
Deep Learning Algorithms for High-
Dimensional Partial Differential Equations 
 
Jiequn Han
Center of Computational Mathematics
Flatiron Institute, Simons Foundation

Tutorial lecture for Machine Learning and Its Applications
Oct 10, 2022

Lecture Overview
1. Background of PDE, curse of dimensionality
 
2. Example 1: Deep BSDE method  

3. Example 2: Variational formula, Deep Ritz method  

4. Summary

“Third Pillar” of Science
Together with theory and experimentation, computational science now constitutes
the “third pillar” of scientific inquiry.  
 — President’s Information Technology Advisory Committee report (2005)

structural analysis

control

op.cs

fluid dynamics

Partial Differential Equation (PDE)
PDE: an equation involving an unknown function of multiple variables and certain of its
partial derivatives.

Fix an integer and let be an open subset of , a general -th order PDE
has the form

k ≥ 1 Ω ℝd (d ≥ 2) k

F(Dku(x), Dk−1u(x), …, Du(x), u(x), x) = 0 (x ∈ Ω)

where is given, and is unknownF : ℝdk × ℝdk−1 × ⋯ × ℝd × ℝ × Ω → ℝ u : Ω → ℝ
We solve the PDE if we find all verifying the above formula, usually only among those
satisfying certain auxiliary boundary functions on some part of .

u
∂Ω

Time evolution PDE: variables = (time, space)(t, x)
∂tu(t, x) = F(∂k

xu(t, x), ∂k−1
x u(t, x), …, ∂xu(x), u(x), x)

Examples of PDE
Poisson equation:
(Laplace operator)

Δu(x) = f (x)
Δu := ∂2

x1
u + ∂2

x2
u + ⋯ + ∂2

xn
u

Heat equation: ut(t, x) = Δxu(t, x)

Wave equation: utt(t, x) = Δxu(t, x)

Schrödinger equation: iut(t, x) + Δxu(t, x) = 0

Navier-Stokes equations (4 eqns, 4 vars, 3-dim velocity , 1-dim pressure)u p
∇ ⋅ u = 0

∂u
∂t

+ u ⋅ ∇u − ν∇2u + 1
ρ

∇p = 0

Finite Difference for 1D Poisson (1)
1D Poisson equation for (it is an ordinary differential equation, ODE):x ∈ [0,1]

u′ ′ (x) = f (x),
u(0) = a, u(1) = b

Finite difference approximation: taking sufficiently smallh > 0

u′ (x) ≈ u(x + h) − u(x)
h

, u′ (x) ≈ u(x) − u(x − h)
h

,

u′ ′ (x) ≈ u′ (x + h) − u′ (x)
h

≈ u(x + h) − 2u(x) + u(x − h)
h2

The approximation error ∼ O(h2)

Finite Difference for 1D Poisson (2)
1D Poisson equation for (it is an ordinary differential equation, ODE):x ∈ [0,1]

u′ ′ (x) = f (x),
u(0) = a, u(1) = b

Let be an integer and , denote . Denote
, by finite difference approximation, we have

N h = 1/N xi = ih, i = 0,1,…, N, N + 1
ui ≈ u(xi), fi = f (xi)

ui+1 − 2ui + ui−1
h2 = fi, i = 1,2,…, N − 1

Together with the boundary conditions , we have a linear system consisting of
 equations and variables. We solve it to obtain an approximating solution, with

error

u0 = a, uN = b
(N + 1) (N + 1)

∼ O(h2)

ui−2 ui−1 ui ui+1 ui+2

Finite Difference for 2D Poisson (1)
2D Poisson equation for (we write two spacial variables
explicitly):

(x, y) ∈ Ω := [0,1] × [0,1] x, y

Δu(x, y) = f (x, y), (x, y) ∈ Ω
u(x, y) = g(x, y), (x, y) ∈ ∂Ω

We still have the finite difference approximation:

Δu(x, y) = uxx(x, y) + uyy(x, y)

≈ u(x − h, y) − 2u(x, y) + u(x + h, y)
h2 + u(x, y − h) − 2u(x, y) + u(x, y + h)

h2

= u(x − h, y) + u(x + h, y) − 4u(x, y) + u(x, y − h) + u(x, y + h)
h2 ,

ui−1,j ui,j ui+1,j

ui,j−1

ui,j+1

Finite Difference for 2D Poisson (2)
2D Poisson equation for (we write two spacial variables
explicitly):

