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Self-organized intracellular twisters
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Life in complex systems, such as cities and organisms, comes to a 
standstill when global coordination of mass, energy and information 
flows is disrupted. Global coordination is no less important in single cells, 
especially in large oocytes and newly formed embryos, which commonly 
use fast fluid flows for dynamic reorganization of their cytoplasm. These 
cytoplasmic streaming flows have been proposed to spontaneously arise 
from hydrodynamic interactions among cortically anchored microtubules 
loaded with cargo-carrying molecular motors. Here, we combine 
modelling and simulation with live imaging to investigate such flows in the 
Drosophila oocyte. Using a fast, accurate and scalable numerical approach 
to investigate fluid–structure interactions of thousands of flexible fibres, 
we demonstrate the robust emergence and evolution of cell-spanning 
vortices—or twisters—in three-dimensional cellular geometries. These 
twister flows, dominated by a near-rigid-body rotation with secondary 
toroidal components, reproduce the variety of experimental observations. 
In cells, these flows are probably involved in rapid mixing and transport of 
ooplasmic components.

Cytoplasmic streaming, first described in 1774 by Bonaventura Corti1, 
regulates a wide range of intracellular processes, especially when large 
cell size makes diffusion and motor-driven transport too slow for effi-
cient intracellular transport and mixing2–10. The types of cytoplasmic 
flows can vary significantly among cells and over different stages of cell 
development, from random streaming in early fly oocytes to circulation 
flows observed in plants and later oocytes, to shuttle streaming found 
in slime moulds11,12. Cytoplasmic flows are commonly driven by forces 
originating from the cell cortex, where motor proteins carry cargo 
along cytoskeletal filaments and so entrain the fluid13. The formation 
of macroscopic flows in cells requires an alignment in motor move-
ments across many filaments. In some cells, such as the algae Chara, this 
alignment originates from the organization of actin filaments at earlier 
developmental stages and can be viewed as providing static boundary 
conditions for the flow problem6,14. In others, like oocytes of the fruit 

fly Drosophila, our focus here, motors move on a cytoskeletal bed of 
flexible microtubules, and their alignment and direction were proposed 
to arise by means of self-amplifying feedback between motor-induced 
cytoplasmic flows and collective deformations of the microtubule bed15. 
Understanding how these large-scale flows emerge in a system of hydro-
dynamically coupled deformable fibres is highly non-trivial because of 
strong geometric nonlinearities and widely separated spatiotemporal 
scales. Here, we present a versatile modelling approach for tackling 
this challenge and show how it can be combined with experiments in 
the Drosophila oocyte to provide general insights into self-organized  
cytoplasmic streaming.

The cytoplasm of the developing Drosophila oocyte remains 
relatively quiescent for the first three days of oogenesis. During this 
time, diffusion and directed transport are used to localize several 
molecular factors needed for the patterning of the future embryo9,16. 
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where homogeneous solutions are not allowed and when other sim-
plifying features of the model are removed. We present a computa-
tional approach that allows us to address these questions while making 
new and testable experimental predictions about the 3D structure of  
cytoplasmic flows.

Modelling hydrodynamically coupled 
motor-driven fibres
Conceptually, plus-end directed motors—here, kinesin-1—bind along 
anchored microtubules, carrying cargos towards free plus-ends and 
detaching once they reach there. Although the cargos seem varied, 
possibly including cellular organelles and yolk granules, free micro-
tubules have been identified as one cargo crucial for robust stream-
ing19. Given the lack of data on the details of cargo binding and payload 
densities and sizes, we assume the simplest model and, as in ref. 24, 
coarse-grain the forces of plus-end directed cargos on bound micro-
tubules to a uniform compressive force density (that is, directed 
along the bound microtubule towards its anchored end) (Fig. 1a). An 
equal and opposite force is exerted on the surrounding fluid, thus 
satisfying Newton’s Third Law. We find this is sufficient to recover 

Later, typically in stage 10b, when the oocyte is 150–300 μm long 
and 100–200 μm wide, large-scale streaming arises, often appear-
ing as a vortex and having a typical speed of 100–400 nm s−1  
(refs. 17–19). This vortex was proposed to be generated by beds of 
flexible microtubules anchored to the actomyosin cortex, serving 
as tracks for plus-end-directed kinesin-1 motor proteins moving free 
microtubules and other payloads through an apparently viscous 
ooplasm18–23. One simulated model of ∼100 motor-loaded, flexible 
microtubules above a no-slip plane showed emergence of ordered flow 
states reminiscent of observations during streaming18. More recently, 
an active and deformable porous-medium model was derived and used 
to argue that coherent vortical flows hundreds of microns in size can 
self-organize by means of the fluid-mediated coupling of active and 
flexible microtubules24. Parametric analysis of special azimuthally 
homogeneous solutions in a two-dimensional (2D) disk geometry 
identified a regime in which all microtubules coherently bend because 
of motor activity, resulting in a large-scale vortical flow. Although 
the model supports the idea of self-amplifying feedback generat-
ing large-scale flows, it remains to determine whether and how this 
mechanism works in more realistic three-dimensional (3D) geometries 
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Fig. 1 | Hydrodynamic interactions of motor-loaded microtubules generate 
intracellular flows. a, Schematic illustrating a microtubule (blue) anchored 
normal to the cell surface (green) subject to active forcing and immersed in a 
viscous Newtonian fluid (that is, cytoplasm). Large red arrows show compressive 
stress on the microtubule, small orange arrows represent stress on the fluid, and 
black lines indicate flows in the fluid. b, Three regimes of microtubule behaviour: 
stable regime with little microtubule deformation (left), beating regime with 
microtubules oscillating (middle, case I) and the streaming regime with 
microtubules (collectively) bending (right, case II). Microtubule colours 
represent time evolution. c, Within a spherical cell, the phase diagram of 
microtubule behaviours as a function of adimensional microtubule areal density 

ρ̄ and motor forces ̄σ . The regions in yellow, red, and blue represent stable, 
streaming and oscillation phases, respectively. The colour of the red circles 
represents the characteristic streaming speed (flow speed at a distance 0.8 R 
from the centre). The case I data point has ρ̄ = 5 and ̄σ  = 90, and case II has ρ̄ = 15 
and ̄σ = 45. d,e, For cases I (d) and II (e), cut-away view of instantaneous 
microtubule configurations in the spherical cell (i), 2D projection of velocity 
field in the sectioning equatorial plane at four time points (ii), the adimensional 
azimuthal velocity component ū at the three points in the equatorial plane as a 
function of adimensional time ̄t  (iii) and 3D streamlines integrated from the 3D 
velocity field (iv). Curve colours correspond to the coloured point in preceding 
velocity plots.
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many aspects of observed streaming and to make several predictions  
for experiment.

