High-Order Boundary Integral Methods for Slender Bodies

Dhairya Malhotra, Alex Barnett

March 1, 2023

Motivations

Stokes simulations with fibers are key to modeling complex fluids (suspensions, rheology, industrial, biomedical, cellular biophysics).

Starfish larvae

Drosophila oocyte (Stein et al. 2021)
(Gilpin et al. 2016)

Mitotic spindle (Nazockdast et al. 2015)

Motivations

Stokes simulations with fibers are key to modeling complex fluids (suspensions, rheology, industrial, biomedical, cellular biophysics).

Slender Body Theory (SBT):

- Asymptotic expansion in radius (ε) as $\varepsilon \rightarrow 0$ (Keller-Rubinow '76).
- Doublet correction to make velocity theta-independent (Johnson '80).

Starfish larvae

Drosophila oocyte (Stein et al. 2021)
(Gilpin et al. 2016)

Mitotic spindle (Nazockdast et al. 2015)

Slender Body Theory

Error estimates: Rigorous analysis difficult (few very recent studies)

- classical asymptotics claims: $\varepsilon^{2} \log (\varepsilon)$
- rigorous analysis: $\varepsilon \log ^{3 / 2}(\varepsilon) \quad$ (Mori-Ohm-Spirn '19)
- numerical tests: $\varepsilon^{1.7} \quad$ (Mitchell et al. '21 -- verify close-touching breakdown) close-to-touching with gap of 10ε, only 2.5 -digits in the infty-norm. $\varepsilon=1 \mathrm{e}-2$ only 1-2 digits achievable by SBT.

Slender Body Theory

Error estimates: Rigorous analysis difficult (few very recent studies)

- classical asymptotics claims: $\varepsilon^{2} \log (\varepsilon)$
- rigorous analysis: $\varepsilon \log ^{3 / 2}(\varepsilon) \quad$ (Mori-Ohm-Spirn '19)
- numerical tests: $\varepsilon^{1.7} \quad$ (Mitchell et al. '21 -- verify close-touching breakdown) close-to-touching with gap of 10ε, only 2.5 -digits in the infty-norm. $\varepsilon=1 \mathrm{e}-2$ only $1-2$ digits achievable by SBT.

ε	$\boldsymbol{u}_{\text {exact }}$	Rel-Error
$1 \mathrm{e}-1$	$6.1492138359856 \mathrm{e}-2$	$0.5 \mathrm{e}-2$
$1 \mathrm{e}-2$	$9.0984522324584 \mathrm{e}-2$	$0.1 \mathrm{e}-3$
$1 \mathrm{e}-3$	$1.2015655889904 \mathrm{e}-1$	$0.2 \mathrm{e}-5$
$1 \mathrm{e}-4$	$1.4931932907587 \mathrm{e}-1$	$0.2 \mathrm{e}-7$
$1 \mathrm{e}-5$	$1.7848191313097 \mathrm{e}-1$	$0.3 \mathrm{e}-9$

Slender Body Theory

Error estimates: Rigorous analysis difficult (few very recent studies)

- classical asymptotics claims: $\varepsilon^{2} \log (\varepsilon)$
- rigorous analysis: $\varepsilon \log ^{3 / 2}(\varepsilon) \quad$ (Mori-Ohm-Spirn '19)
- numerical tests: $\varepsilon^{1.7} \quad$ (Mitchell et al. '21 -- verify close-touching breakdown) close-to-touching with gap of 10ε, only 2.5 -digits in the infty-norm. $\varepsilon=1 \mathrm{e}-2$ only $1-2$ digits achievable by SBT.

Limitations of SBT:

- no convergence analysis for fibers of given nonzero radius.
- uncontrolled errors when fibers close $O(\varepsilon)$.

Efficient convergent BIE method needed, allowing adaptivity for close interactions.

Goals

Solve the slender body BVP

- in a convergent way.
- adaptively when fibers become close.
- efficiently with effort independent of radius.

Validate current SBT simulations.