(x, y) ∈ Ω := [0,1] × [0,1] x, y

Δu(x, y) = f (x, y), (x, y) ∈ Ω
u(x, y) = g(x, y), (x, y) ∈ ∂Ω

If we similarly define ,
, denote , we can have a

linear system consisting of variables and
equations. We solve it to obtain an approximating solution, with
error

h = 1/N xi = ih, yj = jh,
i, j = 0,1,…, N, N + 1 ui, j ≈ u(xi, yj)

(N + 1)2 (N + 1)2

∼ O(h2)
ui−1,j ui,j ui+1,j

ui,j−1

ui,j+1

Curse of Dimensionality (1)
To summarize, with , to have a solution with error : 

• 1D problems solving a system of size
• 2D problems solving a system of size
• 3D problems solving a system of size
•
• d-dim problems solving a system of size  

h = 1/N O(h2)

→ O(N)
→ O(N2)
→ O(N3)

⋯
→ O(Nd)

Curse of dimensionality:  
of nodes per dimension = solution with error  
As the dimension of variables grows, the computational cost

 grows exponentially with respect to

N → O(h2)
d

O(Nd) d

To reduce the error by a factor 4, the system size grows with a factor of 2d

Curse of Dimensionality (2)
The curse of dimensionality exists not only in the finite difference method, but also in
other numerical methods for PDEs, such as finite element method, spectral method, etc.
In a lot of problems, we can only handle d = 3 ∼ 5

The deep-rooted reason is related to the fact that, to approximate high-dimensional functions
with traditional methods, we need exponentially many basis functions.

The phenomenon also exists in other scientific computing
problems whenever they involve many state variables

Example of high-dimensional PDEs: Black-Scholes equation,
Schrödinger equation, Hamilton-Jacobi-Bellman equation, etc.

Wonder of DL: Approximating High-Dim Functions
Deep learning: general function approximation  
 
Given  
learn (i.e., approximate)  
which is a high-dimensional mapping

S = {(xj, yj = f ⋆(xj)), j = 1,⋯, N}
f ⋆

Imagine we have something like
“polynomials” but works in high dimensions!

CIFAR 10 - input: each image is 32 * 32 * 3 =
3072 dimensional; output: 10 categories

Deep Learning 101
Representation: in a compositional form rather than additive

f (x) = ℒout ∘ ℒNh ∘ ℒNh−1 ∘ ⋯ ∘ ℒ1(x)

hp = ℒp(hp−1) = σ(Wphp−1 + bp),

: element-wise nonlinear activation function: (ReLU), hyperbolic tangent,
sigmoid, etc.
σ max(0,x)

Optimization: solve (near-) optimal parameter θ = {W1, b1, W2, b2, …}
min

θ

1
N

N

∑
i=1

(f (xi; θ) − yi)2 or min
θ

3(X,Y)(f (X; θ) − Y)2

Algorithm: compute the gradient efficiently through backpropogation and optimize through
stochastic gradient descent (SGD) and its variants.

Deep Learning for PDE 101
Step 1. Choose a formulation equivalent to the PDE and write down the corresponding
functional optimization problem.

Step 2. Utilize deep neural network based approximation to design candidate/trial function
space (use DL representation)

Step 3. Approximate the objective functional with some numerical quadrature (traditional
numerical analysis)

Step 4. Solve the final optimization problem (use DL optimization)

Deep Learning for PDE 101

Step 2. Utilize deep neural network based approximation to design candidate/trial function
space (use DL representation)

Step 3. Approximate the objective functional with some numerical quadrature (traditional
numerical analysis)

Step 4. Solve the final optimization problem (use DL optimization)

Step 1. Choose a formulation equivalent to the PDE and write down the corresponding
functional optimization problem.

Physics-Informed Neural Network (1)
F(D2u(x), Du(x), x) = 0 x ∈ Ω
u(x) = u0(x) x ∈ ∂Ω

Step 1. Choose a formulation. Consider the strong formulation/least-squares formulation: is
the PDE solution is equivalent to

u

∫Ω
|F(D2u(x), Du(x), x) |2 dx = 0, ∫∂Ω

|u(x) − u0(x) |2 dx = 0.

