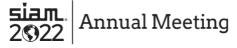
A Fast Convergent Boundary Integral Framework for Slender Bodies

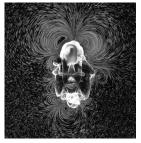
Dhairya Malhotra, Alex Barnett



July 14, 2022

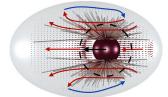
Motivations

Stokes simulations with fibers are key to modeling complex fluids (suspensions, rheology, industrial, biomedical, cellular biophysics).



Starfish larvae (Gilpin et al. 2016)

Drosophila oocyte (Stein et al. 2021)



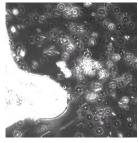
Mitotic spindle (Nazockdast et al. 2015)

Motivations

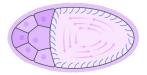
Stokes simulations with fibers are key to modeling complex fluids (suspensions, rheology, industrial, biomedical, cellular biophysics).

Slender Body Theory (SBT):

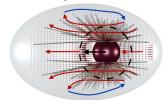
- Asymptotic expansion in radius (ε) as $\varepsilon \to 0$ (Keller-Rubinow '76).
- Doublet correction to make velocity theta-independent (Johnson '80).



Starfish larvae (Gilpin et al. 2016)



Drosophila oocyte (Stein et al. 2021)



Mitotic spindle (Nazockdast et al. 2015)

Slender Body Theory

Error estimates: Rigorous analysis difficult (few very recent studies)

- ullet classical asymptotics claims: $arepsilon^2\log(arepsilon)$
- ullet rigorous analysis: $arepsilon \log^{3/2}(arepsilon)$ (Mori-Ohm-Spirn '19)
- numerical tests: $\varepsilon^{1.7}$ (Mitchell et al. '21 -- verify close-touching breakdown) close-to-touching with gap of 10ε , only 2.5-digits in the infty-norm. ε =1e-2 only 1-2 digits achievable by SBT.

Sedimentation velocity of ellipse of thickness ε in a Stokesian fluid.

Slender Body Theory

Error estimates: Rigorous analysis difficult (few very recent studies)

- ullet classical asymptotics claims: $arepsilon^2\log(arepsilon)$
- ullet rigorous analysis: $arepsilon \log^{3/2}(arepsilon)$ (Mori-Ohm-Spirn '19)
- numerical tests: $\varepsilon^{1.7}$ (Mitchell et al. '21 -- verify close-touching breakdown) close-to-touching with gap of 10ε , only 2.5-digits in the infty-norm. ε =1e-2 only 1-2 digits achievable by SBT.

ε	\mathbf{u}_0	Error
0.1	0.0518	0.7e - 2
0.01	0.0736	0.2e - 3
0.001	0.0950	0.3e - 5
0.0001	0.1163	0.4e - 7

Slender Body Theory

Error estimates: Rigorous analysis difficult (few very recent studies)

- ullet classical asymptotics claims: $arepsilon^2\log(arepsilon)$
- ullet rigorous analysis: $arepsilon \log^{3/2}(arepsilon)$ (Mori-Ohm-Spirn ´19)
- numerical tests: $\varepsilon^{1.7}$ (Mitchell et al. '21 -- verify close-touching breakdown) close-to-touching with gap of 10ε , only 2.5-digits in the infty-norm. ε =1e-2 only 1-2 digits achievable by SBT.

Limitations:

- no convergence analysis for fibers of given nonzero radius.
- ullet uncontrolled errors when fibers close $O(\varepsilon)$.

Efficient convergent BIE method needed, allowing adaptivity for close interactions.

Goals

Solve the slender body BVP

- in a convergent way.
- adaptively when fibers become close.
- efficiently with effort independent of varying radius.

Validate current SBT simulations.

Most existing quadratures cannot resolve high aspect ratio geometries.

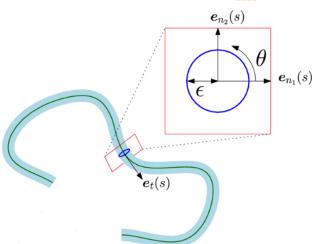
Focus on rigid fibers in this talk -- flexible fibers for future.

