
Perturbational Complexity by Distribution Mismatch:
A Systematic Analysis of Reinforcement Learning in
Reproducing Kernel Hilbert Space

Jiequn Han

Center for Computational Mathematics, Flatiron Institute

Joint work with Jihao Long, Princeton University



Phenomenal Success of Reinforcement Learning (RL)

Deep RL: powerful function approximation



Episodic Markov Decision Process (MDP)

Agent

Environment

action Ahnew state Sh+1 reward rh

h = 1, 2, . . . ,H

Markov Decision Process (MDP): (S,A,H,P, r , µ)
• S: state space / A: action space (both in Euclidean spaces)

• µ: initial state distribution, S1 ∼ µ

• H: episode length

• Ah ∼ πh(· |Sh): policy (action selection rule)

• Sh+1 ∼ P( · | h, Sh,Ah): transition probability at step h (unknown)

• rh: observed reward at step h, r(h, Sh,Ah) (unknown)



Optimal Total Reward and Optimal Policy

Expected total reward

J(M, π) = Eπ

[
H∑

h=1

r(h,Sh,Ah) | S1 ∼ µ

]

=
H∑

h=1

∫
S×A

r(h, s, a)dρh,P,π,µ(s, a)

where ρh,P,π,µ denotes the distribution of (Sh,Ah) under initial
distribution µ and policy π

Optimal policy π∗ maximizes the total reward, and optimal total reward is

J∗(M) = sup
π

J(M, π) = J(M, π∗)

Goal: find near-optimal total reward/policy through finite interactions
(Sh,Ah, rh, Sh+1) with the environment



From Table to Function Approximation
Key components in RL algorithms: policy function πh(s, a), value
function Vh(s),Qh(s, a)

Tabular MDP: Both |S| and |A| are finite.

Function approximation:

• Linear model.

• Kernel function: given a positive definite kernel k on S ×A, there
exists a reproducing kernel Hilbert space (RKHS) Hk s.t.
∀z ∈ S ×A and f ∈ Hk , f (z) = ⟨f , k(z , · )⟩k

When can a reinforcement learning problem be solved efficiently

using kernel function approximation?

Mainly focus on sample complexity, high dimensions.



Existing Works and Our Contributions

• Lower bound: quite few results beyond the tabular setting
▶ [NYW19] proves an optimal lower bound for Lipschitz function

approximation
▶ [BKWY20] shows hard examples depending on the horizon

exponentially in a linear setting
▶ [CJ19] shows hard examples even when the set of candidate

approximating functions is finite and includes the optimal Q-value
function

▶ Our results: provide lower bound for a general class of RL problems

• Upper bound: two types of assumptions for RKHS
▶ [DMPKV20, YJWWJ20a, YJWWJ20b] assume fast eigenvalue decay

of the kernel
▶ [FMS10, LH21] assume finite concentration coefficients
▶ Our results: provide upper bound valid under either of the two

Both results build on the same complexity measure



Learning in RKHS

Supervised Learning: for any target distribution f lying in the unit ball of
an RKHS H and a fixed probability distribution ν, one can efficiently
obtain an estimation f̂ in the unit ball such that

∥f − f̂ ∥L2(ν) ≤ ϵ = O(n−α) (no curse of dimensionality)

target function in supervised learning

↓
reward function in reinforcement learning

If the reward function lies in an RKHS, what is the condition of

the RKHS and transition dynamics to ensure that the reinforcement

learning problem can be solved efficiently?



Challenge to Analysis: Q-value Function as An Example
Optimal Q-value function:

Q∗
h(s, a) = sup

π
EP,π[

H∑
h′=h

r(h′, Sh′ ,Ah′) |Sh = s,Ah = a].

Optimal policy can be derived as the greedy policy of Q∗
h

supp(π∗h( · | s)) ⊂ {a ∈ A : Q∗
h(s, a) = max

a′∈A
Q∗

h(s, a
′)}

If we have an estimation Q̂h close to Q∗
h in the sense of L2(ν), how to

evaluate the performance of π̂, the greedy policy of Q̂h?

Performance difference lemma: need the distribution under π̂, unknown!