Hence, consider N microtubules clamped to the inner surface 
of a spheroidal cell of effective radius R and surface area S (∼R2). 
Microtubules are well modelled as inextensible elastic slender bodies 
(ϵ = microtubule radius/length ≈ 10−3 ≪ 1) (refs. 25,26), and the cyto-
plasm is modelled as a Newtonian fluid of viscosity μ (ref. 22). The shape 
of microtubule i at time t is given by Xi(s, t), where 0 ≤ s ≤Li, with s the 
arclength from its base and Li its length. Microtubule shape evolution 
caused by drag forces balancing elastic and motor forces is given by 
local slender-body theory27–29

η (Xit − ūi(Xi)) = (I + XisX
i
s)(fi − σXis), (1)

where Xis = ∂sXi  is the microtubule unit tangent vector and  
η = 8πμ/c(ϵ) is a drag coefficient having c = | ln eϵ2|  (given the  
logarithm, changes in ϵ enter very weakly). The velocity ūi  is that 
induced by all other microtubules and backflow from the cortex. The 
force density fi = −EXissss + (TiXis)s is the elastic force due to microtu-
bule bending, with rigidity E and tensile forces, with tension Ti enforc-
ing inextensibility. The microtubule-aligned term −σXis  is the 
coarse-grained compressive load (σ > 0) exerted by kinesin-cargo 
complexes.

Given the background fluid velocity, equation (1) describes an ini-
tial value problem for microtubule shape. The background cytoplasmic 
velocity u(x), induced by all microtubules and by periphery backflow, 
satisfies the forced Stokes equation

∇p − μΔu =
N

∑
i=1

∫
Li

0
ds fi(s)δ(x − Xi(s)); ∇ ⋅ u = 0, (2)

where p is the pressure and no-slip is taken on the cortex. The minus 
ends of microtubules are pinned and clamped (respectively, 
X(0, t) = X(0, 0) and Xs(0, t) = −n(X(0, t))  with n  the outward  
surface unit normal) at the cortex and the free plus end taken as torque 
and force free. That motor forces do not show up directly in determin-
ing the background velocity reflects their subdominant dipolar nature 
and the assumed close proximity of payloads to the load-bearing  
microtubules.

Equations (1) and (2) reflect a multiscale structure, with equation (1)  
evolving individual microtubules moving in a background flow cre-
ated, by means of equation (2), by the collective forcing of the micro-
tubule ensemble. Beds of motile cilia, also a multiscale active polymer 
transport system, are much studied for their capacity to self-organize, 
including through hydrodynamic interactions, into metachronal 
waves30,31. Unlike the system studied here, cilia are internally actuated 
by dynein motors moving on ciliary microtubule doublets with fluid 
motion created directly by ciliary motion. Not so here, where even a 
single stationary and straight clamped microtubule will produce an 
upward cytoplasmic flow around it as a consequence of the payloads 
moving up on it, as conceptualized by equations (1) and (2).

Control parameters and numerical approach
The parameters in the model combine to yield three important  
timescales. Letting L be a characteristic microtubule length, from  
equation (1) come τr = ηL4/E, the relaxation time of a single microtubule, 
and τm = Lη/σ, the time for motor forces to move a microtubule its  
own length. Equation (2) yields a second, faster microtubule relaxation 
time arising from collective hydrodynamic interactions, τc = τr/ρ̄ , 
where ρ̄ = 8πNL2/cS  is the effective areal density of microtubules24. 
Ratios of these timescales determine the two dimensionless parameters 
dependent on the biophysical properties of microtubules and  
motors and their numbers: the dimensionless microtubule areal den-
sity ρ̄ = τr/τc, already introduced, and the dimensionless motor force 
̄σ = τr/τm = σL3/E . The model has only two other, geometric, param-

eters: the ratio of microtubule length to system size, δ = L/R, and ϵ 
(entering weakly). Here we keep δ and ϵ constant, and thus ρ̄ and ̄σ  
govern the behaviour of the system.

Simulating this system efficiently for thousands of microtubules 
has peculiar challenges. The microtubules make the system geometry 
very complex, whereas their shape evolution is stiff because of their 
elasticity. Although the number of degrees of freedom—mainly dis-
cretized microtubule forces and shapes—is not extreme (∼105–6), all 
are globally coupled by the Stokes equations, and the system needs to 
be simulated for long times. For this, we developed a fast and scalable 
computational platform that accurately evolves equations (1) and 
(2). It has three main components. First, boundary integral represen-
tations and slender-body theory reduce the 3D Stokes equations in 
this complex domain to solving one-dimensional integrodifferential 
equations on microtubules and a coupled 2D integral equation on cell 
surfaces of nearly arbitrary geometry29. Second, a fast Stokes solver 
efficiently evaluates the non-local hydrodynamic interactions between 
microtubules and the periphery with linear scaling in the number 
of unknowns. Third, we use a stable implicit–explicit time-stepping 
scheme to efficiently evolve the stiff microtubule dynamics. This open 
source software is modular, allowing parallel computations across 
several nodes32.

Self-organized regimes in a spherical cell
This infrastructure allows us to determine whether and how the  
behaviours predicted by the 2D analysis of the active porous-medium 
model survive in a fully 3D geometry that, for example, disallows homo-
geneous solutions. Abstracting the stage 10 oocyte to a spherical cell 
of radius R = 100 μm and setting microtubule lengths to L = 20 μm  
(giving δ = 0.2), we studied the model’s long-time behaviour for various 
combinations of ρ̄ and ̄σ. We use measured values of microtubule rigid-
ity and cytoplasmic viscosity (Methods), giving a single microtubule 
relaxation time of τr = 16,000 s (somewhat less than the 10 h duration 
of stage 10). Typically, we placed the microtubules at random statisti-
cally uniform positions, achieving a given ρ̄ with initial straight  
configurations normal to the surface. We found three basic behaviours: 
the cell’s microtubules remaining nearly straight, its microtubules all 
beating near the same frequency or its microtubules bending collec-
tively and remaining bent (Fig. 1b). On this basis, we grouped the simu-
lations to map out domains of these qualitatively different behaviours 
(Fig. 1c). For low motor forces or low density, we find a stable phase 
where microtubules remain nearly straight (Fig. 1c, yellow). For larger 
motor forces and moderate microtubule density, we observed phases 
where microtubules periodically beat (Fig. 1c, blue). For a large range 
of parameters where microtubule density and motor strength are bal-
anced, the model exhibits a streaming phase in which most microtubules 
bend collectively and remain bent (Fig. 1c, red). The emergence and 
structure of this phase is the principal theme of this work. Consistent 
with the prediction of the earlier coarse-grained analysis, the beating 
regime arises only beyond a critical motor force, and the streaming 
regime arises only above a critical microtubule density.

The microtubules’ configurations and forces determine the instan-
taneous 3D flow structure through equation (2). In the stable regime, 
there are local cytoplasmic flows near each microtubule but negligible 
flows inside the cell (Supplementary Fig. 1). For case I in the phase 
diagram (as Supplementary Video 1 makes clear), initially straight 
microtubules evolve into a beating state having dynamic regions of 
apparently synchronized beating (Fig. 1d(i) inset). Whether this cor-
responds to a collective state as has been observed in models of ciliary 
beds31,33 is an interesting question that will be addressed quantitatively 
elsewhere. The associated internal velocity field is spatially complex 
and unsteady (Fig. 1d(ii) and Supplementary Video 2). Individual veloc-
ity traces show a basic underlying frequency (for example, Fig. 1d(iii)) 
on the scale of τm, the motor time, at essentially the beat frequency of 
an isolated active microtubule, but with persistent relative phase drift. 
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The spatial complexity of these flows (Fig. 1d(iv)) shows the instantane-
ous streamlines within the cell. Perhaps coincidentally, the short-range 
spatial correlation is reminiscent of cytoplasmic seething in earlier 
development stages21,34,35. The emergence of oscillations of single 
driven filaments has been studied in related contexts: for example, 
refs. 36–38.