Related work: Mitchell et al, '21 (mixed-BVP corresponding to flexible fiber loop)

Discretization

Geometry description:

- ullet parameterization s along fiber length
- ullet coordinates x(s) of centerline curve
- ullet circular cross-section with radius arepsilon(s)
- ullet orientation vector $e_{n_1}(s)$



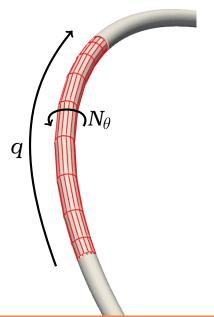
Discretization

Geometry description:

- ullet parameterization s along fiber length
- ullet coordinates x(s) of centerline curve
- ullet circular cross-section with radius arepsilon(s)
- ullet orientation vector $e_{n_1}(s)$

Discretization:

- ullet piecewise Chebyshev (order q) discretization in s for x(s), arepsilon(s) and $e_{n_1}(s)$
- Collocation nodes: tensor product of Chebyshev and Fourier discretization in angle with order N_{θ} .



$$u(x) = \int_{\Gamma} \mathcal{K}(x-y) \; \sigma(y) \; da(y) = \sum_{k=1}^{N_{panel}} \int_{\gamma_k} \mathcal{K}(x-y) \; \sigma(y) \; da(y)$$

$$\begin{split} u(x) &= \int_{\Gamma} \mathcal{K}(x-y) \; \sigma(y) \; da(y) \; = \sum_{k=1}^{N_{panel}} \int_{\gamma_k} \mathcal{K}(x-y) \; \sigma(y) \; da(y) \\ &= \underbrace{\sum_{x \notin \mathcal{N}(\gamma_k)} \int_{\gamma_k} \mathcal{K}(x-y) \; \sigma(y) \; da(y)}_{\text{far-field}} \; + \underbrace{\sum_{x \in \mathcal{N}(\gamma_k)} \int_{\gamma_k} \mathcal{K}(x-y) \; \sigma(y) \; da(y)}_{\text{near interactions}} \end{split}$$

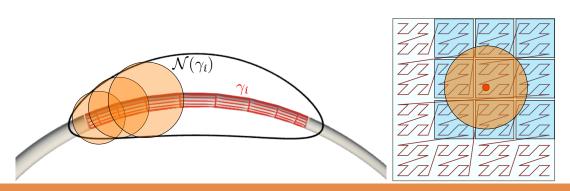
$$\begin{split} u(x) &= \int_{\Gamma} \mathcal{K}(x-y) \; \sigma(y) \; da(y) = \sum_{k=1}^{N_{panel}} \int_{\gamma_k} \mathcal{K}(x-y) \; \sigma(y) \; da(y) \\ &= \underbrace{\sum_{x \notin \mathcal{N}(\gamma_k)} \int_{\gamma_k} \mathcal{K}(x-y) \; \sigma(y) \; da(y)}_{\text{far-field}} + \underbrace{\sum_{x \in \mathcal{N}(\gamma_k)} \int_{\gamma_k} \mathcal{K}(x-y) \; \sigma(y) \; da(y)}_{\text{near interactions}} \end{split}$$

Far field approximation:

$$\int_{\gamma_k} \mathcal{K}(x-y) \; \sigma(y) \; da(y) \; \approx \; \sum_{i,j} \frac{2\pi w_i}{N_\theta} \mathcal{K}(x-y(s_i,\theta_j)) \; \sigma(s_i,\theta_j) \; J(s_i,\theta_j)$$

- ullet Gauss-Legendre quadrature (s_i,w_i) of order q.
- periodic trapezoidal quadrature of order N_{θ} in θ .
- ullet given a tolerance, define region $\mathcal{N}(\gamma_k)$, such that far-field is valid outside it.

$$\begin{split} u(x) &= \int_{\Gamma} \mathcal{K}(x-y) \ \sigma(y) \ da(y) = \sum_{k=1}^{N_{panel}} \int_{\gamma_k} \mathcal{K}(x-y) \ \sigma(y) \ da(y) \\ &= \underbrace{\sum_{x \notin \mathcal{N}(\gamma_k)} \int_{\gamma_k} \mathcal{K}(x-y) \ \sigma(y) \ da(y)}_{\text{far-field}} + \underbrace{\sum_{x \in \mathcal{N}(\gamma_k)} \int_{\gamma_k} \mathcal{K}(x-y) \ \sigma(y) \ da(y)}_{\text{near interactions}} \end{split}$$



Near interactions: for $x \in \mathcal{N}(\gamma_k)$

$$\int_{\gamma_k} \mathcal{K}(x-y) \ \sigma(y) \ da(y) \ = \ \int_{s} \int_{\theta} \mathcal{K}(x-y(s,\theta)) \ \sigma(s,\theta) \ J(s,\theta) \ d\theta \ ds$$

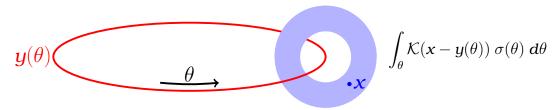
Inner integral:

- potential from a ring source (modal or toroidal Green's function).
- ullet can be nearly singular as $s\longrightarrow s_0$.