J∗(M)− J(M, π̂)

=
H∑

h=1

∫
S×A

∑
a′∈A

Q∗
h(s, a

′)[π∗h(a
′ | s)− π̂h(a

′ | s)]dρh,P,π̂,µ(s, a)



Distribution Mismatch

J∗(M)− J(M, π̂)

=
H∑

h=1

∫
S×A

∑
a′∈A

Q∗
h(s, a

′)[π∗h(a
′ | s)− π̂h(a

′ | s)]dρh,P,π̂,µ(s, a)

Distribution mismatch: mismatch between the distribution ν for

estimation and the distribution for evaluation that is unknown a priori

“This lemma elucidates a fundamental measure mismatch. · · · Thus
even if the optimal policy advantage is small with respect to π and µ,
the advantages may not be small with respect to π∗ and µ” (Kakade and
Langford, 2002)



Perturbation Response by Distribution Mismatch
Definition 1

1 For any set Π of probability distribution on S ×A, we define a
semi-norm Π-norm ∥ · ∥Π on C (S ×A) such that

∥f ∥Π := sup
ρ∈Π

|
∫
S×A

f (s, a)dρ(s, a)|.

2 Given a Banach space B, a positive constant ϵ > 0 and a probability
distribution ν ∈ P(S ×A), we define Bϵ,ν , a ν-perturbation space
with scale ϵ, as follows:

Bϵ,ν := {f ∈ B1, ∥f ∥L2(ν) ≤ ϵ}.

3 The perturbation response by distribution mismatch is defined as
the radius of Bϵ,ν under Π-norm,

R(Π,B, ϵ, ν) := sup
f ∈Bϵ,ν

∥f ∥Π.



Remarks on Perturbation Response

∥f ∥Π := sup
ρ∈Π

|
∫
S×A

f (s, a)dρ(s, a)|

R(Π,B, ϵ, ν) := sup
f ∈B1,∥f ∥L2(ν)≤ϵ

∥f ∥Π

• If Π = {ν}, then R(Π,B, ϵ, ν) ≤ ϵ

• If Π = P(S ×A), then ∥f ∥Π = ∥f ∥∞
▶ used to handle the distribution mismatch in the tabular and linear RL
▶ but may suffer from the curse of dimensionality in the RKHSs

The scale of R(Π,B, ϵ, ν) measures the discrepancy between ν and

Π and reflects the error due to the fact that we do not know the

state-action distribution under the policy of interest



Setting (Known Unknowns)
Solve among a family of MDPs M = {Mθ = (S,A,Pθ, rθ,H, µ) : θ ∈ Θ}
• S, A, H and µ are common state space, action space, episode

length and initial distribution

• The possible transition probability Pθ and reward function rθ is
indexed by θ = (θP , θr ), and Θ = ΘP ×Θr is an index set as a
Cartesian product.

• Reward functions lie in a unit ball of space S
{rθr : θr ∈ Θr} = {r : r(h, ·, ·) ∈ S1, ∀h ∈ [H]}

▶ S = B, a general Banach space for the lower bound
▶ S = Hk , an RKHS with kernel k for the upper bound

• ΘP is a given arbitrary set.

• Assume a generative simulator: for any h and state-action pair
(s, a), we can observe a state x ∼ Pθ( · | h, s, a) and a noisy reward
y ∼ N (rθ(h, s, a), 1), called one access to the simulator



Worst-Case Error

Algorithm 1 General RL Algorithm for Estimating the Optimal Value

Input: Number of samples n
Initialize: Dθ,ξ

0 = ∅.
for i = 1, . . . , n do

Obtain i-th step-state-action tuple through (hθ,ξi , sθ,ξi , aθ,ξi ) =

fi (Dθ,ξ
i−1, ū)

Collect the subsequent state xθ,ξi ∼ Pθ(· | hθ,ξi , sθ,ξi , aθ,ξi ) and the noisy

reward yθ,ξi = rθ(h
θ,ξ
i , sθ,ξi , aθ,ξi ) + ϵi from the simulator

Set Dθ,ξ
i = Dθ,ξ

i−1 ∪ {(hθ,ξi , sθ,ξi , aθ,ξi , xθ,ξi , yθ,ξi )}
end

Output: Jθ,ξn = F (Dθ,ξ
n , ū) as an estimate of the optimal value J∗(Mθ)

Find the best ξ to minimize worst-case error inf
ξ∈Ξn

sup
θ∈Θ

E|Jθ,ξn − J∗(Mθ)|.



Two Cases and Some Notations

Two cases

• Known transition: ΘP = {0}
• Unknown transition: ΘP is a given arbitrary set

Notations of distribution

• ρh,P,π,µ: the distribution of (Sh,Ah) under initial distribution µ and
policy π

• Π(h,P, µ) = {ρh,P,π,µ : π is an admissible policy}
• Π(P, µ) =

⋃
h∈[H]Π(h,P, µ)



Lower Bound (Known Transition)

Definition 2

The perturbational complexity by distribution mismatch in the case of
known transition is

∆M(ϵ) := inf
ν∈P(S×A)

R(Π(P0, µ),B, ϵ, ν).