The streaming phase
Henceforth, we focus on the streaming phase (case II in the phase  
diagram), which generates flows similar to those typically observed in 
oogenesis stages 10b and beyond. In this region, we find that the initially 
straight microtubules at first bend in seemingly random directions. 
Gradually, these deformations align into an array of bent microtu-
bules wrapping around an axis of symmetry (Fig. 1e(i) and Supplemen-
tary Video 3). This emergent axis is sensitive to details of initial data 
and microtubule patterning. The associated streaming flow is nearly 
steady, strongly vortical, fills the cell, has speeds ∼100 nm s−1 and is  
reached rapidly on the order of τc, the collective relaxation timescale 
(Fig. 1e(ii–iv) and Supplementary Video 4).

Given that the streaming flow is essentially vortical about an 
extended axis, we refer to it as a twister. Setting the axis of the twister 
flow to ẑ and examining its 3D streamlines shows the vortical compo-
nent as indeed filling the cell and having a weaker swirl component 
(Fig. 2a,b) moving fluid inwards from the poles along the twister axis 
with a return flow outwards along the cell perimeter. That is, the sec-
ondary flow consists of two counter-rotating toroidal vortices, one in 
each hemisphere, wrapped around the twister axis. The simulated 
streaming flows can be well fit away from the boundaries as a flow with 
surface slip by superposing a purely 2D rotational flow with an aligned 
axisymmetric bitoroidal flow that satisfies the no-slip condition39. For 
case II, the strength of the rotational flow is ∼20 times larger than the 
bitoroidal flow (Fig. 2b,c and Methods).

The dominant vortical flow arises from the collective bending of the 
majority of microtubules around a common axis (Fig. 1e(i)), whereas the 
swirl component arises from microtubule conformations around ‘defect 
centres’, our label for the points where the internal vortex axis ends at 
the cell surface. As a proxy for microtubule orientation and deforma-
tion, we define the microtubule surface polarity vector (Fig. 2d):

pi(t) = (I − nn) ⋅ X
i(Li, t) − Xi(0, t)

Li
, giving that |pi| ≤ 1. (3)

Microtubules near defect centres are relatively straight (that is, have 
low ∣pi∣), as the flow direction becomes indeterminate there (Fig. 2e). In 
these defect regions, the p field shows an inwardly oriented spiral pattern 
(Fig. 2f) consistent with the rotational flow and the pumping of cytoplasm 
that pulls fluid in peripherally. Self-consistently, payloads moving on 
these microtubules produce a tangential secondary flow towards the 
defect, and incompressibility yields both the inward axial flow and the 
global return flow. In the language of liquid-crystal physics, the polarity 
field structure is a combination of two +1-order disclination singularities.

The twisters we find here are cell-spanning, 3D flow states. This has 
consequences for their observation by means of microscopy, which 
typically images 2D cross-sections slicing through the cell (although 
confocal z-stacks may give some 3D structure). One then expects that 
the flows thus imaged will be in planar cross-sections set at some random 
angle relative to the twister axis. This is illustrated in Fig. 2g–i, which, 
by sampling in differently angled planes through the cell, shows a full 
vortex, an apparently displaced and distorted one and a fully transverse 
streaming flow. These are nonetheless all images of the same flow state.

Live imaging of cytoplasmic flows and cortical 
microtubules
A central feature of our model is that the flow near the cell surface  
is locally set by the orientation of the microtubules (Fig. 3a).  

Moreover, because the flow is generated by motors moving along 
the microtubules, the flow speed increases from the centre of the 
vortex towards the microtubule bed and then diminishes near the 
cell surface because of the no-slip boundary condition (Fig. 3b). 
We successfully tested both of these predictions in live Drosophila 
oocytes (Supplementary Video 5). We performed particle imaging 
velocimetry (PIV) using endogenous particles (probably yolk granules 
and other particles) as flow tracers. To accurately measure the 3D 
cytoplasmic flow field both in the interior and near the oocyte cortex, 
we used overset grids, which combine square grids in the interior of 
the oocytes with surface-conforming grids near the cortex derived 
from its local geometry (Fig. 3c, Methods and Supplementary Fig. 2). 
We often observed a vortical flow spanning ∼100 μm, with character-
istic flow speeds of 100–300 nm s−1 (Fig. 3d, Supplementary Fig. 3).  
Our flow measurements are similar to previous studies15,40 and 
comparable with the walking speed of kinesin-1 (∼200–500 nm s−1)  
(refs. 18,19,41,42). Consistent with modelling predictions, the speed 
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Fig. 2 | Twisters are a combination of a strong vortical flow and a weak 
bitoroidal flow. a, Streamlines from a simulation of case II ( ρ̄ = 15, ̄σ = 45) in the 
streaming region. Streamlines starting near the equatorial plane remain there for 
long times, showing nearly circular paths (yellow). Streamlines starting near the 
poles move inwards on a spiral path towards the equatorial plane and then 
expand towards the periphery (red and blue). Streamlines starting above (or 
below) the equatorial plane near the cell periphery show the return flow back 
towards the pole (green). b, Streamlines from two simple solutions to the Stokes 
equations inside a sphere: a strong 2D constant vorticity flow (thick streamlines) 
and a weaker bitoroidal flow (thin streamlines). Both velocity fields are tangent to 
the confining sphere. c, Streamlines from best-fit combination of these two flows 
in approximating the flow in a. d, Schematic defining the microtubule of  
length L and polarity vector p. The blue fibre represents the configuration of a 
microtubule anchored to the surface. The black vectors represent the end-to-end 
vector in 3D and its projection p on the surface. Note ∣p∣ ≤ 1. e, Microtubule 
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vectors satisfying ∣p∣ < 0.7 (less bent) are coloured in red, and those with ∣p∣ ≥ 0.7 
are coloured blue. f, View of the ∣p∣ distribution around the defect centre shown in 
e with low microtubule alignment. g–i, 2D projection of velocity fields from 
simulation in a in the sectioning equatorial planes when the plane normal is 
aligned with the z axis (g), has angle π/4 relative to the z axis (h) and is 
perpendicular to the z axis (i).
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of cytoplasmic flow increased from the centre of the vortex towards 
the oocyte periphery and sharply decreased near the cortex (Fig. 3e). 
The measured flow speed (100–300 nm s−1) is comparable to simula-
tions (∼100 nm s−1). We measured the local microtubule orientation in 
confocal fluorescent images of oocytes expressing green fluorescent 
protein (GFP)-tagged α-tubulin (Fig. 3f,g, Supplementary Fig. 4 and 
Methods). In agreement with the model, the local cytoplasmic velocity 

field in oocytes is well aligned with the orientation field of cortical 
microtubules (Fig. 3f,g).