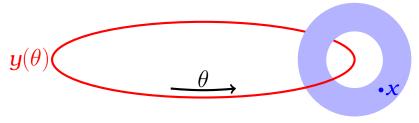
Outer integral:

- singular if $x \in \gamma_k$ with logarithmic singularity at $s = s_0$.
- ullet $1/s^lpha$ decay as $|s-s_0| \longrightarrow \infty$

- Periodic trapezoidal rule becomes expensive as $x \longrightarrow y$.
- Analytic representation in special functions Young, Hao, Martinsson JCP-2012
 - modal Green's functions -- method of choice for axisymmetric problems.



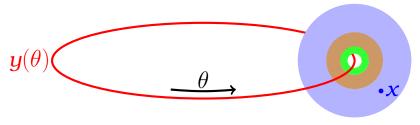
- Periodic trapezoidal rule becomes expensive as $x \longrightarrow y$.
- Analytic representation in special functions Young, Hao, Martinsson JCP-2012
 - modal Green's functions -- method of choice for axisymmetric problems.
- Build special quadrature rules!
 - e.g. generalized Gaussian quadratures: Bremer, Gimbutas and Rokhlin SISC 2010.



ullet Build special quadrature rule $(w_i, heta_i)$ such that,

$$\int_{\theta} e^{-in\theta} \mathcal{K}(x-y(\theta)) \ d\theta \ \approx \ \sum_{i} w_{i} e^{-in\theta_{i}} \mathcal{K}(x-y(\theta_{i}))$$

for all Fourier modes ($n \leq n_0$) and all targets x in the annulus.



• Build special quadrature rule (w_i, θ_i) such that,

$$\int_{\theta} e^{-in\theta} \mathcal{K}(x - y(\theta)) \ d\theta \approx \sum_{i} w_{i} e^{-in\theta_{i}} \mathcal{K}(x - y(\theta_{i}))$$

for all Fourier modes ($n \le n_0$) and all targets x in the annulus.

- \bullet Different rule for each nested annular region (up to 10^{-6} from source).
- ~ 48 quadrature nodes for $n_0=8$ and 10-digits accuracy.
- $\sim 26M$ modal Green's function evaluations/sec/core (Skylake 2.4GHz)

$$\int_{\gamma_k} \mathcal{K}(x-y) \; \sigma(y) \; da(y) \; = \; \int_{s} \; \left(\int_{\theta} \mathcal{K}(x-y(s,\theta)) \; \sigma(s,\theta) \; J(s,\theta) \; d\theta \right) \; ds$$

$$\int_{\gamma_k} \mathcal{K}(x-y) \ \sigma(y) \ da(y) \ = \ \int_{s} \ \left(\sum_{n=0}^{N_ heta/2-1} \mathcal{K}_n(x-y(s)) \ \widehat{\sigma_n}
ight) \ ds$$

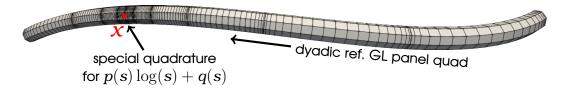
$$\int_{\gamma_k} \mathcal{K}(x-y) \ \sigma(y) \ da(y) \ = \ \int_s \ \left(\sum_{n=0}^{N_\theta/2-1} \mathcal{K}_n(x-y(s)) \ \widehat{\sigma_n} \right) \ ds$$

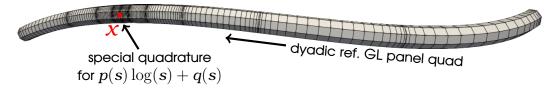
Near Interactions: x is off-surface or adjacent panel

$$\int_{\gamma_k} \mathcal{K}(x-y) \ \sigma(y) \ da(y) \ = \ \int_{s} \ \left(\sum_{n=0}^{N_\theta/2-1} \mathcal{K}_n(x-y(s)) \ \widehat{\sigma_n} \right) \ ds$$

Near Interactions: x is off-surface or adjacent panel

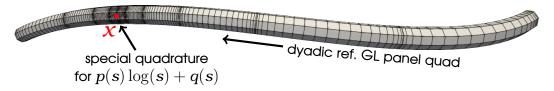
• panel (Gauss-Lengendre) quadrature with dyadic refienement.