Focus on rigid fibers in this talk -- flexible fibers for future.
Related work: Mitchell et al, '21 (mixed-BVP corresponding to flexible fiber loop)

Discretization

Geometry description:

- parameterization s along fiber length
- coordinates $x_{c}(s)$ of centerline curve
- circular cross-section with radius $\varepsilon(s)$
- orientation vector $e_{1}(s)$

Discretization

Geometry description:

- parameterization s along fiber length
- coordinates $x_{c}(s)$ of centerline curve
- circular cross-section with radius $\varepsilon(s)$
- orientation vector $e_{1}(s)$

Discretization:

- piecewise Chebyshev (order q) discretization in s for $x_{c}(s), \varepsilon(s), e_{1}(s)$
- Collocation nodes: tensor product of Chebyshev and Fourier discretization in angle with order N_{θ}.

Boundary Quadratures

$$
\begin{aligned}
u(x) & =\int_{\Gamma} \mathcal{K}(x-y) \sigma(y) d a(y)=\sum_{k=1}^{N_{\text {panel }}} \int_{\gamma_{k}} \mathcal{K}(x-y) \sigma(y) d a(y) \\
& =\underbrace{\sum_{x \notin \mathcal{N}\left(\gamma_{k}\right)} \int_{\gamma_{k}} \mathcal{K}(x-y) \sigma(y) d a(y)}_{\text {far-field }}+\underbrace{\sum_{x \in \mathcal{N}\left(\gamma_{k}\right)} \int_{\gamma_{k}} \mathcal{K}(x-y) \sigma(y) d a(y)}_{\text {near interactions }}
\end{aligned}
$$

Boundary Quadratures

$$
\begin{aligned}
u(x) & =\int_{\Gamma} \mathcal{K}(x-y) \sigma(y) d a(y)=\sum_{k=1}^{N_{\text {paeel }}} \int_{\gamma_{k}} \mathcal{K}(x-y) \sigma(y) d a(y) \\
& =\underbrace{\sum_{x \notin \mathcal{N}\left(\gamma_{k}\right)} \int_{\gamma_{k}} \mathcal{K}(x-y) \sigma(y) d a(y)}_{\text {for-field }}+\underbrace{\sum_{x \in \mathcal{N}\left(\gamma_{k}\right)} \int_{\gamma_{k}} \mathcal{K}(x-y) \sigma(y) d a(y)}_{\text {near interactions }}
\end{aligned}
$$

Far field approximation:

- Gauss-Legendre quadrature in s.
- periodic trapezoidal rule in θ.
- determine $\mathcal{N}\left(\gamma_{k}\right)$ using standard error estimates

Boundary Quadratures

Near interactions: for $x \in \mathcal{N}\left(\gamma_{k}\right)$
$\int_{\gamma_{k}} \mathcal{K}(x-y) \sigma(y) d a(y)=\int_{s} \int_{\theta} \mathcal{K}(x-y(s, \theta)) \sigma(s, \theta) J(s, \theta) d \theta d s$

Inner integral in θ :

- potential from a ring source
-- modal Green's function.

- can be nearly singular as $x \longrightarrow \gamma_{k}$.

Outer integral in s :
log singularity

$$
\left|s-s_{0}\right|^{-\alpha} \longrightarrow
$$

Fast Modal Green’s Function Evaluation

- Analytic representation in special functions - Young, Hao, Martinsson JCP-2012
- modal Green's functions -- method of choice for axisymmetric problems.

Fast Modal Green's Function Evaluation

$$
\int_{\theta} \mathcal{K}(x-y(\theta)) \sigma(\theta) d \theta
$$

- Analytic representation in special functions - Young, Hao, Martinsson JCP-2012
- modal Green's functions -- method of choice for axisymmetric problems.
- Build special quadrature rules!
- e.g. generalized Gaussian quadratures: Bremer, Gimbutas and Rokhlin - SISC 2010.

Fast Modal Green's Function Evaluation

$\int_{\theta} \mathcal{K}(x-y(\theta)) \sigma(\theta) d \theta$

- Analytic representation in special functions - Young, Hao, Martinsson JCP-2012
- modal Green's functions -- method of choice for axisymmetric problems.
- Build special quadrature rules!
- e.g. generalized Gaussian quadratures: Bremer, Gimbutas and Rokhlin - SISC 2010.
- Different rule for each nested annular region (up to 10^{-6} from source).
~ 48 quadrature nodes for $n_{0}=8$ and 10-digits accuracy.
$\sim 26 M$ modal Green's function evaluations/sec/core (Skylake 2.4GHz)

Quadratures for Outer Integral

Near Interactions: x is off-surface or adjacent panel

- panel (Gauss-Lengendre) quadrature with dyadic refienement.