These two flow reconstructions, which show a distorted vorti-
cal structure and transverse streaming, and Fig. 3d, which shows a  
clear vortex, illustrate the variety of flows observed through live  
imaging. They are consistent with Fig. 2g–i as image slices through a 
basic twister structure.
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velocity field in an oocyte measured by overset grid particle image velocimetry. 
Arrows show the direction and relative magnitude of the velocity. Measurements 
were done at consecutive z-sections from the oocyte surface. Alignment of the 
anterior–posterior axis parallel to the imaging plane is a natural consequence of 
mounting the oocyte for microscopy. Scale bar, 25 μm. d, Computed 3D 
streamlines near the oocyte surface from the reconstructed velocity field. Colour 
indicates depth; red arrow shows the flow direction. Although the planar 

projection of the flow spirals inwards, flows along the vortical axis maintain 3D 
incompressibility (Fig. 2a–c). Scale bar, 25 μm. e, Flow speed as a function of 
normalized distance ̄r  from the vortex centre (inset) measured in oocytes. Here, 
̄r = r/r0, where r0 is the shortest distance from the vortex centre to the periphery. 

Grey lines indicate measurements from four different oocytes, and the black line 
shows their average. f,g, Large panels: near-surface microtubules in oocytes 
imaged in maternally derived GFP-αtub Drosophila. Orange lines represent 
microtubules’ local orientation, with length representing the local degree of 
microtubule alignment measured by Gabor filter response. Upper left insets: the 
cytoplasmic velocity field (black arrows) measured by PIV in the same oocyte in a 
plane 15 μm from the surface. Lower boxes: cytoplasmic velocity fields for 
corresponding labelled regions. Coloured arrows therein are average 
microtubule orientation in the corresponding regions. Scale bars, 25 μm.
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Fig. 4 | The structure of the streaming flow is robust. a, Microtubule surface 
polarity vectors pi (shown as arrows) and the scalar polar order parameter P from 
several views from a simulation of case II ( ρ̄ = 15, ̄σ = 45). Views (i) and (ii) are at 
early time ( ̄t = 0.025, ̄t = 0.035) and (iii) at long time ( ̄t = 0.5). P ≈ 1 (bright) 
represents a high level of local alignment, and P ≈ 0 (dark) represents a lack of local 
alignment. b, Angular power of spherical harmonic coefficients ̃Plm of the P field 
corresponding to degree l, sl(t) = ∑m=l

m=−l | ̃Plm(t)|2/(2l+ 1), l ≥ 0, for a simulation 
whose microtubules have initially bent conformations. c, Angular power for a 
second simulation having identical microtubule anchoring points as in b, but with 
differently bent initial conformations. The right and left axes represent l = 0 and 
l ≠ 0, respectively. d, Bar graph representing the mean steady-state value of sl 
(l = 0, inset) for n = 19 such simulations. Error bars show standard deviation. 

Similar statistics are found by sampling different microtubule anchoring 
distributions (Supplementary Fig. 5). e, Microtubule configurations from a 
simulation with cell geometry similar to Drosophila oocyte from an early (i) and a 
late (iii) time point, using control parameters of case II ( ρ̄ = 15, ̄σ = 45). 
Streamlines of the instantaneous flow field at the corresponding times (ii, iv). The 
disks represent the point of origin of the streamline. The streamlines in red and 
blue have points of origin near the regions with the lowest microtubule polarity P, 
denoted by black spheres. f, Distance between the two defect centres d 
normalized by oocyte length D as a function of time for 13 simulations in the 
oocyte geometry, as indicated in the inset (grey, individual simulations; black, 
average). g, Normalized distance between the defect centres (blue) and total 
elastic energy ℰ of microtubules (red) as a function of time for simulation in e.
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Robust emergence of twisters
We studied the emergent states over different initial conditions  
and for different realizations of statistically uniform placement of 
microtubules. This showed self-organized streaming to be very robust, 
with the main variation being the orientation of the twister in the cell 
(Methods and Supplementary Note 1).

The evolution towards this state can be followed through the 
dynamics of a surface polar order parameter P(y) (y on the surface) 
of microtubules obtained by averaging surface polarity vectors over 
a (sliding) surface disk ν centred on y: P = ∣P∣, where P(y, t) = ⟨pi(t)⟩ν. 
Low polar order is achieved by cancellation of anti-aligned pi vectors 
or by their originating microtubules being close to orthogonal to 
the surface (both of which are evinced near defect centres; Fig. 2e,f). 
For initially straight microtubule beds, P(y, t = 0) ≡ 0. This unstable 
state quickly evolves into a state with several spatially complex 
regions with high polar order (Fig. 4a and Supplementary Videos 6 
and 7). Each of these high-order regions is contributing to the cyto-
plasmic flow through which these regions compete and interact. The 
low-order regions gradually sharpen as high-order regions expand 
and merge, finally resolving into the axisymmetric swirling state 
whose axis joins the two opposing defect centres of low polar order 
(Fig. 4a(ii,iii)).

Although the orientation of this axis depends on the fine- 
grained details of microtubule placement and initial conditions,  
the final flows and order parameter fields all evolve towards the  
same basic attractor. Their strikingly similar progression of 
self-organization towards the streaming twister state can be readily 
appreciated by examining the P field’s angular power spectra: 
sl(t) = ∑m=l

m=−l | ̃Plm(t)|2/(2l + 1)  (components of the spherical  
harmonic power spectrum, with l the polar mode index). As the system 
evolves towards the twister state, both even and odd l modes initially 
grow and then either (1) saturate for even l while being dominated by 
the global l = 0 mode or (2) relax back to relatively small amplitudes 
for odd l modes. The relaxation timescale of these modes is similar 
to the collective relaxation timescale τc. We consistently observed 
similar dynamics and end states for simulations in which anchoring 
points or microtubule initial conditions were varied (Fig. 4b–d and  
Supplementary Fig. 5).

Model dynamics in an oocyte geometry
Like cows, oocytes actually have a variety of shapes: they are very 
roughly distended ellipsoids with approximate symmetry around their 
anterior–polar axis. How might cell nonsphericity affect twister forma-
tion and dynamics? To investigate this, we simulated motor-loaded 
microtubule beds anchored within an axisymmetric cell having a shape 
resembling stage 10b oocytes (Methods). The dynamics is first familiar 
and then surprising. Beginning from straight microtubules and using 
the case II values for ̄σ  and ρ̄, the progressive growth and coarsening 
of domains with bent but aligned microtubules is again observed. This 
process leads again to a twister (Fig. 4e(i), Supplementary Fig. 8 and 
Supplementary Video 8) that sits askew in the cell, respecting no obvi-
ous geometric symmetry, with the structure of its interior flows a geo-
metric perturbation of the rotational plus bitoroidal flows found in 
spheres (Fig. 4e(ii)). Evolving from different samples of microtubule 
anchoring points leads to twisters at differing orientations, usually 
tilted within the cell (Fig. 4f). However, we find that in all cases for this 
cell shape, the newly formed twisters slowly reorient into alignment 
with the anterior–posterior cell axis (Fig. 4e(iii),f) while preserving the 
basic interior flow structure (Fig. 4e(iv)). The reorientation observed 
in simulations occurs on the long timescale τr ≈ 5 h, consistent  
with observing vortices in vivo that are not aligned along the 
anterior-posterior axis.