∫Ω
|F(D2u(x), Du(x), x) |2 dx + ∫∂Ω

|u(x) − u0(x) |2 dx . minimizes the functionalu
Step 2. DL representation.

min
uθ ∫Ω

|F(D2uθ(x), Duθ(x), x) |2 dx + ∫∂Ω
|uθ(x) − u0(x) |2 dx,

where is a neural network with parameters .uθ θ

Physics-Informed Neural Network (2)

Step 4. DL optimization. Compute the gradient through backpropogation and use stochastic
(the data points are resampled in different steps) gradient descent to optimize
parameters .

xi
e, x j

b
θ

F(D2u(x), Du(x), x) = 0 x ∈ Ω
u(x) = u0(x) x ∈ ∂Ω

Step 3. Use Monte Carlo method to approximate the integral functional

min
uθ

1
N1

N1

∑
i=1

|F(D2uθ(xi
e), Duθ(xi

e), xi
e) |2 + 1

N2

N2

∑
j=1

|uθ(x j
b) − u0(x j

b) |2 ,

where and are points sample in and to evaluate
the equation loss and boundary loss, respectively.

xi
e (i = 1,…, N1) x j

b (j = 1,…, N2) Ω ∂Ω

Physics-Informed Neural Network (3)
Burger’s equation:

Raissi, Perdikaris, Karniadakis (2017)

Table of Contents
1. Background of PDE, curse of dimensionality
 
2. Example 1: Deep BSDE method  

3. Example 2: Variational formula, Deep Ritz method  

4. Summary

Linear Parabolic PDEs (1)
∂u
∂t

(t, x) + 1
2Δu(t, x) + ∇u(t, x) ⋅ μ(t, x) + f (t, x) = 0, u(T, x) = g(x)

(Ω = [0,T] × ℝd)

Linear PDE:

Examples: Black-Scholes, diffusion equation, … interested in the high-dim cases

⟹ du(t, Xt) = − f (t, Xt)dt + [∇u(t, Xt)]TdWt

Feynman-Kac formula:
dXt = μ(t, Xt)dt + dWt

⟹ u(t, x) = 3[g(XT) + ∫
T

t
f (s, Xs)ds |Xt = x]

 satisfies a backward
stochastic differential equation
(BSDE) with a given terminal
condition

u(t, Xt)

⟹ du(t, Xt) = (ut(t, Xt) + ∇u(t, Xt) ⋅ μ(t, Xt) + 1
2 Δ(t, Xt))dt + [∇u(t, Xt)]TdWt (Itô’s lemma)

⟹ 3[u(T, XT) − u(t, Xt)] = − 3∫
T

t
f (s, Xs)ds

Linear Parabolic PDEs (2)
∂u
∂t

(t, x) + 1
2Δu(t, x) + ∇u(t, x) ⋅ μ(t, x) + f (t, x) = 0, u(T, x) = g(x)Linear PDE:

Feynman-Kac formula dXt = μ(t, Xt)dt + dWt

⟹ u(t, x) = 3[g(XT) + ∫
T

t
f (s, Xs)ds |Xt = x]

Monte Carlo Simulation

In order to solve , we only need to simulate a lot of
paths of diffusion process starting from at time and
take the average.

u(t, x)
x t

The convergence rate is (= # of paths), which is
independent of dimensions!

1/ N N

Semilinear Parabolic PDEs

E, Han, and Jentzen, CMS (2017); Han, Jentzen, and E, PNAS (2018)

∂u
∂t

(t, x) + 1
2Δu(t, x) + ∇u(t, x) ⋅ μ(t, x) + f (t, x, u(t, x), ∇u(t, x)) = 0, u(T, x) = g(x)

⟹ du(t, Xt) = − f (t, Xt, u(t, Xt), ∇u(t, Xt))dt + [∇u(t, Xt)]TdWt

dXt = μ(t, Xt)dt + dWt

⟹ u(t, x) = 3[g(XT) + ∫
T

t
f (s, Xs, u(s, Xs), ∇u(s, Xs))ds |Xt = x]

With the idea of Feynman-Kac formula

But we do not know the value of along the paths :(u(s, Xs), ∇u(s, Xs)

Variational Formulation (1)

E, Han, and Jentzen, CMS (2017); Han, Jentzen, and E, PNAS (2018)