Quadratures for Outer Integral

Near Interactions: x is off-surface or adjacent panel

- panel (Gauss-Lengendre) quadrature with dyadic refienement.

Singular Interactions: x is on-surface
special quadrature
dyadic ref. GL panel quad for $p(s) \log (s)+q(s)$

Quadratures for Outer Integral

Near Interactions: x is off-surface or adjacent panel

- panel (Gauss-Lengendre) quadrature with dyadic refienement.

Singular Interactions: x is on-surface

Instead build special quadrature rules!

- replace composite panel quadratures with a single quadrature.
- Separate rules for different aspect ratios ($1-10^{4}$ in powers of 2)

Numerical Results - Stokes BVP

Exterior Stokes

Dirichlet BVP:

$$
\left.\boldsymbol{u}\right|_{\Gamma}=\boldsymbol{u}_{0},
$$

$\Delta \boldsymbol{u}-\nabla p=0, \quad u(x) \rightarrow 0$ as $|x| \rightarrow 0$, wire radius $=1.5 \mathrm{e}-3$ to $4 \mathrm{e}-3$

$$
\nabla \cdot \mathbf{u}=0
$$

BIE formulation: $\quad\left(\mathcal{I} / 2+\mathcal{D}+\mathcal{S} /\left(2 \varepsilon \log \varepsilon^{-1}\right)\right)[\boldsymbol{\sigma}]=\boldsymbol{u}_{0}$

Numerical Results - Stokes BVP

						1 -core			40 -cores			
N	$N_{\text {panel }}$	N_{θ}	$\epsilon_{\text {GMRES }}$	$N_{\text {iter }}$	$\\|e\\|_{\infty}$	$T_{\text {setup }}\left(N / T_{\text {setup }}\right)$	$T_{\text {solve }}$	$T_{\text {setup }}$	$T_{\text {solve }}$			
$1.5 e 4$	122	4	$1 e-03$	10	$1.9 e-02$	0.33	$(4.4 e 4)$	0.7	0.024	0.05		
$9.1 e 4$	252	12	$1 e-05$	21	$1.7 e-04$	3.31	$(2.7 e 4)$	61.2	0.197	5.25		
$9.4 e 4$	262	12	$1 e-07$	33	$4.1 e-06$	4.43	$(2.1 e 4)$	104.3	0.224	7.69		
$2.0 e 5$	272	24	$1 e-09$	43	$1.4 e-08$	17.70	$(1.1 e 4)$	586.0	0.796	22.94		
$2.3 e 5$	276	28	$1 e-11$	54	$4.1 e-09$	27.67	$(8.4 e 3)$	1034.2	1.229	38.85		

Numerical Results - close-to-touching

Numerical Results - close-to-touching

Numerical Results - close-to-touching

Mobility problem

- n rigid bodies $\Omega=\sum_{i=1}^{n} \Omega_{i}$
with velocities $\boldsymbol{V}(\boldsymbol{x})=\boldsymbol{v}_{i}+\omega_{i} \times\left(\boldsymbol{x}-\boldsymbol{x}_{i}^{c}\right)$, and given forces \boldsymbol{F}_{i}, torques \boldsymbol{T}_{i} abount \boldsymbol{x}_{i}^{c}.
- Stokesian fluid in $\mathbb{R}^{3} \backslash \Omega$

$$
\begin{aligned}
& \Delta \boldsymbol{u}-\nabla p=0, \quad \nabla \cdot \boldsymbol{u}=0 \\
& \boldsymbol{u} \rightarrow 0 \text { as } \boldsymbol{x} \rightarrow \infty
\end{aligned}
$$