Special Quadrature Rules:

- replace composite panel quadratures with a single quadrature.
- integrand doesn't have closed form expression, but we can still generate quadrature rules!



Special Quadrature Rules:

- replace composite panel quadratures with a single quadrature.
- integrand doesn't have closed form expression, but we can still generate quadrature rules!

• Separate rules for different aspect ratios (1 - 10^4 in powers of 2)

Overall Algorithm

Discretization: piecewise polynomial × Fourier.

Far-field interactions: standard quadratures (GL \times PTR) + FMM

Near interactions:

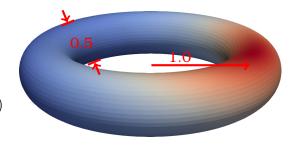
- special quadratures for modal Green's function and singular integral in s.
- ullet dyadic refined Gauss-Legendre quadrature in s for non-singular case.
- build local correction matrix instead of computing on-the-fly.

Numerical Results - comparison with BIEST

Green's identity (Laplace):

$$\Delta u = 0$$
, then for $x \in \Gamma$,

$$u(x) = \frac{u(x)}{2} + \mathcal{S}[\partial_n u](x) - \mathcal{D}[u](x)$$



Boundary Integral Equation Solver for Taylor States (BIEST)*

- quadrature for general toroidal surfaces with uniform grid.
- partition-of-unity to separate singular part of boundary integral.
- polar coordinate transform for singular integral.

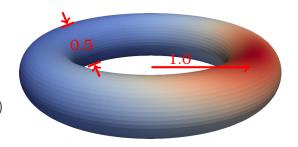
^{*}JCP 2019 - Malhotra, Cerfon, Imbert-Gérard, O'Neil (https://github.com/dmalhotra/BIEST)

Numerical Results - comparison with BIEST

Green's identity (Laplace):

$$\Delta u = 0$$
, then for $x \in \Gamma$,

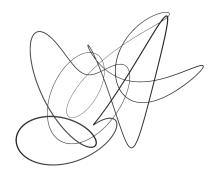
$$u(x) = \frac{u(x)}{2} + \mathcal{S}[\partial_n u](x) - \mathcal{D}[u](x)$$

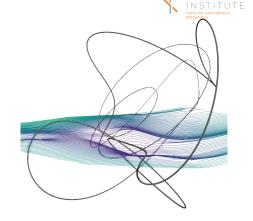


Slender-body Quadrature				BIEST*				
N	$\left\ \boldsymbol{e} \right\ _{\infty}$	T_{setup}	T_{eval}	N	$\left\ \boldsymbol{e} \right\ _{\infty}$	T_{setup}	T_{eval}	
320	1.5e-04	0.032	0.0004	507	2.0e-03	0.1319	0.0017	
720	3.5e-06	0.094	0.0013	1323	4.0e-06	1.4884	0.0042	
1280	5.4e-09	0.228	0.0033	2523	4.3e-09	6.6825	0.0313	
2000	2.5e-10	0.501	0.0079	4107	3.5e-10	15.4711	0.0862	

^{*}JCP 2019 - Malhotra, Cerfon, Imbert-Gérard, O'Neil (https://github.com/dmalhotra/BIEST)

Numerical Results - Stokes BVP





Exterior Stokes

Dirichlet BVP:

$$\Delta \mathbf{u} - \nabla p = 0$$

$$\nabla \cdot \boldsymbol{u} = 0,$$

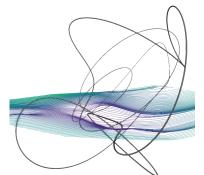
 $\mathbf{u}|_{\Gamma}=\mathbf{u}_0,$

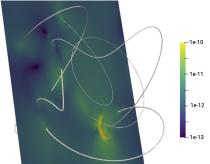
$$\Delta {m u} -
abla p = 0, \qquad u(x) o 0 ext{ as } |x| o 0,$$

wire radius = 1.5e-3 to 4e-3

 $(\mathcal{I}/2 + \mathcal{D} + \mathcal{S} \ / \ (2arepsilon \log arepsilon^{-1}))[oldsymbol{\sigma}] = oldsymbol{u}_0$ **BIE formulation:**