Theorem 1 (Long and Han’21)

If there is only one possible transition probability, then

inf
ξ∈Ξn

sup
θ∈Θ

P(|Jθ,ξn − J∗(Mθ)| ≥
1

3
∆M(n−

1
2 )) ≥ 1

4
.

Therefore,

inf
ξ∈Ξn

sup
θ∈Θ

E|Jθ,ξn − J∗(Mθ)| ≥
1

12
∆M(n−

1
2 ).

Remark: we should care about how ∆M(ϵ) decays with ϵ!



Lower Bound (Unknown Transition)

Direct application of Theorem 1 gives

sup
θ∈Θ

∆Mθ
(n−

1
2 )

as a lower bound

But the lower bound can be tighten by considering the following general
sampling algorithm

Dθ,ξ̄
0 = ∅,Dθ,ξ̄

i = Dθ,ξ̄
i−1 ∪ {(hθ,ξ̄i , sθ,ξ̄i , aθ,ξ̄i , xθ,ξ̄i )}, 1 ≤ i ≤ n − 1,

(hθ,ξ̄i , sθ,ξ̄i , aθ,ξ̄i ) = gi (Dθ,ξ̄
i−1, ū), x

θ,ξ̄
i ∼ Pθ(· | hθ,ξ̄i , sθ,ξ̄i , aθ,ξ̄i ),

νθ,ξ̄ =
1

n

n∑
i=1

L(sθ,ξ̄i , aθ,ξ̄i ).

Ξ̄n denotes the set of all the possible sampling algorithms ξ̄.



Lower Bound (Unknown Transition, Cont.)

Definition 3

The perturbational complexity by distribution mismatch in the case of
unknown transition is

∆M(ϵ) := inf
ξ̄∈Ξ̄[1/ϵ2]

sup
θ∈Θ

R(Π(Pθ, µ),B, ϵ, νθ,ξ̄).

Theorem 2 (Long and Han’21)

We have

inf
ξ∈Ξn

sup
θ∈Θ

P(|Jθ,ξn − J∗(Mθ)| ≥
1

3
∆M(n−

1
2 )) ≥ 1

4
.

Therefore,

inf
ξ∈Ξn

sup
θ∈Θ

E|Jθ,ξn − J∗(Mθ)| ≥
1

12
∆M(n−

1
2 ).



Upper Bound (Known Transition, Fitted Reward)

ν̂ = argmin
ν∈P(S×A)

R(Π(P0, µ),Hk , n
− 1

2 , ν).

Algorithm 2 Fitted Reward Algorithm

Input: n2 i.i.d. samples z1, . . . , zn2 from distribution ν̂
for h = 1, 2, . . . ,H do

Sample yθ,h1 , . . . , yθ,h
n2

from N (rθ(h, z1), 1), . . . ,N (rθ(h, zn2), 1)
Compute r̂θ(h, ·) as the minimizer of the optimization problem

min∥r∥k≤1

∑n2

i=1[r(zi )− yθ,hi ]2

end
Collect the fitted reward function to form the MDP (S,A,H,P0, r̂θ, µ), of
which both reward function and transition are known. Denote it as M̂θ.
Output: π̂θ as the optimal policy of M̂θ.



Upper Bound (Known Transition)

Theorem 3 (Long and Han’21)

If there is only one possible transition probability, and

sup
z∈S×A

k(z , z) ≤ 1.

For any θ ∈ Θ and p ∈ (0, 1), with probability at least 1− p, we can
access the simulator n2H times to have

|J(Mθ, π̂θ)− J∗(Mθ)| ≤ CH∆M(n−
1
2 )

√
1 + log(

nH

p
).

Remark 1: again, we should care about how ∆M(ϵ) decays with ϵ!

Remark 2: in the case of known transition, a low complexity RL problem
is equivalent to that ∥f − f̂ ∥Π(h,P0,µ) can be small with finite samples for
any h ∈ [H]



Upper Bound (Unknown Transition, Fitted Q-iteration)
ξ̂ = argmin

ξ̄∈Ξ̄n

sup
θ∈Θ

R(Π(Pθ, µ),Hk , n
− 1

2 , νθ,ξ̄),

Algorithm 3 Fitted Q-Iteration Algorithm

Input: n2 samples (ẑθ1,1, . . . , ẑ
θ
1,n), . . . , (ẑ

θ
n,1, . . . , ẑ

θ
n,n) as i.i.d. copies of

((sθ,ξ̂1 , aθ,ξ̂1 ), . . . , (sθ,ξ̂n , aθ,ξ̂n ))
Initialize: Qθ

H+1(s, a) = 0 for any (s, a) ∈ S ×A.