What drives this reorientation? In this system, energy is stored in 
the elastic deformations of the microtubule bed measured by its total 
elastic energy

ℰ(t) =
N

∑
i=1

E
2 ∫

Li

0
ds[κi(s, t)]2, (4)

where κi is microtubule curvature. The elastic energy is driven by motors 
performing work on the system and dissipated by viscous and drag 
forces. Although the energy is initially zero, as microtubules are initially 
straight, ℰ begins a rapid rise as microtubules collectively bend and 
reaches its maximum as the twister forms (Fig. 4g). Rather than linger-
ing there, as it would if the system were in a steady state, ℰ immediately 
begins decreasing, and the twister axis starts its reorientation towards 
the anterior–posterior axis. Meanwhile, ℰ generally decreases, and the 
system ultimately relaxes into a steady state of reduced elastic energy.

We note that experiments indicate a lower microtubule density in 
the posterior43–45. To investigate the effect of nonuniform microtubule 
distribution, we progressively diminished their density in the posterior 
and again found fast twister formation followed by slow reorientation 
(Supplementary Fig. 9 and Note 2).

Discussion
Taken together, our results underscore the robustness of cytoplas-
mic streaming that emerges from hydrodynamic interactions among 
cortically anchored microtubules loaded with cargo-carrying motors. 
Fine-tuning is not required; as long as microtubule density and motor 
activity are in the wide domain of parameters that corresponds to sta-
ble streaming, self-organization takes care of the rest, establishing a 
cell-spanning twister. Naming such vortices twisters begs comparison 
with the more familiar kind. Tornadoes are inertia dominated and have 
highly localized vortical cores, maintained by axial swirl, away from 
which flow velocities decay. Our zero-Reynolds-number twisters have 
velocities rising from the centre, a la solid-body rotation, and reflect a 
precise balance between active surface driving and viscous dissipation. 
Self-organized boundary-driven vortices have arisen in other active 
matter systems, such as confined suspensions of swimming bacteria38.

Our model makes several interesting predictions. As discussed, 
our twister states are volumetric structures, which predicts that 
standard microscopy imaging should show a variety of flows depend-
ing on how the imaging volume intersects the flow structure. This 
is consistent with our own experimental observations. Further, our 
simulations are of statistically uniform microtubule beds in axisym-
metric cell shapes. Thus, our twisters have no preferred direction of 
rotation with respect to axes of cell symmetry. Our experimental flow 
reconstructions likewise showed no evidence for rotational biases, 
clockwise or counterclockwise, with respect to the anterior–poste-
rior cell axis (Supplementary Fig. 3c,d). Our simulations show small 
secondary streaming flows originating from defect centres. Although 
the rotational flow seems very robust, these secondary flows may not 
be, and they may be affected by various cellular inhomogeneities; 
as yet, our microscopy imaging volumes are insufficient to make a 
clear comparison. Very interestingly, simulated twisters in oocyte 
shapes show a slow reorientation—on the long τr timescale—towards 
the anterior–posterior axis. Although this is a challenging predic-
tion to test, requiring long-time, stable imaging of the oocyte, we 
are pursuing new observations. The nature of these dynamics also 
indicates the existence of manifold twister states towards which the 
system is rapidly attracted and on which twisters slowly move towards 
axis alignment, which we believe to be the state of minimum energy 
(supplementary Fig. 7a). This picture is consistent with simulations 
in spheres, where elastic energy also shows rapid peaking and then 
decay (Supplementary Fig. 7b). But the apparent overshoot is now 
far smaller, with subsequent dissipation towards a state of barely 
different energy (Supplementary Fig. 7a), indicating a slow twister 
dynamics driven by statistical details of microtubule placement rather 
than cell shape. The nature of transition to swirling and axis alignment 
requires further exploration, but it is interesting to note that changes 
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in viscosity (such as may occur on dissolution of the cellular actin 
meshwork34,35) do not, in our model, lead to state bifurcations but only 
change the timescale on which dynamics occurs.

What function might a twister serve? Before the onset of stream-
ing, diffusion and motor-driven transport are the main means by which 
different classes of RNAs are transported and anchored to the the 
anterior, dorsal and posterior regions of the oocyte. Importantly, 
several gene products guard the oocyte against precocious streaming 
because it would interfere with the localization of transcripts needed 
for embryonic patterning15,46. Once these factors are stably localized, 
the oocyte switches to a streaming strategy for intracellular transport. 
The appearance of streaming may reflect its role in the uptake of yolk, 
the main source of protein in the embryo. Yolk proteins arrive at the 
future egg cell by means of internalization after binding to a specific 
receptor that localizes to the oocyte plasma membrane shortly before 
streaming onset47. The streaming flow might be used to efficiently 
disperse of the arriving yolk throughout the ooplasm. This idea is con-
sistent with the fact that yolk proteins are known cargoes of kinesin-1 
motors walking on cortically anchored microtubules19 and with our 
preliminary analyses of the mixing capabilities of self-organized intra-
cellular twisters.

Online content
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maries, source data, extended data, supplementary information, 
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Methods
We briefly formulate our model and outline our method of simulation, 
the technical details of which appear in ref. 29. The approach combines 
slender-body theory and boundary integral methods for solving the 
Stokes equations. A publicly available and elaborated version of the 
underlying code, SkellySim, is available from ref. 32.

In broad strokes, we simultaneously solve the coupled equa-
tions of motion, equations (1) and (2) in the main text, for the fluid 
and immersed microtubules confined in the cellular volume Ω and 
clamped at the boundary Γ. Because of the linearity of the Stokes equa-
tions, we can write the fluid velocity at x in Ω as u(x) = umt(x) + uΓ(x), 
with umt(x) = ∑iui(x) the superposition of velocities induced by forces 
and conformations of each microtubule i and uΓ(x) the consequent 
backflow velocity induced by the no-slip condition at the confining 
boundary Γ.

The velocities umt and uΓ are expressed in terms of two fundamental 
solutions to the Stokes equations, the Stokeslet tensor G (a second-rank 
tensor) and the Stresslet 𝒯𝒯  (a third-rank tensor):

G(x) = 1
8πμ

I + x̂x̂
|x| ; 𝒯𝒯(x) = −3

4πμ
x̂x̂x̂
|x|2 . (5)

x̂ = x/|x|. Slender-body theory for the Stokes equations gives that, to 
leading (logarithmic) order in the slenderness ratio ϵ, the velocity 
induced by a microtubule is given as a line integral of the distribution 
of the Stokeslets along its centerline

ui(x) = ∫
Li

0
G (x − ri(s′)) fi(s′)ds′, (6)

where fi is the internal elastic force that a microtubule exerts on the 
fluid (see main text).

