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Motivations

Stokes simulations with fibers are key to

modeling complex fluids (suspensions,

rheology, industrial, biomedical, cellular

biophysics).

Starfish larvae

(Gilpin et al. 2016)

Drosophila oocyte

(Stein et al. 2021)

Mitotic spindle (Nazockdast et al. 2015)
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Motivations

Stokes simulations with fibers are key to

modeling complex fluids (suspensions,

rheology, industrial, biomedical, cellular

biophysics).

Slender Body Theory (SBT):

Asymptotic expansion in radius (ε)

as ε → 0 (Keller-Rubinow ’76).

Doublet correction to make velocity

theta-independent (Johnson ’80).

Starfish larvae

(Gilpin et al. 2016)

Drosophila oocyte

(Stein et al. 2021)

Mitotic spindle (Nazockdast et al. 2015)
2



Slender Body Theory

Error estimates: Rigorous analysis difficult (few very recent studies)

classical asymptotics claims: ε2 log(ε)

rigorous analysis: ε log3/2(ε) (Mori-Ohm-Spirn ’19)

numerical tests: ε1.7 (Mitchell et al. ’21 -- verify close-touching breakdown)

close-to-touching with gap of 10ε, only 2.5-digits in the infty-norm.

ε=1e-2 only 1-2 digits achievable by SBT.

Source: http://remf.dartmouth.edu/imagesindex.html
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Slender Body Theory

Error estimates: Rigorous analysis difficult (few very recent studies)

classical asymptotics claims: ε2 log(ε)

rigorous analysis: ε log3/2(ε) (Mori-Ohm-Spirn ’19)

numerical tests: ε1.7 (Mitchell et al. ’21 -- verify close-touching breakdown)

close-to-touching with gap of 10ε, only 2.5-digits in the infty-norm.

ε=1e-2 only 1-2 digits achievable by SBT.

ε uexact Rel-Error

1e-1 6.1492138359856e-2 0.5e-2

1e-2 9.0984522324584e-2 0.1e-3

1e-3 1.2015655889904e-1 0.2e-5

1e-4 1.4931932907587e-1 0.2e-7

1e-5 1.7848191313097e-1 0.3e-9
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Slender Body Theory

Error estimates: Rigorous analysis difficult (few very recent studies)

classical asymptotics claims: ε2 log(ε)

rigorous analysis: ε log3/2(ε) (Mori-Ohm-Spirn ’19)

numerical tests: ε1.7 (Mitchell et al. ’21 -- verify close-touching breakdown)

close-to-touching with gap of 10ε, only 2.5-digits in the infty-norm.

ε=1e-2 only 1-2 digits achievable by SBT.

Limitations of SBT:

no convergence analysis for fibers of given nonzero radius.

uncontrolled errors when fibers close O(ε).

Efficient convergent BIE method needed, allowing adaptivity for close interactions.
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Goals

Solve the slender body BVP

in a convergent way.

adaptively when fibers become close.

efficiently with effort independent of radius.

Validate current SBT simulations.

Focus on rigid fibers in this talk -- flexible fibers for future.

Related work: Mitchell et al, ’21 (mixed-BVP corresponding to flexible fiber loop)

4



Discretization

Geometry description:

parameterization s along fiber length

coordinates xc(s) of centerline curve

circular cross-section with radius ε(s)

orientation vector e1(s)
Γk

s

θ

ε(s)

xc(s)

e1(s)

e2(s)

Γk

s

θ

ε(s)

xc(s)

e1(s)

e2(s)
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Discretization

Geometry description:

parameterization s along fiber length

coordinates xc(s) of centerline curve

circular cross-section with radius ε(s)

orientation vector e1(s)

Discretization:

piecewise Chebyshev (order q)

discretization in s for xc(s), ε(s), e1(s)

Collocation nodes: tensor product of

Chebyshev and Fourier discretization

in angle with order Nθ.

Nθ

q
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Boundary Quadratures

u(x) =

∫
Γ

K(x − y) σ(y) da(y) =

Npanel∑
k=1

∫
γk

K(x − y) σ(y) da(y)

=
∑

x /∈N (γk)

∫
γk

K(x − y) σ(y) da(y)

︸ ︷︷ ︸
far-field

+
∑

x∈N (γk)

∫
γk

K(x − y) σ(y) da(y)

︸ ︷︷ ︸
near interactions
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Boundary Quadratures

u(x) =

∫
Γ

K(x − y) σ(y) da(y) =

Npanel∑
k=1

∫
γk

K(x − y) σ(y) da(y)

=
∑

x /∈N (γk)

∫
γk

K(x − y) σ(y) da(y)

︸ ︷︷ ︸
far-field

+
∑

x∈N (γk)

∫
γk

K(x − y) σ(y) da(y)

︸ ︷︷ ︸
near interactions

Far field approximation:

Gauss-Legendre quadrature in s.