- Boundary conditions on $\partial \Omega$,

$$
\boldsymbol{u}=\boldsymbol{V}+\boldsymbol{u}_{s}
$$

Mobility problem

- n rigid bodies $\Omega=\sum_{i=1}^{n} \Omega_{i}$
with velocities $\boldsymbol{V}(\boldsymbol{x})=\boldsymbol{v}_{i}+\omega_{i} \times\left(\boldsymbol{x}-\boldsymbol{x}_{i}^{c}\right)$, and given forces \boldsymbol{F}_{i}, torques \boldsymbol{T}_{i} abount \boldsymbol{x}_{i}^{c}.
- Stokesian fluid in $\mathbb{R}^{3} \backslash \Omega$

$$
\begin{aligned}
& \Delta \boldsymbol{u}-\nabla p=0, \quad \nabla \cdot \boldsymbol{u}=0 \\
& \boldsymbol{u} \rightarrow 0 \text { as } \boldsymbol{x} \rightarrow \infty
\end{aligned}
$$

- Boundary conditions on $\partial \Omega$,

$$
\boldsymbol{u}=\boldsymbol{V}+\boldsymbol{u}_{s}
$$

unknown: $\boldsymbol{V}\left(\boldsymbol{u}_{i}, \boldsymbol{\omega}_{i}\right)$

Mobility problem - double-layer formulation

Represent fluid velocity: $\quad \boldsymbol{u}=\mathcal{S}\left[\boldsymbol{\nu}\left(\boldsymbol{F}_{i}, \boldsymbol{T}_{i}\right)\right]+\mathcal{D}[\sigma]$
and rigid body velocity: $\quad \boldsymbol{V}=-\sum_{i=1}^{6 n} \mathfrak{v}_{i} \mathfrak{v}_{i}^{T} \sigma$

Applying boundary conditions ($\boldsymbol{u}=\boldsymbol{V}+\boldsymbol{u}_{s}$ on $\partial \Omega$),

$$
(\mathcal{I} / 2+\mathcal{D})[\sigma]+\sum_{i=1}^{6 n} \mathfrak{v}_{i} \mathfrak{v}_{i}^{T} \sigma=\boldsymbol{u}_{s}-\mathcal{S}[\boldsymbol{\nu}]
$$

(Pozrikidis - Boundary Integral and Singularity Methods for Linearized Viscous Flow)

Mobility problem - double-layer formulation

Represent fluid velocity: $\quad \mathbf{u}=\mathcal{S}\left[\boldsymbol{\nu}\left(\boldsymbol{F}_{i}, \boldsymbol{T}_{i}\right)\right]+\mathcal{D}[\sigma]$
and rigid body velocity: $\quad \boldsymbol{V}=-\sum_{i=1}^{6 n} \mathfrak{v}_{i} \mathfrak{v}_{i}^{T} \sigma$

Applying boundary conditions ($\boldsymbol{u}=\boldsymbol{V}+\boldsymbol{u}_{\mathrm{s}}$ on $\partial \Omega$),

$$
(\mathcal{I} / 2+\mathcal{D})[\boldsymbol{\sigma}]+\sum_{i=1}^{6 n} \mathfrak{v}_{i} \mathfrak{v}_{i}^{T} \sigma=\boldsymbol{u}_{s}-\mathcal{S}[\boldsymbol{\nu}]
$$

(Pozrikidis - Boundary Integral and Singularity Methods for Linearized Viscous Flow)

Second kind integral equation, should be well-conditioned.
What can possibly go wrong?

Conditioning of layer-potential operators

$$
\begin{array}{ll}
\kappa(\mathcal{S}) & \sim 2.6 e 6 \\
\kappa(\mathcal{I} / 2+\mathcal{D}) & \sim 4.3 e 6 \\
\kappa(\mathcal{I} / 2+\mathcal{D}+16 \mathcal{S}) & \sim 80
\end{array}
$$

- For infinite cylinder (Laplace case): $\kappa(\mathcal{I} / 2+\mathcal{D}) \sim \varepsilon^{-2} \log ^{-1} \varepsilon^{-1}$
- Combined field operator well-conditioned: $\mathcal{I} / 2+\mathcal{D}+\mathcal{S} /\left(2 \varepsilon \log \varepsilon^{-1}\right)$

Mobility problem - combined field formulation

Represent fluid velocity: $\quad \boldsymbol{u}=\mathcal{S}\left[\boldsymbol{\nu}\left(\boldsymbol{F}_{i}, \boldsymbol{T}_{i}\right)\right]+\mathcal{K}[\sigma]$
and rigid body velocity: $\quad \boldsymbol{V}=-\sum_{i=1}^{6 n} \mathfrak{v}_{i} \mathfrak{v}_{i}^{T} \sigma$
where, $\mathcal{K}=\mathcal{D}+\mathcal{S} /\left(2 \varepsilon \log \varepsilon^{-1}\right)$.