∂u
∂t

(t, x) + 1
2Δu(t, x) + ∇u(t, x) ⋅ μ(t, x) + f (t, x, u(t, x), ∇u(t, x)) = 0, u(T, x) = g(x)

u(T, x) = g(x)

dXt = μ(t, Xt)dt + dWt

du(t, Xt) = −f (t, Xt, u(t, Xt), ∇u(t, Xt))dt
+[∇u(t, Xt)]TdWt

Suppose Y0 = u(0, X0), Zt = ∇u(t, Xt)
Rename Yt = u(t, Xt)

dXt = μ(t, Xt)dt + dWt

dYt = − f (t, Xt, Yt, Zt)dt + (Zt)TdWt

YT = g(XT)

A control perspective to  
match terminal condition

inf
Y0,{Zt}0≤t≤T

3 |g(XT) − YT |2

s . t . dXt = μ(t, Xt)dt + dWt

dYt = − f (t, Xt, Yt, Zt)dt + (Zt)TdWt

Formulation

Variational Formulation (2)

E, Han, and Jentzen, CMS (2017); Han, Jentzen, and E, PNAS (2018)

u(T, x) = g(x)

dXt = μ(t, Xt)dt + dWt

du(t, Xt) = −f (t, Xt, u(t, Xt), ∇u(t, Xt))dt
+[∇u(t, Xt)]TdWt

Suppose Y0 = u(0, X0), Zt = ∇u(t, Xt)
Rename Yt = u(t, Xt)

inf
Y0,{Zt}0≤t≤T

3 |g(XT) − YT |2

s . t . dXt = μ(t, Xt)dt + dWt

dYt = − f (t, Xt, Yt, Zt)dt + (Zt)TdWt

1. The PDE solution is the minimizer
2. The minimizer is unique (BSDE theory)
3. 1+2: The minimizer is the PDE solution
4. An approximate minimizer is an approximate PDE solution (to be shown later)

Discretization and Representation

E, Han, and Jentzen, CMS (2017); Han, Jentzen, and E, PNAS (2018)

With temporal discretization 0 = t0 < t1 < … < tK = T, and Δtk = tk+1 − tk ,
ΔWk = Wtk+1

− Wtk ,

inf
Y0,{Zt}0≤t≤T

3 |g(XT) − YT |2

s . t . dXt = μ(t, Xt)dt + dWt

dYt = − f (t, Xt, Yt, Zt)dt + (Zt)TdWt

min
Y0: ℝd+1→ℝd, 6k: ℝd+1→ℝd, k=0,…,K−1

3 |g(XtK) − YtK |2

s . t . Xtk+1
= Xtk + μ(tk, Xtk)Δtk + ΔWk

Ytk+1
= Ytk − f (tk, Xtk, Ytk, 6k(tk, Xtk))Δtk + [6k(tk, Xtk)]

TΔWk

Represent high-dimensional functions as neural networksY0, Ztk (k = 0,1,…, K − 1)

Deep BSDE Method

E, Han, and Jentzen, CMS (2017); Han, Jentzen, and E, PNAS (2018), code available at hJps://github.com/frankhan91/DeepBSDE

Xtk+1
= Xtk + μ(tk, Xtk)Δtk + ΔWk Ytk+1

= Ytk − f (tk, Xtk, Ytk, 6k(tk, Xtk))Δtk + [6k(tk, Xtk)]
TΔWk

u(tK, XtK)

XtK

WtK − WtK−1

Loss

Data

SGD

(u(tK, XtK) − g(XtK))2

{ΔWtk}
K−1
k=0, X0

u(t2, Xt2)

∇u(t2, Xt2)

Xt2

Wt2 − Wt1

u(t0, Xt0) u(t1, Xt1)

∇u(t1, Xt1)

Xt1

Wt1 − Wt0

∇u(tK−1, XtK−1)

XtK−1

u(tK−1, XtK−1)

WtK−1 − WtK−2

NN

∇u(t0, Xt0)

Xt0

NN

…

…
…

…

…NN

t = t0 t = t1 t = t2 t = tK−1 t = tK

NN

…

…

…

…
…

https://github.com/frankhan91/DeepBSDE

Numerical Analysis

Theorem (A posteriori error estimate, Han-Long, 2020)  
 
Denote by the temporal discretization: , and .

Under some assumptions, there exists a constant C independent of d and such that for
sufficiently small

π 0 = t0 < t1 < … < tK = T h = max
0≤k≤K−1

Δtk
h

h

sup
t∈[0,T]

3 |Yt − ̂Yπ
t |2 + ∫

T

0
3 |Zt − ̂Zπ

t |2 dt ≤ C (h + 3 |g(XT) − Yπ
T |2),

where ̂Yπ
t = Yπ

tk, ̂Zπ
t = Zπ

tk for t ∈ [tk, tk+1) .