periodic trapezoidal rule in θ.

determine N (γk) using standard

error estimates

N (γi)

γi
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Boundary Quadratures

Near interactions: for x ∈ N (γk)∫
γk

K(x − y) σ(y) da(y) =

∫
s

∫
θ

K(x − y(s, θ)) σ(s, θ) J(s, θ) dθ ds

Inner integral in θ:

potential from a ring source

-- modal Green’s function.

can be nearly singular as x −→ γk .

x
y(θ)

θ

Outer integral in s:

x log singularity |s − s0|−α
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Fast Modal Green’s Function Evaluation

x
y(θ)

θ

∫
θ

K(x − y(θ)) σ(θ) dθ

Analytic representation in special functions - Young, Hao, Martinsson JCP-2012

modal Green’s functions -- method of choice for axisymmetric problems.
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Fast Modal Green’s Function Evaluation

x
y(θ)

θ

∫
θ

K(x − y(θ)) σ(θ) dθ

Analytic representation in special functions - Young, Hao, Martinsson JCP-2012

modal Green’s functions -- method of choice for axisymmetric problems.

Build special quadrature rules!

e.g. generalized Gaussian quadratures: Bremer, Gimbutas and Rokhlin - SISC 2010.
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Fast Modal Green’s Function Evaluation

x
y(θ)

θ

∫
θ

K(x − y(θ)) σ(θ) dθ

Analytic representation in special functions - Young, Hao, Martinsson JCP-2012

modal Green’s functions -- method of choice for axisymmetric problems.

Build special quadrature rules!

e.g. generalized Gaussian quadratures: Bremer, Gimbutas and Rokhlin - SISC 2010.

Different rule for each nested annular region (up to 10−6 from source).

∼ 48 quadrature nodes for n0 = 8 and 10-digits accuracy.

∼ 26M modal Green’s function evaluations/sec/core (Skylake 2.4GHz)
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Quadratures for Outer Integral

Near Interactions: x is off-surface or adjacent panel

panel (Gauss-Lengendre) quadrature with dyadic refienement.

x
dyadic ref. GL panel quad
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Quadratures for Outer Integral

Near Interactions: x is off-surface or adjacent panel

panel (Gauss-Lengendre) quadrature with dyadic refienement.

x
dyadic ref. GL panel quad

Singular Interactions: x is on-surface

x
special quadrature

for p(s) log(s) + q(s)

dyadic ref. GL panel quad
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Quadratures for Outer Integral

Near Interactions: x is off-surface or adjacent panel

panel (Gauss-Lengendre) quadrature with dyadic refienement.

x
dyadic ref. GL panel quad

Singular Interactions: x is on-surface

x
Instead build special quadrature rules!

replace composite panel quadratures with a single quadrature.

Separate rules for different aspect ratios (1 -- 104 in powers of 2)
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Numerical Results - Stokes BVP

Exterior Stokes
Dirichlet BVP:
∆u −∇p = 0,
∇ · u = 0,

u|Γ = u0,
u(x) → 0 as |x| → 0,

wire radius = 1.5e-3 to 4e-3

wire length = 16

BIE formulation: (I/2 +D + S / (2ε log ε−1))[σ] = u0
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Numerical Results - Stokes BVP

1-core 40-cores

N Npanel Nθ ϵGMRES Niter ∥e∥∞ Tsetup (N/Tsetup) Tsolve Tsetup Tsolve

1.5e4 122 4 1e-03 10 1.9e-02 0.33 (4.4e4) 0.7 0.024 0.05

9.1e4 252 12 1e-05 21 1.7e-04 3.31 (2.7e4) 61.2 0.197 5.25

9.4e4 262 12 1e-07 33 4.1e-06 4.43 (2.1e4) 104.3 0.224 7.69

2.0e5 272 24 1e-09 43 1.4e-08 17.70 (1.1e4) 586.0 0.796 22.94

2.3e5 276 28 1e-11 54 4.1e-09 27.67 (8.4e3) 1034.2 1.229 38.85
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Numerical Results - close-to-touching

0.125 1.0

gap = 0.003
Nθ = 88
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Numerical Results - close-to-touching
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Numerical Results - close-to-touching

1-core 40-cores

N ϵGMRES Niter ∥e∥∞ Tsetup (N/Tsetup) Tsolve Tsetup Tsolve

6.5e4 1e-02 4 2.1e-02 8.1 (8.0e+3) 6.5 1.28 1.4

6.5e4 1e-05 24 2.4e-03 16.8 (3.8e+3) 42.9 2.50 7.7

6.5e4 1e-07 43 2.8e-06 23.5 (2.7e+3) 81.6 3.31 12.8

6.5e4 1e-10 59 5.4e-08 35.6 (1.8e+3) 122.9 4.06 19.2

6.5e4 1e-13 72 1.3e-10 49.9 (1.3e+3) 162.6 5.27 23.2

13



Mobility problem

n rigid bodies Ω =
n∑

i=1
Ωi

with velocities V (x) = vi + ωi × (x − xc
i ),

and given forces F i , torques T i abount xc
i .