for h = H,H − 1, . . . , 1 do
for i = 1, . . . , n and j = 1, . . . , n do

Sample rθi ,j ∼ N (rθ(h, ẑ
θ
i ,j), 1) and sθ,

′

i ,j ∼ Pθ( · | h, ẑθi ,j)
Compute yθi ,j = rθi ,j +maxa′∈AQh+1(s

θ,′

i ,j , a
′)

end

Compute Qθ
h as the minimizer of the optimization problem

min∥f ∥k≤H−h+1

∑n
i=1

∑n
j=1[f (ẑ

θ
i ,j)− yθi ,j ]

2

end

Output: π̂θ as the greedy policies with respect to {Qθ
h}Hh=1.



Upper Bound (Unknown Transition)

Theorem 4 (Long and Han’21)

Assume ∥T θ
h f ∥k ≤ ∥f ∥k + 1 where T θ

h is the Bellman optimal operator
and

sup
z∈S×A

k(z , z) ≤ 1.

Then, for any θ ∈ Θ, with probability at least 1− p, we can access the
simulator n2H times to have

|J(Mθ, π̂θ)− J∗(Mθ)| ≤ CH3∆M(n−
1
2 )

√
1 + log(

nH

p
).



Connection with Concentratability

Proposition 5

Assume that there exists 1 < p ≤ 2 and

M = sup
ρ∈Π

∥ dρ

dν
∥Lp(ν) < +∞.

Then,

R(Π,Hk , n
− 1

2 , ν) ≤ 2Mn
1
p
−1
.



Connection with Kernel Decomposition
Given a probability distribution ν on S ×A, consider the operator
(Kν)f (z) :=

∫
S×A k(z , z ′)f (z ′)dν(z ′) and use {Λν

i }i∈N+ (nonincreasing)
and {ψν

i }i∈N+ (orthonormal) to denote its eigenvalues and eigenfunctions

Proposition 6

Assume supz∈S×A k(z , z) ≤ 1, then

inf
ν∈P(S×A)

R(P(S ×A),Hk , n
− 1

2 , ν) ≥ 1

2
( sup
ρ∈P(S×A)

+∞∑
i=n+1

Λρ
i )

1
2 .

Moreover, if there exists a distribution ν̂ ∈ P(S ×A) such that
supi∈N+ ∥ψν̂

i ∥∞ < +∞, then

R(P(S ×A),Hk , n
− 1

2 , ν̂) ≤ 2

√√√√[
n(ν̂)

n
+

∞∑
i=n(ν̂)+1

Λν̂
i ] sup

i∈N+
∥ψν̂

i ∥∞,

where n(ν̂) = max{i ∈ N+ : nΛν̂
i ≥ 1}.



Decay of Eigenvalues

Remark 1. When there is ν so that the eigenvalue decay of Kν is fast, we
can expect good convergence of RL algorithms.

Remark 2. When the eigenvalue decay is slow, like that in Laplace kernel
and neural tangent kernel on sphere Sd−1, the lower bound decays slow

(∼ n−
1

d−1 ). The knowledge of Π plays a vital role.

Remark 3 (challenge in high dimensional action space). Assume

S = {s0}, A = Sd−1, H = 1.

Then the RL problem is essentially to find the maximum value of the
reward function lying in the unit ball of Hk based on the values of n
points. We need to assume the decay of eigenvalue is fast enough to
break the curse of dimensionality.



Conclusions
• The perturbational complexity by distribution mismatch ∆M(ϵ),

gives a lower bound for the error of every algorithm on the
considered RL problem.

• In the case of known transition, ∆M(ϵ) also gives an upper bound
of the error of the fitted reward algorithm.

• In the case of unknown transition (general case), with an additional
assumption on Bellman operators, ∆M(ϵ) gives an upper bound for
the error of the fitted Q-iteration algorithm.

• ∆M(ϵ) generalize existing results for fast convergence based on the
assumptions of the finite concentration coefficients or fast
eigenvalue decay of the kernel.

• We give a concrete example in which the reward functions lie in a
high dimensional RKHS, the transition probability is known, and the
action space is finite, but the corresponding RL problem can not be
solved without the curse of dimensionality.



Open Problems

• Close the upper bound and lower bound

• Relax the assumption of Bellman operator or prove its necessity

• Bound for known reward but unknown transition

• Bound for episodic simulator

• Use perturbational complexity to guide the design of RL algorithms

Thank you for your attention