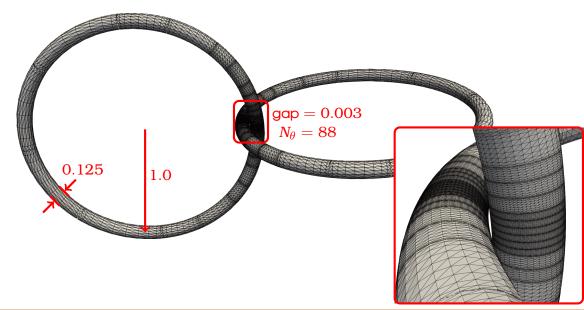
Numerical Results - Stokes BVP



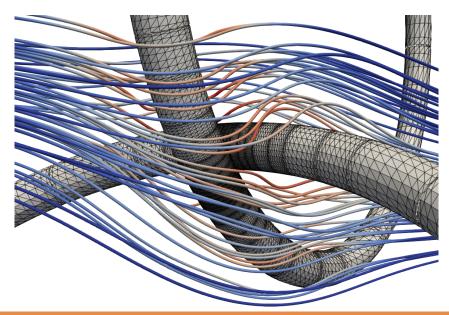


						I-core			40-cores		
N	N_{panel}	$N_{ heta}$	$\epsilon_{\rm GMRES}$	N _{iter}	$\left\ e \right\ _{\infty}$	T_{setup} (1	N/T_{setup}	T_{solve}	T_{setup}	T_{solve}	
1.5e4	122	4	1e-03	10	1.9e-02	0.33	(4.4e4)	0.7	0.024	0.05	
9.1e4	252	12	1e-05	21	1.7e-04	3.31	(2.7e4)	61.2	0.197	5.25	
9.4e4	262	12	1e-07	33	4.1e-06	4.43	(2.1e4)	104.3	0.224	7.69	
2.0e5	272	24	1e-09	43	1.4e-08	17.70	(1.1e4)	586.0	0.796	22.94	
2.3e5	276	28	1e-11	54	4.1e-09	27.67	(8.4e3)	1034.2	1.229	38.85	

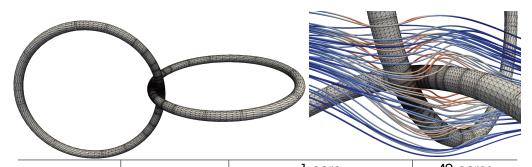
Numerical Results - close-to-touching



Numerical Results - close-to-touching



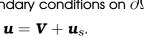
Numerical Results - close-to-touching

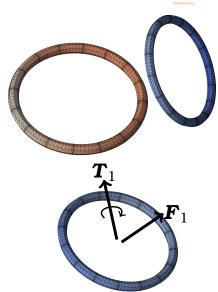


				I-core	40-c	ores	
N	$\epsilon_{\rm GMRES}$	N _{iter}	$\left\ \boldsymbol{e} \right\ _{\infty}$	$T_{setup} (N/T_{setup})$	T_{solve}	T_{setup}	T_{solve}
6.5e4	1e-02	4	2.1e-02	8.1 (8.0e+3)	6.5	1.28	1.4
6.5e4	1e-05	24	2.4e-03	16.8 (3.8e+3)	42.9	2.50	7.7
6.5e4	1e-07	43	2.8e-06	23.5 (2.7e+3)	81.6	3.31	12.8
6.5e4	1e-10	59	5.4e-08	35.6 (1.8e+3)	122.9	4.06	19.2
6.5e4	1e-13	72	1.3e-10	49.9 (1.3e+3)	162.6	5.27	23.2

Mobility problem

- n rigid bodies $\Omega = \sum_{i=1}^{n} \Omega_{i}$ with velocities $\mathbf{V}(\mathbf{x}) = \mathbf{v}_i + \boldsymbol{\omega}_i \times (\mathbf{x} - \mathbf{x}_i^c)$, and given forces \mathbf{F}_i , torques \mathbf{T}_i abount \mathbf{x}_i^c .
- ullet Stokesian fluid in $\mathbb{R}^3\setminus\Omega$ $\Delta \mathbf{u} - \nabla p = 0, \ \nabla \cdot \mathbf{u} = 0,$ $\boldsymbol{u} \to 0$ as $\boldsymbol{x} \to \infty$.
- Boundary conditions on $\partial\Omega$,