The second contribution, uΓ, accounts for the no-slip condition 
taken on Γ and is expressed as a surface convolution of the Stresslet 
over Γ with an unknown density q,

uΓ(x) = ∫
Γ

dSy n(y) ⋅ 𝒯𝒯(r) ⋅ q(x), (7)

where r = x − y and n is the outward unit normal vector to Γ. In the 
parlance of integral equations, this is a double-layer representation. In 
such a representation, taking the limit x → Γ of equation (5) and applying 
the no-slip condition, u = 0, generates a well-conditioned Fredholm 
integral equation of the second kind for q:

− 1
2
q(x) + ∫

Γ
dSyn(y) ⋅ 𝒯𝒯(r) ⋅ q(y)

+∫
Γ
dSy[n(x)n(y)] ⋅ q(y) = −umt(x), x ∈ Γ .

(8)

Here, the last term of the right-hand side is added to complete the 
rank (that is, make it uniquely invertible) of the integral equation. This 
term does not change the velocity uΓ but does fix a constant in the 
pressure field29. In equation (1) of the main text, the background veloc-
ity for microtubule i is given by ūi(x) = ∑j≠iu

j(x) : that is, the flows 
induced by all other microtubules. At each time, the unknown field to 
determine for microtubule i is its tension field Ti, which enforces inex-
tensibility. This condition generates, through equation (1) of the main 
text, integrodifferential equations for all the tensions Ti. Solution of 
the coupled system for (q, T) allows calculation of the microtubule 
velocities Xit(s, t).

The integrodifferential operators along the centerlines of the 
microtubules are discretized using fourth-order finite differences. 
For the time stepping, we use an adaptive explicit/implicit backward 
time-stepping scheme, which maintains accuracy while removing 
high-order stability stiffness constraints from the bending term. This 

results in a dense linear system of equations that we solve using the gen-
eralized minimal residual method with block-diagonal preconditioners. 
We accelerate computing the hydrodynamic interactions using the fast 
multipole method48. The complexity per time step scales with the total 
number of discretization points on microtubules and the cell surface.

Biophysical and numerical parameters of simulations
Biophysical: In our simulations, we chose the length of all microtu-
bules to be L = 20 μm—on the longer side if growing from dynamical 
instability—with bending rigidity E = 20 pN μm2 (ref. 25). A microtubule 
diameter of ∼20 nm gives ϵ ≈ 5 × 10−4. If the cell is spherical, it is of radius 
R = 100 μm, taken in this abstracted shape as the typical size for stage 
10 Drosophila oocytes. For an ‘oocyte’-shaped cell, whose construc-
tion is described below, the length is 150 μm and width 108 μm. The 
immersing fluid is taken as Newtonian with viscosity μ = 1 Pa s (ref. 22).

The relaxation time of a microtubule is estimated as 
τr = ηL4/E ≈ 16,000 s. For comparison, this is somewhat less than the 
duration of stage 10 of Drosophila  development—about 
10 h = 36,000 s—where large-scale streaming flows first appear. We 
note that streaming persists into stage 12. Generally we have 
(τc, τm) = (τr/ρ̄, τr/ ̄σ). For beating case I, this gives (τc, τm) ≈ (3,200, 180) s, 
whereas for the streaming case II, we have (τc, τm) ≈ (1,066, 355) s. The 
maximum allowable time step is Δt = 0.16 s, much smaller than any of 
faster timescales τc and τm.

Constructing anchoring sets and initial conditions of 
simulations
We set up simulations as follows. For a given cell geometry, microtu-
bules are clamped orthogonally to the inner surface and each discre-
tized with 64 points. The surface anchoring points are chosen randomly 
and have a uniform probability per unit area. These placements are then 
filtered to ensure that no two microtubules are closer than the distance 
Δ = 0.1L from each other. The initial shapes of the microtubules are 
typically set as straight lines but sometimes as curved lines produced 
as follows. We evolve the system forward, using initially straight micro-
tubules, under the induced flow of 500 rotlets (point torque sources 
for the Stokes equations) randomly placed uniformly within the cell at 
a maximum distance of 0.78R from the centre. For the simulations in 
Fig. 4b–d and Supplementary Fig. 6c,d, the torque in each dimension 
is taken from a uniform distribution between [−5,5] pN μm. For the 
simulations in supplementary Fig. 6e, the torque in each dimension is 
taken from a uniform distribution between [−5ϵ,5ϵ] pN μm, where ϵ is 
varied between 0 and 0.1. ϵ = 0 corresponds to the straight microtubule 
case and serves as a reference condition. These rotlets generate local 
flows that deform microtubules from their straight shapes, with the 
degree of deformation in the latter case controlled by ϵ. The rotlets are 
removed from the system after t = 1.25 × 10−4τr, and the resulting micro-
tubule configurations are used as initial data for further simulations.

Classification of microtubule dynamics in simulations
We established the phase diagram of the model on the basis of the 
dynamics and shapes of the microtubules in long-term simulations. 
In the stable phase, microtubules remain unperturbed and normal 
to the surface; in the beating phase, microtubules’ shapes continu-
ously change with time; in the streaming phase, microtubules attain 
steady deformed shapes. To classify the simulations into these three 
phases, we first measured the normalized positional variance of the 
microtubule’s free end

δ2
i
=
⟨(Xi(L) − ⟨Xi(L)⟩)2⟩

L2
, (9)

where the averaging is over a period of Δt = 10−3τr. If δ2
i
< 0.1, we consider 

the microtubule shape time-independent; otherwise, its shape is 
dynamic. For a simulation, if more than 90% of microtubules are 
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dynamic, we classify it as the beating phase; otherwise, it belongs to 
the stable or streaming phase. To distinguish between these two phases, 
we measured the projection of the microtubule end-to-end vector as

ai = 1 − n̂ ⋅ Xi(L) − Xi(0)
|Xi(L) − Xi(0)| . (10)

If ai < 0.05, the microtubule is considered normal to the surface; other-
wise, it is deformed. For a simulation, if more than 90% of microtubules 
are normal to the surface, we classify it as the stable phase. Otherwise, 
we classify it as the streaming phase.

Analytical approximation of the streaming flow in a sphere
We approximated the flow in simulations of the sphere as a superposi-
tion of a swirling flow us and an axisymmetric bitoroidal flow ut (ref. 39),

uana = us + ut

us(r,θ,ϕ) = Ω r

R
sin(θ)ϕ̂

ut(r,θ,ϕ) =
A

R3
[r(r2 −W2)(1 − 3cos2θ) ̂r + r(5r2 −W2) cos(θ) sin(θ)θ̂] ,

(11)

where r, θ and ϕ are the radial, polar and azimuthal coordinates in the 
sphere and ̂r, θ̂ and ϕ̂ are the unit vectors in the respective directions. 
The three parameters of the model are Ω, the strength of the swirling 
flow, A, the strength of the bitoroidal flow, and W, the radius associated 
with the bitoroidal flow. We fit our simulations of spherical geometry 
to this flow by minimizing ξ = ∫ (uana − usim)

2dV, where the integration 

is over the sphere volume. For the minimization, we use the gradient 
descent algorithm for six free parameters, including three angles, to 
align the axis of the flow in simulation to the z axis. We found that 
Ω = (100.2 ± 3.0) nm s−1 and A = (5.5 ± 1.2) nm s−1. The ratio of the strength 
of the swirling flow to the toroidal one is Ω/A ≈ 20.