 4. An approximate minimizer is an approximate PDE solution

solution u

gradient of solution u

time mesh size

loss function

A Hamilton-Jacobi-Bellman Example
Consider a Hamilton-Jacobi-Bellman equation derived from a classical linear-quadratic-
Gaussian (LQG) control problem in ℝ100

∂u
∂t

(t, x) + Δu(t, x) − λ∥∇u(t, x)∥2
2 = 0.

E, Han, and Jentzen, CMS (2017); Han, Jentzen, and E, PNAS (2018)

Effectiveness: achieves 0.17% in a runtime of 5 minutes Robust for different λ

Nonlinear Black-Scholes Equation

It models the fair price of a European option based on
100 underlying assets with no default having occurred
yet. (Duffie et al. 1996, Bender et al. 2015 (d=5))

∂u
∂t

(t, x) + 1
2 σ2

d

∑
i=1

x2
i

∂2u
∂x2

i
+ r∇u(t, x) ⋅ x − (1 − δ)Q(u(t, x)) − βu(t, x) = 0.

E, Han, and Jentzen, CMS (2017); Han, Jentzen, and E, PNAS (2018)

Applications: pricing basket options (Becker et al. 2019,
2020, Yu et al. 2019, Liang et al. 2020,), Libor market
model (Want et al. 2018), risk value adjustment (Gnoatto
et al. 2020), insurance (Kremsner et al. 2020), etc.

The Deep BSDE method has been tested on ~10 more
PDEs.

Ablation Study

LQG Nonlinear BS Allen-Cahn

ReLU 0.46% (0.0008) 0.17% (0.0004) 0.30% (0.0021)

Tanh 0.44% (0.0006) 0.17% (0.0005) 0.28% (0.0024)

Sigmoid 0.46% (0.0004) 0.19% (0.0008) 0.38% (0.0026)

Softplus 0.45% (0.0007) 0.17% (0.0004) 0.18% (0.0017)

Comparison with Strong Formulation
We can use Deep Neural Network to approximate high-dimensional func.ons

The PDE solu.ons themselves are high-dimensional func.ons

WHY DON’T WE USE DEEP NEURAL NETWORKS TO DIRECTLY
APPROXIMATE THE PDE SOLUTION?

YES! WE CAN

However, we can achieve be9er results,
when we exploit the mathema?cal structure of the original problem

Comparison with Strong Formulation

Note: Hessian evaluation is needed in the strong formulation but not in the BSDE formulation.

Table of Contents
1. Background of PDE, curse of dimensionality
 
2. Example 1: Deep BSDE method 

3. Example 2: Variational formula, Deep Ritz method  

4. Summary

Variational Formulation
Variational Principle/Variational Calculus: In many physical problems, the solution is related
to minimization/maximization.

Example: light follows the path of shortest optical length connecting two points, which
depends upon the material of the medium (Fermat's principle/principle of least action)

For (multi-dimensional) Poisson equation: −Δu(x) = f (x), x ∈ Ω
u(x) = g(x), x ∈ ∂Ω

Define the functional , and admissible set J(v) = ∫Ω

1
2 |∇v(x) |2 − f (x)v(x) dx

K = {v : v ∈ C(Ω̄), v(x) = g(x) for all x ∈ ∂Ω}

We can prove, if is the Poisson equations’ solution must be a minimizer of u ⟺ u min
v∈K

J(v)

Formulation

Proof of Variational Formulation
Δu(x) = f (x), x ∈ Ω, u(x) = g(x), x ∈ ∂Ω

, J(v) = ∫Ω

1
2 |∇v(x) |2 − f (x)v(x) dx K = {v : v ∈ C(Ω̄), v(x) = g(x) for all x ∈ ∂Ω}

If is the minimizer of , is the Poisson equations’ solutionu min
v∈K

J(v) u
Proof: Let be a minimizer and be a perturbation. We consider the functionu ϕ ∈ C∞

0 (Ω)
J̃(λ) = J(u + λϕ) = ∫Ω

1
2 |∇(u + λϕ)(x) |2 − f (x)(u + λϕ)(x) dx

= J(u) + λ∫Ω
∇u(x) ⋅ ∇ϕ(x) − f (x)ϕ(x) dx + λ2 ∫Ω

1
2 |∇λϕ(x) |2 dx

By definition, 0 is a minimizer of , we have J̃(λ)
0 = J̃′ (0) = ∫Ω

∇u(x) ⋅ ∇ϕ(x) − f (x)ϕ(x) dx = ∫Ω
(−Δu(x) − f (x))ϕ(x) dx .

