. On average, each GMRES solve requires Niter = 138
iterations for p = 16 and Niter = 311 iterations for p = 32.

runtime) due to ourO
(

p4) scheme. Due to the dense packing of the vesicles, we need to compute near-
singular integration for a large number of target points. Therefore, near-singular integration is relatively
expensive and requires about 23% ∼ 33% of the CPU time; however, it scales well since it is compute
bound and requires very little communication. The far-field computation is the most expensive stage
in our scheme and requires 46% ∼ 63% of the total CPU time. It is implemented using FMM and gives
good performance up to 256 cores for p = 16 and up to 1024 cores for p = 32. As we increase the
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number of CPU cores further, the problem size per core is too small to remain efficient and we begin
to lose performance. The reparameterization does not require any communication and is inexpensive
compared to the overall solve time. The remaining time (about 8% ∼ 11%) is mostly spent inside the
GMRES solve in PETSc.

(a) t = 0 (b) t = 4 (c) t = 30

Figure 8: A simulation showing sedimentation of vesicles under gravitational force. We start with 512 vesicles arranged
in an 8× 8× 8 lattice at where, each vesicle has a reduced volume of 0.85, bending modulus of 0.05 and has excess density
ρi − ρ = 1.0 (and gravitational acceleration g = 1.0). We used our adaptive time-stepping scheme with error factor
E/T = 0.02 and a spatial discretization order p = 16.

4.3. Weak Scaling

In Fig. 9, we present weak scaling results for a polydisperse sedimentation flow on 16K CPU cores.
We used 16th-order discretization, a fixed step-size of ∆t = 0.01 and a time-horizon T = 0.2. For the
semi-implicit scheme, we used a GMRES tolerance of 1E-5 and the average number of GMRES iterations
varied from 64 iterations for the smallest problem size to 25 iterations for the largest problem size. We
present two sets of results for different grain sizes. In the first case (Fig. 9:left), we have one vesicle
per CPU core. We achieve 50GFLOP/s on 16 cores and 20TFLOP/s on 16K cores; i.e. 400× increase in
performance for 1024× increase in the number of processors. In the second case (Fig. 9:right), we have
seven vesicle per CPU core. We achieve 122GFLOP/s on 16 cores and 53TFLOP/s on 16K cores; i.e. 437×
increase performance for 1024× increase in the number of processors.

We have presented a detailed breakdown of the time in different stages of the algorithm as we scale
from 16 cores to 16K cores. The solve time is dominated by the far-field integration stage, which ac-
counts for 74% ∼ 86% of the total time. Unlike the Taylor-Green vortex flow discussed in Section 4.2,
for sedimentation flow, the near-singular integration requires very little work (about 2% ∼ 5% of Tsolve).
This is due to the relatively lower density of vesicles resulting in fewer near-singular interactions be-
tween vesicles. The setup and self interaction stages requires about 4% ∼ 8% and 1% ∼ 2% of the solve
time respectively. The reparameterization time Trepar ranges from 0.3% ∼ 10% of the total time.

5. Conclusions

We have presented new algorithms for fast simulation of vesicle in a Stokesian fluid. These include
efficient singular, near-singular and far-field integration algorithms for computing single- and double-
layer Stokes potentials. We have developed algorithms for detecting collision between vesicles and to
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Figure 9: Weak scalability results for polydisperse sedimentation similar to the flow visualized in Fig. 8 on 16K CPU
cores. We compute solutions for a time-horizon T = 0.2 using a fixed time step size ∆t = 0.01. We used discretization
order p = 16 and singular, near-singular and far-field quadratures of order q = 28. The vesicles have a reduced volume
of 0.85, bending modulus in the range [0.05, 0.1], viscosity contrast in the range [0.5, 5] and an excess density of 1. We
show results for two different problem sizes: on the left for 1 vesicle per core and on the right for 7 vesicles per core.
For each case, we present a bar graph showing the breakdown of the solve time into each of the different stages of the
algorithm. We also report the average number of GMRES iteration Niter and the overall performance in GFLOP/s for
each test case.

handle such collisions in a robust way by adding a repulsion force between the surfaces. We have also
developed an algorithm for correcting the area and volume of vesicles in long-time scale simulations.
We have analyzed our surface reparameterization algorithm to determine the optimal choice of the
quality measure function. We have implemented an adaptive time-stepping scheme, which allows us to
choose the optimal time step size. This has significantly improved time-to-solution while still achieving
the desired error tolerance. These algorithms have enabled us to compute accurate, long-time scale
simulations for flows with high volume fraction of vesicles.

We have presented convergence studies to show first order convergence in the time step size. We
also analyzed the effect of our collision handling scheme (using repulsion force) on the solution accu-
racy. Our algorithms are extremely efficient and show good strong and weak scalability on distributed
memory architectures.

Appendix A. Spherical harmonic basis functions

The spherical harmonic function of degree n (n = 0, 1, 2, · · · ) and order m (|m| ≤ n) is defined as

Ynm(θ, φ) =
1√
2π

Pnm(cos θ)eimφ (A.1)
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where, Pnm is the normalized associated Legendre polynomial of degree n and order m. The normaliza-
tion is such that

∫ 1
−1 Plm(x)Pnm(x)dx = δlm for any fixed m.
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