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Open-Loop and Closed-Loop Optimal Control

Consider the following optimal control problem:

min
x(t),u(t)

∫ T

0
L(t,x(t),u(t))dt + M(x(T ))

s.t. ẋ(t) = f (t,x(t),u(t)), x(0) = x,

x(t) = state, u(t) = control.

• Open-loop optimal control: find the optimal path (x∗(t),u∗(t)) for a specific initial
point.

• Closed-loop optimal control: find the optimal policy function u∗(t,x), applicable for
a set of initial points x(0) ∈ X . More powerful, but more difficult to solve.

• Traditional methods by solving the assoicated Hamilton-Jacobi-Bellman equation
suffers from the curse of dimensionality.
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Neural Network-Based Closed-Loop Control
Neural networks have demonstrated astonishing capability in dealing with high-dimensional
functions.

How to use neural networks to design closed-loop
optimal control for high-dimensional problems?

Approach 1: direct policy search (Han and E (2016), Böttcher, Antulov-Fantulin and
Asikis (2022))

min
θ
E

∫ T

0
L(t,x(t),uNN(t,x(t); θ))dt + M(x(T ))

s.t. ẋ(t) = f (t,x(t),uNN(t,x(t); θ)), x(0) ∼ µ0,

Approach 2: supervised learning (Nakamura-Zimmerer, Gong, and Kang (2021))
• Sample initial points and solve the corresponding open-loop optimal control problems.
• Choose the time-state-control tuples along every paths to collect the training data:

D = {(ti,xi),ui}1≤i≤M .
• Train a neural network to approximate the closed-loop optimal control uNN :

min
θ

M∑
i=1

∥ui − uNN(ti,xi; θ)∥2.

3 / 15
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Supervised-Learning-Based Approach

Training: train the ML
model

Labeling: solve the open-
loop optimal solutions with
given initial time-state pairs

Unlike a lot of classical ML tasks, we can choose data to label by our own choice.

This work: focus on the exploration part to sample data that are more valuable to training

4 / 15
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Supervised-Learning-Based Approach

Exploration: adaptively
choose the initial time-state

pairs

Training: train the ML
model

Labeling: solve the open-
loop optimal solutions with
given initial time-state pairs

Unlike a lot of classical ML tasks, we can choose data to label by our own choice.

This work: focus on the exploration part to sample data that are more valuable to training
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Adaptive Sampling Methods

• It is observed that the NN controller trained by the SL-based approach does not
perform well even when both the training error and testing error are fairly small.

• Adaptive sampling methods aim to find the difficult points the NN controller suffers
and add these points into the training data to improve the performance.

• Most existing approaches focus on choosing the initial points such as choosing the
initial points with large gradients or bad performance.

• However, these methods can not mitigate the distribution mismatch phenomenon
brought by controlled dynamics.
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• It is observed that the NN controller trained by the SL-based approach does not
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Distribution Mismatch Phenomenon

Define µu(t) the distribution of x(t):

ẋ(t) = f (t,x(t),u(t,x(t))), x(0) ∼ µ0,

• µu∗(t): the distribution of the state at time t in the
training data.

• µuNN(t): the distribution of the input state of uNN at
time t when applying the learned NN controller in the
dynamics.

Due to the learning error, µu∗(t) ̸= µuNN(t), and its
discrepancy increases over time due to compounding error.

When t is large, the training data fails to represent the
states encountered when keeping applying uNN, and the
error between u∗ and uNN dramatically increases.

Region I: optimal paths
Region II: Paths controlled
by the NN controller
trained on data in Region I

distribution mismatch phenomenon is common when involving machine learning and
dynamical systems, such as reinforcement learning and imitation learning.
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IVP Enhanced Sampling Method

We propose initial value problem (IVP) enhanced sampling method to mitigate the
distribution mismatch phenomenon.

Key idea: improve the quality of the NN controller iteratively by enlarging the training
dataset with the states seen by the NN controller at previous times.