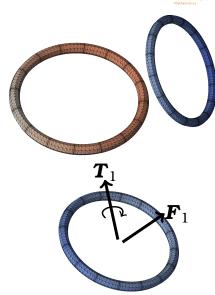


Mobility problem

- n rigid bodies $\Omega = \sum_{i=1}^{n} \Omega_{i}$ with velocities $\mathbf{V}(\mathbf{x}) = \mathbf{v}_{i} + \boldsymbol{\omega}_{i} \times (\mathbf{x} - \mathbf{x}_{i}^{c})$, and given forces \mathbf{F}_{i} , torques \mathbf{T}_{i} abount \mathbf{x}_{i}^{c} .
- Stokesian fluid in $\mathbb{R}^3\setminus\Omega$ $\Delta \pmb{u}-\nabla p=0,\ \ \nabla\cdot\pmb{u}=0,$ $\pmb{u} o 0$ as $\pmb{x} o\infty.$
- ullet Boundary conditions on $\partial\Omega$,

$$\mathbf{u} = \mathbf{v} + \mathbf{u}_{s}$$

unknown: $V(\boldsymbol{u}_i, \boldsymbol{\omega}_i)$



Mobility problem - double-layer formulation

Represent fluid velocity: $m{u} = \mathcal{S}[m{
u}(m{F}_i, m{T}_i)] + \mathcal{D}[m{\sigma}]$

and rigid body velocity:
$$\mathbf{V} = -\sum_{i=1}^{6n} \mathfrak{v}_i \mathfrak{v}_i^T oldsymbol{\sigma}$$

Applying boundary conditions $(\boldsymbol{u} = \boldsymbol{V} + \boldsymbol{u}_s)$ on $\partial\Omega$),

$$(\mathcal{I}/2+\mathcal{D})[oldsymbol{\sigma}] + \sum_{i=1}^{6n} \mathfrak{v}_i \mathfrak{v}_i^T oldsymbol{\sigma} = oldsymbol{u}_s - \mathcal{S}[oldsymbol{
u}]$$

(Pozrikidis - Boundary Integral and Singularity Methods for Linearized Viscous Flow)

19

Mobility problem - double-layer formulation

Represent fluid velocity: $m{u} = \mathcal{S}[m{
u}(m{F}_i, m{T}_i)] + \mathcal{D}[m{\sigma}]$

and rigid body velocity:
$$\mathbf{V} = -\sum_{i=1}^{6n} \mathfrak{v}_i \mathfrak{v}_i^T oldsymbol{\sigma}$$

Applying boundary conditions ($\mathbf{u} = \mathbf{V} + \mathbf{u}_s$ on $\partial\Omega$),

$$(\mathcal{I}/2+\mathcal{D})[oldsymbol{\sigma}] + \sum_{i=1}^{6n} \mathfrak{v}_i \mathfrak{v}_i^T oldsymbol{\sigma} = oldsymbol{u}_s - \mathcal{S}[oldsymbol{
u}]$$

(Pozrikidis - Boundary Integral and Singularity Methods for Linearized Viscous Flow)

Second kind integral equation, should be well-conditioned. What can possibly go wrong?

Conditioning of layer-potential operators

$$\kappa(\mathcal{S})$$
 ~ 2.6*e*6

$$\kappa(\mathcal{I}/2 + \mathcal{D}) \sim 4.3e6$$

$$\kappa(\mathcal{I}/2 + \mathcal{D} + 16\mathcal{S}) \sim 80$$

- ullet For infinite cylinder (Laplace case): $\kappa(\mathcal{I}/2+\mathcal{D}) \sim arepsilon^{-2} \log^{-1} arepsilon^{-1}$
- ullet Combined field operator well-conditioned: $\mathcal{I}/2+\mathcal{D}+\mathcal{S}\ /\ (2arepsilon\logarepsilon^{-1})$

Mobility problem - combined field formulation

Represent fluid velocity:
$$m{u} = \mathcal{S}[m{
u}(m{F}_i, m{T}_i)] + \mathcal{K}[m{\sigma}]$$

and rigid body velocity:
$$\mathbf{V} = -\sum_{i=1}^{6n} \mathfrak{v}_i \mathfrak{v}_i^T \boldsymbol{\sigma}$$

where,
$$\mathcal{K} = \mathcal{D} + \mathcal{S}/(2\varepsilon\log\varepsilon^{-1})$$
.