Stokesian fluid in R3 \ Ω
∆u −∇p = 0, ∇ · u = 0,
u → 0 as x → ∞.

Boundary conditions on ∂Ω,

u = V + us.

F1

T1

14



Mobility problem

n rigid bodies Ω =
n∑

i=1
Ωi

with velocities V (x) = vi + ωi × (x − xc
i ),

and given forces F i , torques T i abount xc
i .

Stokesian fluid in R3 \ Ω
∆u −∇p = 0, ∇ · u = 0,
u → 0 as x → ∞.

Boundary conditions on ∂Ω,

u = V + us.

unknown: V (ui ,ωi)

F1

T1
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Mobility problem - double-layer formulation

Represent fluid velocity: u = S[ν(F i ,T i)] +D[σ]

and rigid body velocity: V = −
6n∑
i=1

viv
T
i σ

Applying boundary conditions (u = V + us on ∂Ω),

(I/2 +D)[σ] +
6n∑
i=1

viv
T
i σ = us − S[ν]

(Pozrikidis - Boundary Integral and Singularity Methods for Linearized Viscous Flow)
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Mobility problem - double-layer formulation

Represent fluid velocity: u = S[ν(F i ,T i)] +D[σ]

and rigid body velocity: V = −
6n∑
i=1

viv
T
i σ

Applying boundary conditions (u = V + us on ∂Ω),

(I/2 +D)[σ] +
6n∑
i=1

viv
T
i σ = us − S[ν]

(Pozrikidis - Boundary Integral and Singularity Methods for Linearized Viscous Flow)

Second kind integral equation, should be well-conditioned.

What can possibly go wrong?
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Conditioning of layer-potential operators

κ(S) ∼ 2.6e6

κ(I/2 +D) ∼ 4.3e6

κ(I/2 +D + 16S) ∼ 80

For infinite cylinder (Laplace case): κ(I/2 +D) ∼ ε−2 log−1 ε−1

Combined field operator well-conditioned: I/2 +D + S / (2ε log ε−1)
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Mobility problem - combined field formulation

Represent fluid velocity: u = S[ν(F i ,T i)] +K[σ]

and rigid body velocity: V = −
6n∑
i=1

viv
T
i σ

where, K = D + S/(2ε log ε−1).
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Mobility problem - combined field formulation
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Mobility problem - combined field formulation

Represent fluid velocity: u = S[ν(F i ,T i)] +K[σ −
6n∑
i=1

viv
T
i σ]

and rigid body velocity: V = −
6n∑
i=1

viv
T
i σ

where, K = D + S/(2ε log ε−1).

Applying boundary conditions,

(I/2 +K)[σ −
6n∑
i=1

viv
T
i σ] +

6n∑
i=1

viv
T
i σ = us − S[ν]

Second kind integral equation and well-conditioned!
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Numerical Results - Sedimentation Flow

Time-stepping: 5-th order adaptive SDC

8-digits accuracy in quadratures, GMRES solve,

and time-stepping.

40 CPU cores
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Time-stepping: 5-th order adaptive SDC

8-digits accuracy in quadratures, GMRES solve,

and time-stepping.

40 CPU cores
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Numerical Results - Sedimentation Flow
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N

Close-to-touching: smaller time-steps, more unknowns (N ),

high GMRES iteration count (block preconditioner doesn’t help).

∼ 125× more expensive!
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Numerical Results - Sedimentation Flow

5-th order adaptive SDC

8-digits accuracy in

quadratures, GMRES solve,

and time-stepping.

0.5 million unknowns
64 rings.

160 CPU cores
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Numerical Results - Sedimentation Flow
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Numerical Results - Sedimentation Flow
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Conclusions

Convergent boundary integral formulation for slender bodies.

unlike SBT, boundary conditions are actually enforced to high accuracy.

Special quadratures - efficient for aspect ratios as large as 105.

quadrature setup rates up to 20,000 unknowns/s/core (comparable to FMM speeds).

Stokes mobility problem - combined field BIE formulation.

well-conditioned formulation for slender-body geometries.

high-order time stepping (SDC), block-diagonal preconditioner.
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Conclusions

Convergent boundary integral formulation for slender bodies.

unlike SBT, boundary conditions are actually enforced to high accuracy.

Special quadratures - efficient for aspect ratios as large as 105.

quadrature setup rates up to 20,000 unknowns/s/core (comparable to FMM speeds).

Stokes mobility problem - combined field BIE formulation.

well-conditioned formulation for slender-body geometries.

high-order time stepping (SDC), block-diagonal preconditioner.

Limitations and ongoing work:

Open problems: collisions, better preconditions.

Flexible fibers -- applications in biological fluids.
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