Mobility problem - combined field formulation

Represent fluid velocity: $\quad \boldsymbol{u}=\underset{6 n}{\mathcal{S}}\left[\boldsymbol{\nu}\left(\boldsymbol{F}_{i}, \boldsymbol{T}_{i}\right)\right]+\mathcal{K}\left[\sigma-\sum_{i=1}^{6 n} \mathfrak{v}_{i} \mathfrak{v}_{i}^{T} \sigma\right]$
and rigid body velocity: $\quad \boldsymbol{V}=-\sum_{i=1}^{6 n} \mathfrak{v}_{i} \mathfrak{v}_{i}^{T} \sigma$
where, $\mathcal{K}=\mathcal{D}+\mathcal{S} /\left(2 \varepsilon \log \varepsilon^{-1}\right)$.

Mobility problem - combined field formulation

Represent fluid velocity: $\quad \boldsymbol{u}=\mathcal{S}\left[\boldsymbol{\nu}\left(\boldsymbol{F}_{i}, \boldsymbol{T}_{i}\right)\right]+\mathcal{K}\left[\sigma-\sum_{i=1}^{6 n} \mathfrak{v}_{i} \mathfrak{v}_{i}^{T} \sigma\right]$
and rigid body velocity: $\quad \boldsymbol{V}=-\sum_{i=1}^{6 n} \mathfrak{v}_{i} \mathfrak{v}_{i}^{T} \sigma$
where, $\mathcal{K}=\mathcal{D}+\mathcal{S} /\left(2 \varepsilon \log \varepsilon^{-1}\right)$.

Applying boundary conditions,

$$
(\mathcal{I} / 2+\mathcal{K})\left[\sigma-\sum_{i=1}^{6 n} \mathfrak{v}_{i} \mathfrak{v}_{i}^{T} \sigma\right]+\sum_{i=1}^{6 n} \mathfrak{v}_{i} \mathfrak{v}_{i}^{T} \sigma=\boldsymbol{u}_{s}-\mathcal{S}[\boldsymbol{\nu}]
$$

Second kind integral equation and well-conditioned!

Numerical Results - Sedimentation Flow

Time-stepping: 5-th order adaptive SDC
8-digits accuracy in quadratures, GMRES solve, and time-stepping.

40 CPU cores

Numerical Results - Sedimentation Flow

Time-stepping: 5-th order adaptive SDC
8-digits accuracy in quadratures, GMRES solve, and time-stepping.

40 CPU cores

Numerical Results - Sedimentation Flow

Close-to-touching: smaller time-steps, more unknowns (N), high GMRES iteration count (block preconditioner doesn'† help).
$\sim 125 \times$ more expensive!

Numerical Results - Sedimentation Flow

5-th order adaptive SDC
8-digits accuracy in quadratures, GMRES solve, and time-stepping.
0.5 million unknowns

64 rings.
160 CPU cores

Numerical Results - Sedimentation Flow

Numerical Results－Sedimentation Flow

Conclusions

- Convergent boundary integral formulation for slender bodies.
- unlike SBT, boundary conditions are actually enforced to high accuracy.
- Special quadratures - efficient for aspect ratios as large as 10^{5}.
- quadrature setup rates up to 20,000 unknowns/s/core (comparable to FMM speeds).
- Stokes mobility problem - combined field BIE formulation.
- well-conditioned formulation for slender-body geometries.
- high-order time stepping (SDC), block-diagonal preconditioner.

Conclusions

- Convergent boundary integral formulation for slender bodies.
- unlike SBT, boundary conditions are actually enforced to high accuracy.
- Special quadratures - efficient for aspect ratios as large as 10^{5}.
- quadrature setup rates up to 20,000 unknowns/s/core (comparable to FMM speeds).
- Stokes mobility problem - combined field BIE formulation.
- well-conditioned formulation for slender-body geometries.
- high-order time stepping (SDC), block-diagonal preconditioner.

Limitations and ongoing work:

- Open problems: collisions, better preconditions.
- Flexible fibers -- applications in biological fluids.