Mobility problem - combined field formulation

Represent fluid velocity:
$$\mathbf{u} = \mathcal{S}[\boldsymbol{\nu}(\mathbf{F}_i, \mathbf{T}_i)] + \mathcal{K}[\boldsymbol{\sigma} - \sum_{i=1}^{6n} \mathfrak{v}_i \mathfrak{v}_i^T \boldsymbol{\sigma}]$$
 and rigid body velocity: $\mathbf{V} = -\sum_{i=1}^{6n} \mathfrak{v}_i \mathfrak{v}_i^T \boldsymbol{\sigma}$

where, $\mathcal{K} = \mathcal{D} + \mathcal{S}/(2\varepsilon \log \varepsilon^{-1})$.

Mobility problem - combined field formulation

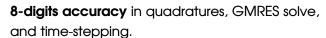
Represent fluid velocity:
$$\mathbf{u} = \mathcal{S}[\boldsymbol{\nu}(\mathbf{F}_i, \mathbf{T}_i)] + \mathcal{K}[\boldsymbol{\sigma} - \sum_{i=1}^{6n} \mathfrak{v}_i \mathfrak{v}_i^T \boldsymbol{\sigma}]$$
 and rigid body velocity: $\mathbf{V} = -\sum_{i=1}^{6n} \mathfrak{v}_i \mathfrak{v}_i^T \boldsymbol{\sigma}$ where, $\mathcal{K} = \mathcal{D} + \mathcal{S}/(2\varepsilon \log \varepsilon^{-1})$.

Applying boundary conditions,

$$(\mathcal{I}/2+\mathcal{K})[oldsymbol{\sigma}-\sum_{i=1}^{6n}\mathfrak{v}_i\mathfrak{v}_i^Toldsymbol{\sigma}]+\sum_{i=1}^{6n}\mathfrak{v}_i\mathfrak{v}_i^Toldsymbol{\sigma}=oldsymbol{u}_s-\mathcal{S}[oldsymbol{
u}]$$

Second kind integral equation and well-conditioned!

Time-stepping: 5-th order adaptive SDC

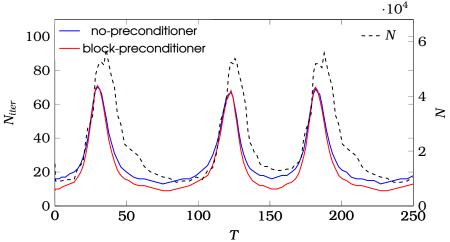


40 CPU cores

FLATIRON INSTITUTE Center for Computational Mathematics

Time-stepping: 5-th order adaptive SDC

8-digits accuracy in quadratures, GMRES solve, and time-stepping.



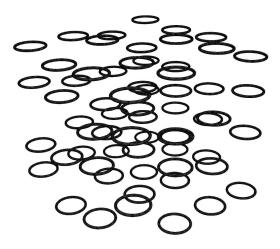
Close-to-touching: smaller time-steps, more unknowns (N), high GMRES iteration count (block preconditioner doesn't help).

5-th order adaptive SDC

8-digits accuracy in quadratures, GMRES solve, and time-stepping.

0.5 million unknowns 64 rings.

160 CPU cores



Conclusions

- Convergent boundary integral formulation for slender bodies.
 - unlike SBT, boundary conditions are actually enforced to high accuracy.
- ullet Special quadratures efficient for aspect ratios as large as 10^5 .
 - quadrature setup rates up to 20,000 unknowns/s/core (comparable to FMM speeds).
- Stokes mobility problem combined field BIE formulation.
 - well-conditioned formulation for slender-body geometries.
 - high-order time stepping (SDC), block-diagonal preconditioner.

Conclusions

- Convergent boundary integral formulation for slender bodies.
 - unlike SBT, boundary conditions are actually enforced to high accuracy.
- ullet Special quadratures efficient for aspect ratios as large as 10^5 .
 - quadrature setup rates up to 20,000 unknowns/s/core (comparable to FMM speeds).
- Stokes mobility problem combined field BIE formulation.
 - well-conditioned formulation for slender-body geometries.
 - high-order time stepping (SDC), block-diagonal preconditioner.

Limitations and ongoing work:

- Open problems: collisions, better preconditions / fast direct solvers.
- Open ended and flexible fibers -- applications in biological fluids.