Figure: after first training Figure: after second training
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The Optimal Landing Problem of Quadrotor

Full dynamic model of a quadrotor with 12-dimensional state and 4-dimensional control.
The goal is to find the optimal landing paths with the minimum control effort from 0 to
T = 16.
The IVP enhanced sampling method is implemented on the time grid [0, 10, 14, 16].
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Results on the Optimal Landing Problem

Figure: Cumulative distribution on 200 test initial points

Figure: Discrepancy between the training data and the data reached by controllers at every time
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Comparison with Other Methods

• Vanilla sampling: no adaptive
• AS w. bad v: choose initial points on

which the NN controller performs bad
• AS w. large v: choose initial points on

which the IVPs induced by the NN
controller have large cost

• AS w. large u: choose initial points
whose NN-predicted controls are large

Figure: Cumulative distribution function of cost ratio between NN controlled value and optimal value under
disturbance.
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Optimal Reaching Problem of a 7-DoF Manipulator

The reaching problem on a 7-DoF torque-controlled manipulator, the KUKA LWR iiwa
R820 14 with 14-dimensional state and 7-dimensional control.
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Theoretical Analysis on an LQR Example
Consider the 1-d linear quadratic regulator (LQR) problem:

min
x(t),u(t)

1
T

∫ T

t0

|u(t)|2 dt + |x(T )|2

s.t.
{

ẋ(t) = u(t), t ∈ [t0, T ]
x(t0) = x0

The optimal controls are{
u∗(t; t0, x0) = − T

T (T−t0)+1x0, (open-loop optimal control)
u∗(t, x) = − T

T (T−t)+1x. (closed-loop optimal control)

Model 1: uθ(t, x) = − T
T (T−t)+1x + b(t), where θ = {θt}0≤t≤T = {b(t)}0≤t≤T .

Assume the open-loop optimal control solver gives the data with noise Z û(t; t0, x0) = − T
T (T−t0)+1x0 + ϵZ,

x̂(t; t0, x0) = x0 +
∫ t

t0
û(t; t0, x0) dt = T (T−t)+1

T (T−t0)+1x0 + (t − t0)ϵZ.

12 / 15



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Theoretical Analysis on an LQR Example
Consider the 1-d linear quadratic regulator (LQR) problem:

min
x(t),u(t)

1
T

∫ T

t0

|u(t)|2 dt + |x(T )|2

s.t.
{
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Theoretical Superiority of the IVP Enhanced Sampling
Theorem
With Model 1, we do vanilla sampling with NT samples and IVP enhanced sampling with
N initial points on temporal grids 0 < 1 < 2 < · · · < T . Let uo, uv and ua be the optimal
controller, the controller learned by the vanilla method, and the controller learned by the
IVP enhanced sampling method, respectively. Define

ẋs(t) = us(t) = us(t, xs(t)), xs(0) = xinit, 0 ≤ t ≤ T, s ∈ {o, v, a}.

1. If xinit is a standard normal random variable. Let {x̂j
v(t)}NT

j=1 and {x̂j
a(t)}N

j=1 be the
state variables in the training data of the vanilla method and the last iteration of the
IVP enhanced sampling method. Then, x̂j

v(t), x̂j
a(t), xv(t) and xa(t) are mean-zero

normal random variables and

|E|x̂j
v(t)|2 − E|xv(t)|2| = (1 − 1

NT
)ϵ2t2, |E|x̂j

a(t)|2 − E|xa(t)|2| ≤ ϵ2.

2. If xinit is a fixed initial point, define the total cost

Js = 1
T

∫ T

0
|us(t)|2 dt + |xs(T )|2, s ∈ {o, v, a}.

Then, EJv − Jo = T 2 + 1
NT

ϵ2, EJa − Jo ≤ 3ϵ2

N
.
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Superiority of the IVP Enhanced Sampling

Model 2: uθ(t, x) = a(t)x + b(t), where θ = {θt}0≤t≤T = {(a(t), b(t))}0≤t≤T ,

(a) (b) (c)

Figure: Numerical results on learning Model 2. (a) The optimal path and the paths generated by the vanilla
sampling method and the IVP enhanced sampling method. (b) Differences of the second order moments (in
the logarithm scale) between the distributions of the training data and the data reached by the controllers at
different times. (c) Performance differences (in the logarithm scale) of the vanilla sampling method and the
IVP enhanced sampling method for different total times (in the logarithm scale).
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Conclusions

• Traditional methods for the closed-loop optimal control suffer from the curse of
dimensionality while deep learning is promising in high dimensional closed-loop
optimal control problems.

• Distribution mismatch phenomenon is an essential challenge in the
supervised-learning-based approach for optimal control

• IVP enhanced sampling method can mitigate the distribution mismatch phenomenon
and significantly improve the performance of the NN controller.

Thank you for your attention!
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