Simulation in oocyte-shaped geometry
To study the model in a geometry similar to the Drosophila oocyte, we 
construct a surface of revolution as

X = Dx

Y = Dr cos(ϕ)

Z = Dr sin(ϕ),

(12)

where x ∈ (0, 1), ϕ ∈ [−π,π) and r = Txp1 (1−x)p2

2(1−p1−p2)
(see ref. 49). l is the oocyte 

length, T sets the aspect ratio of the oocyte, and the parameters 
p1 ∈ [0, 1] and p2 ∈ [0, 1] determine the local curvature of the oocyte. In 
our simulations, we chose D = 150 μm, T = 0.72, p1 = 0.4 and p2 = 0.2.

Live imaging of the Drosophila oocyte
Young mated female adults were fed dry active yeast for 16–18 h 
and dissected in Halocarbon oil 700 (Sigma-Aldrich, catalogue no. 
H8898) as previously described19,50. Samples were imaged within 1 h 
after dissection using a Nikon W1 spinning disk confocal microscope 
(Yokogawa CSU with pinhole size 50 μm) with a Photometrics Prime 
95B sCMOS Camera or Hamamatsu ORCA-Fusion Digital CMOS Cam-
era and a ×40 1.25 numerical aperture silicone oil lens controlled by 
Nikon Elements software. 3D time lapses were acquired every 10 s at 
1 μm per step. All oocytes were imaged with the AP axis parallel to the  
imaging plane.

Flies were maintained on standard cornmeal food (Nutri-Fly 
Bloomington Formulation, Genesee, catalogue no. 66-121) supple-
mented with dry active yeast (Red Star) at room temperature (24–25 °C). 
The following fly stocks were used in this study: mat αtub-Gal4[V37] 
(III, Bloomington Drosophila Stock Center, catalogue no. 7063)51, 

UASp-F-Tractin-tdTomato (II, Bloomington Stock Center, catalogue 
no. 58989)51,52, GFP::αtub (ref. 53).

Reconstruction of 3D velocity field from live imaging
Here, we describe the steps for 3D reconstruction of the velocity field 
and measurement of microtubule orientation from experimental 
images. First we reconstructed the 3D oocyte periphery, then we meas-
ured the 2D cytoplasmic velocity field for each z plane using particle 
image velocimetry, and then we used it to reconstruct the 3D velocity 
field. We also measured the local orientation of microtubules using a 
linear filter for texture analysis.

3D reconstruction of the oocyte periphery. We developed an active 
contour method54,55 to partially reconstruct the 3D geometry of the 
oocyte from volumetric images of F-actin. We first segmented the 
oocyte periphery for each z plane and then used these to reconstruct 
the 3D oocyte surface. In short, for the middle z plane, we provided a 
closed curve, ̃Γ (s), which serves as the initial guess for the active con-
tour method. The shape of the oocyte in this z plane is given by minimiz-
ing the cost function

E[Γ(s)] = ∮
Γ(s)

α
2 |Γss|

2ds +∬
R

(IN(x, y) − β)dxdy, (13)

where Γss = ∂2Γ/∂s2. The first term accounts for the smoothness of the 
contour, and the second term accounts for the interaction of the con-
tour with the image, where β is set such that the contour expands if it is 
far from the periphery. The image intensity, IN(x, y), is the normalized 
smoothed gradient of the F-actin image. We then used the segmented 
shape of the oocyte in this z plane as an initial guess to segment the 
oocyte periphery in consecutive z planes.

2D particle image velocimetry. PIV is a common technique for infer-
ring the local velocity of the fluid by measuring the displacement of 
tracer particles between two consecutive time points. In brightfield 
microscopy images of Drosophila oocytes, lipid granule particles have 
high contrast relative to the cytoplasm and can serve as tracer particles 
to measure local cytoplasmic velocity. We developed a platform to 
perform PIV on brightfield microscopy images of Drosophila oocytes. 
A key piece of our software is using the contrast-limited adaptive histo-
gram equalization method to enhance the contrast of the brightfield 
images56. To accurately measure the velocity in the complex geometry 
of the oocyte, we combined fast Fourier transform-based PIV on a 
square grid within the interior of the oocyte and correlation-based 
PIV near the periphery.

For fast Fourier transform-based PIV, square boxes of 100 pixels 
with 20 pixel spacing were taken far from the oocyte periphery57,58. For 
each box, we calculated the Fourier transform of the image intensity 
for two consecutive time points, ̃It(u, v) and ̃It+1(u, v), calculated the 
Hadamard product of one with the complex conjugate of the other, 
̃IH = ̃It ∘ ̃I∗t+1, and set the displacement in that box as the position of the 

maximum of the inverse Fourier transform of IH(Δx, Δy) (Supplemen-
tary Fig. 2a blue; pixel size, 0.260 μm).

For the correlation-based PIV for points near the periphery, 
we first constructed grids with shapes derived from the oocyte 
outline as follows: we chose N evenly spaced points on the periph-
ery, and for each point, we constructed M evenly spaced points on 
a line connecting the centre of mass of the oocyte cross-section 
to that point. By connecting each set of points, we constructed 
N × M grids (Supplementary Fig. 2a). For each grid, we calculated 
the displacement by finding the maximum of the correlation  
function

H(Δx,Δy) = ∫ ∫
A

It(x, y)It+1(x + Δx, y + Δy)dxdy, (14)
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where It and It+1 are the mean subtracted intensity and the  
integration is over the area of the grid. If there are several local maxima, 
we choose the one giving a smooth displacement field between the 
neighbouring grids. Finally, we use interpolation to estimate the planar 
components of the velocity field, ux(x, y, z) and uy(x, y, z), on a regular 
grid across the oocyte using these two displacement fields (Supple-
mentary Fig. 2a).

Approximation of the out-of-plane velocity. We measured the 
out-of-plane component of the velocity field, uz(x, y, z), by assuming 
the incompressibility of the cytoplasm and the impermeability of the 
oocyte boundary (Γ) (on the timescales of microscopy) and solving

∇ ⋅ u = 0; u|Γ ⋅ n = 0, (15)

where n is the unit surface normal vector. To do so, we numerically 
solve the ordinary differential equation

∂uz
∂z

= −(∂ux
∂x

+
∂uy
∂y

) , (16)

with the boundary condition uz = −(nxux + nyuy)/nz at the oocyte  
periphery (Supplementary Fig. 2b, right).

Estimation of microtubule orientation field from microscopic 
images
To measure the local microtubule orientation, we use a Gabor filter, 
which is a linear filter for texture analysis59. It allows examination of 
any specific frequency content in the image in a given direction. The 
inputs of the filter are its wavelength and orientation, and the outputs 
are the magnitude and phase response to the filter. We use 3-pixel-wide 
wavelength for angles θ ∈ (0, π] with interval π/180, and for each angle, 
we calculate the magnitude response in grids of 20 × 20 pixels. We set 
the grid orientation as the angle with the largest magnitude response 
and the grid magnitude as the value of the magnitude response to that 
angle (Supplementary Fig. 4).