Poisson equation:

Since is arbitrarily chosen, we have .ϕ −Δu(x) − f (x) = 0

Deep Ritz Algorithm
DL Representation: use a neural network as the the trial functionuθ(x)

min
θ

J(uθ(x)) = ∫Ω

1
2 |∇uθ(x) |2 − f (x)uθ(x) dx

s . t . uθ(x) = g(x), x ∈ ∂Ω

min
θ

J(uθ(x)) = ∫Ω

1
2 |∇uθ(x) |2 − f (x)uθ(x) dx + β∫∂Ω

|uθ(x) − g(x) |2 dx

In practice, consider the relaxed version

Then use Monte Carlo method to approximate the objective and stochastic gradient descent to
optimize parameters.

E and Yu, CMS (2018)

Numerical Results (1)
−Δu(x) = 1, x ∈ Ω

u(x) = 0, x ∈ ∂Ω
Ω = (0,1) × (0,1)\[0,1) × {0}

E and Yu, CMS (2018)

Numerical Results (2)
−Δu(x) = 0, x ∈ (0,1)10

u(x) =
5

∑
k=1

x2k−1x2k, x ∈ ∂(0,1)10

−Δu(x) = − 200, x ∈ (0,1)100

u(x) =
d

∑
k=1

x2
k , x ∈ ∂(0,1)100

Relative
error: 0.4%

L2 Relative
error: 2.2%

L2

Ground State of Schrödinger Equation
The ground state of a quantum-mechanical system is its stationary state of lowest energy

min
u(x)

∫Ω
1
2 |∇u(x) |2 + V(x)u2(x) dx

∫Ω u2(x) dx
It is equivalent to the smallest eigenvalue problem
(analogous to the Rayleigh quotient in linear algebra: the eigenvector corresponding to the
smallest eigenvalue of a p.s.d. matrix is the minimizer of)

−Δu + Vu = λu

H xTHx /xTx

Solving the ground state is one of the central problems in quantum physics/chemistry. The
dimension of is proportional to the system’s size.x

People have used Variational Monte Carlo (VMC) method to solve the ground state. VMC’s
procedure is similar to the deep learning method for high-dimensional PDEs (more careful
treatment of sampling and gradient computation) but with traditional trial function space.

Using Neural Networks in VMC
Carleo and Troyer (2017) introduce neural networks to represent quantum states for Ising
system, which leads to tremendous research interest in applying ML in physical sciences.

Han, Zhang, and E (2018), Hermann, Schätzle, and Noé (2020), Pfau, Spencer, and
Matthews (2020) study neural network representation for electron wavefunctions in quantum
chemistry.

Table of Contents
1. Background of PDE, curse of dimensionality
 
2. Example 1: Deep BSDE method 

3. Example 2: Variational formula, Deep Ritz method 

4. Summary

Summary

Step 1. Choose a formulation equivalent to the PDE and write down the corresponding
functional optimization problem.

Step 2. Utilize deep neural network based approximation to design candidate/trial function
space (use DL representation)

Step 3. Approximate the objective functional with some numerical quadrature (traditional
numerical analysis)

Step 4. Solve the final optimization problem (use DL optimization)

For a long time, solving high-dimensional PDEs suffers from the curse of dimensionality. Deep
learning provides us efficient tools for overcoming this difficulty.  
 
See the review paper Algorithms for solving high dimensional PDEs: from nonlinear Monte
Carlo to machine learning, E, Han, and Jentzen (2022)

Not Covered
1. Use deep learning algorithms to solve high-dimensional optimal control problems/multi-
agent games/Hamilton-Jacobi-Bellman equations.

5. Use dynamical system/control to study deep learning.

2. Use machine learning to solve complex low-dimensional PDEs in fluid dynamics, climate
modeling, etc.

4. Combine data driven and model (PDE)-based methods.

3. Use deep learning algorithms to approximate operators corresponding to PDE solutions.