Estimation of defect positions in simulations
As illustrated in Fig. 2e, near the defect centres, microtubules are rela-
tively straight and normal to the surface. To find the defect positions 
in the oocyte simulation, we sort all the microtubules in descending 
order of ai (Supplementary Information equation (6)), the length of 
projection of the end–end vector on the surface. We assign the first 
defect centre to be at the location where the microtubule with lowest 
ai is clamped. From the rest of the microtubules, we find the one with 
the next-lowest ai that is at least 40 μm from the first defect and assign 
its clamping position to be the second defect.

Reporting summary
Further information on the research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Simulational and experimental data sets generated during the current 
study are available from the corresponding author on reasonable 
request.

Code availability
A publicly available and elaborated version of the SkellySim codebase 
used to generate the simulations is available at https://github.com/
flatironinstitute/SkellySim.

References
48. Greengard, L. & Rokhlin, V. A fast algorithm for particle 

simulations. J. Comput. Phys. 73, 325–348 (1987).

49. Stoddard, M. C. et al. Avian egg shape: form, function, and 
evolution. Science 356, 1249–1254 (2017).

50. Lu, W. et al. Ooplasmic flow cooperates with transport and 
anchorage in Drosophila oocyte posterior determination. J. Cell 
Biol. 217, 3497–3511 (2018).

51. Lu, W., Lakonishok, M. & Gelfand, V. I. Gatekeeper function for 
short stop at the ring canals of the Drosophila ovary. Curr. Biol. 31, 
3207–3220.e4 (2021).

52. Spracklen, A. J., Fagan, T. N., Lovander, K. E. & Tootle, T. L. The pros and 
cons of common actin labeling tools for visualizing actin dynamics 
during Drosophila oogenesis. Dev. Biol. 393, 209–226 (2014).

53. Grieder, N. C., De Cuevas, M. & Spradling, A. C. The fusome 
organizes the microtubule network during oocyte differentiation 
in Drosophila. Development 127, 4253–4264 (2000).

54. Kass, M., Witkin, A. & Terzopoulos, D. Snakes: active contour 
models. Int. J. Comput. Vis. 1, 321–331 (1988).

55. Farhadifar, R. & Needleman, D. in Mitosis: Methods and Protocols 
(ed. Sharp, D.) Ch. 3 (Springer, 2014).

56. Zuiderveld, K. in Graphics Gems IV (ed. Heckbert, P. S.) 474–485 
(1994).

57. Willert, C. E. & Gharib, M. Digital particle image velocimetry. Exp. 
Fluids 10, 181–193 (1991).

58. Thielicke, W. & Stamhuis, E. PIVlab—towards user-friendly, 
affordable and accurate digital particle image velocimetry in 
MATLAB. J. Open Res. Softw. 2, e30 (2014).

59. Jain, A. K. & Farrokhnia, F. Unsupervised texture segmentation 
using gabor filters. Pattern Recognit. 24, 1167–1186 (1991).

Acknowledgements
We thank B. Chakraborti, J.I. Alsous, E. Gavis and R. Goldstein for 
extensive and useful discussions and A. Farhadifar for generously 
sharing his Blender expertise. We acknowledge support from 
National Institutes of Health grant nos. R01GM134204 (S.Y.S.) and 
R35GM131752 (V.I.G.) and National Science Foundation grant no. DMR-
2004469 (M.J.S.). Stocks obtained from the Bloomington Drosophila 
Stock Center, supported by National Institutes of Health grant no. 
P40OD018537, were used in this study. The computations in this work 
were performed at facilities supported by the Scientific Computing 
Core at the Flatiron Institute, a division of the Simons Foundation.

Author contributions
M.J.S., S.Y.S. and V.I.G. designed the research. S.D., R.F., G.K. and R.B. 
contributed to simulation software development and simulation data 
analysis. W.L. and M.L. designed and performed the experiments. 
S.D., R.F. and M.J.S. developed the image processing software and 
analysis of experimental data. S.D., R.F., S.Y.S. and M.J.S. prepared the 
manuscript. All authors contributed to its editing.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version  
contains supplementary material available at  
https://doi.org/10.1038/s41567-023-02372-1.

Correspondence and requests for materials should be addressed to 
Michael J. Shelley.

Peer review information Nature Physics thanks Camille Duprat, 
Gerhard Gompper and the other, anonymous, reviewer(s) for their 
contribution to the peer review of this work.

Reprints and permissions information is available at  
www.nature.com/reprints.

http://www.nature.com/naturephysics
https://github.com/flatironinstitute/SkellySim
https://github.com/flatironinstitute/SkellySim
https://doi.org/10.1038/s41567-023-02372-1
http://www.nature.com/reprints


1

nature portfolio  |  reporting sum
m

ary
M

arch 2021

Corresponding author(s): Michael J. Shelley

Last updated by author(s): 11/30/2023

Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Simulations in this study were done using a specialized open-source codebase, SkellySim (developed at the Flatiron Institute), for simulating 
large assemblies of hydrodynamically coupled fibers. SkellySim is available at https://github.com/flatironinstitute/SkellySim.

Data analysis Analysis of the simulation output was performed by using custom Matlab scripts, and SkellySim modules. Graphics was generated by custom 
Matlab and Blender scripts. Particle image velocimetry and analysis of microtubule orientation fields was performed using custom Matlab 
scripts.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Simulational and experimental data sets generated during the current study are available from the corresponding author upon reasonable request.



2

nature portfolio  |  reporting sum
m

ary
M

arch 2021

Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender N/A

Population characteristics N/A

Recruitment N/A

Ethics oversight N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Reported when applicable,

Data exclusions No data was excluded.

Replication N/A

Randomization N/A

Blinding N/A

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Animals and other research organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in 
Research

Laboratory animals Fruit fly Drosophila melanogaster. The following fly stocks were used in this study: mat αtub-Gal4 [V37] (III, Bloomington Drosophila 
Stock Center #7063)  ; UASp-F-Tractin-tdTomato (II, Bloomington stock center #58989)  ; Jupiter-GFP (protein trap lineZCL2183, III)  .

Wild animals N/A



3

nature portfolio  |  reporting sum
m

ary
M

arch 2021
Reporting on sex The oocytes are found in female organism only.

Field-collected samples N/A

Ethics oversight IACUC

Note that full information on the approval of the study protocol must also be provided in the manuscript.


	Self-organized intracellular twisters
	Modelling hydrodynamically coupled motor-driven fibres
	Control parameters and numerical approach
	Self-organized regimes in a spherical cell
	The streaming phase
	Live imaging of cytoplasmic flows and cortical microtubules
	Robust emergence of twisters
	Model dynamics in an oocyte geometry
	Discussion
	Online content
	Fig. 1 Hydrodynamic interactions of motor-loaded microtubules generate intracellular flows.
	Fig. 2 Twisters are a combination of a strong vortical flow and a weak bitoroidal flow.
	Fig. 3 Surface microtubule orientation and cytoplasmic velocity fields.
	Fig. 4 The structure of the streaming flow is robust.




