Central Question of Interest

Given a prior distribution 7 on RY, we assume known its Denoising Oracle: DO (y,t) = E[X|Y =
yl, where X ~mrandY = X +tZ, Z ~ ~;=N(0, ).

By Tweedie’s formula, DO is equivalent to score along Ornstein-Ulhenbeck (or Heat) semigroup.

AdX; = —Xpdt + V2dW4, X~ (forwardSDE)
dXT = (=X — 2V log m(X;))dt + V2dWy, X5~ (reverseSDE)
Given linear observations
y=Az+ow, o>0,x~m w~ vy,
we aim to solve the Bayesian inverse problem by provably sampling the (possibly multimodal)
posterior distribution
1
v(x) = plely) o< r(z)plyle) o m(z)exp { — [l A =yl }.
Notation: For @ > 0 in R%4 and b € RY the quadratic tilt of 7 is the measure Topm <7 with

dT :
C%bﬂ@) X exp {—%xTQaz + :z:Tb}. So we aim to sample

v=Toum, withQ=0"24A"A,b=—-0"4"y.

Background

= If Amin(@) > 1, v becomes strongly log-concave, allowing fast relaxation of Langevin dynamics
(Logarithmic Sobolev Inequality and Bakry-Emery criterion).

= If Amax (@) < 1, v & m, so samples from 7 can be efficiently perturbed into samples from v via
importance sampling.

= If Ais unitary, Q = o —21d, reducing the problem to isotropic Gaussian denoising, seems
compatible with the denoising oracle (see next block).

Two key problem parameters: SNR = A\pin(Q) = Auin(A)?/0? and w(A) = Amaxc(A) /Apin(A).

Denoising as a Motivating Example

When the task is denoising
Y=+ ow,

the observation has a similar structure to the forward process

X 4 e Xy + (1 — e *w.

By defining

1 x
TF = élog(l +0%), g=e 1y,

we have y
(z,7) = (Xo, X7+).

Therefore, sampling p(x|y) is equivalent to p(Xy|X7+), which can be achieved by the following:

1. Initialize X = e 1y
2. Run the original reverse SDE from T to 0 to get the desired sample
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General Cases via Tilted Transport

We consider a one-parameter family of distributions — 9@=001 —q0)=01 —q(0)=05 — q0)=1 — q(0) =4

Vt Of the form o Family of Solutions to the ODE q'(t) = 2 q(t) (1 + q(t))
1
ve(x) = m(x) exp { — §xTth + SIZTbt} — TQt,bﬂt : 10t |
with m; denoting the density of X; in the forward 00|
process and @, by satistying the first-order ODE: j/
Qr=20+Q)Qr, Q=Q, ) |
be = (I +2Q¢)by bp="0. X t

Theorem 1 (Tilted Transport) Assume t < T* = Slog(1 4+ Amax(@) 1) such that the ODE (1) is
well-defined on [0, t|. By initializing Xf ~ v and running reverseSDE from t to O, we have X~ ~ v
for s € [0, t]; specifically, X~ gives a sample from the desired posterior.

Key takeaway: The same reverse SDE allows us to move samples along v+ backward, and 14
becomes easier to sample from as ¢ increases since

1
v(x) = m(r) exp { — §xTQtZC + bet}

J/

WV
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Resulting Numerical Algorithm

Given a baseline sampling algorithm Alg (e.g. Langevin Diffusion) and starting time 7' = T — ¢ (for
stable ODE solutions), the tilted transport works in two steps:

1. Use the baseline sampling algorithm Alg to sample X‘T_ from wf(a:) exp { — %xTQT:B + aszT}

2. Run the original reverse SDE from T to 0 to get the desired sample

X 3R T
»e . prior data generation:
P | <
? ; - % * <f}rom a large T' and standard Gaussian prior\\
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same reverse SDE

@ Step 2
v

same reverse SDE -
dX; = (—X; —2Vlogmy(X;"))dt + vV2dW, |

Provable Posterior Sampling with Denoising
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Provable Sampling

Definition: (known as the susceptibility in the literature of stochastic localization and Polchinsky
renormalisation group)

xt(m) = sup ||Cov[T;r 7|,
reR?

Theorem 2 (Strong Log-Concavity of v«) vy« is strongly log-concave if

K(Q)
Q) -1

X||o)(T) < ||QH_1K(

= Gaussian Mixtures: Let m = p * 7
and diam(supp(p)) < R, then vpxis 2
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= [sing Models: Let m be the uniform measure on the hypercube {il}d, and @) such that
Amax (@) — Amin(Q) < 1. Then vp« is strongly log-concave, and therefore the Ising model
v = Tom can be sampled efficiently (in continuous-time). This bound precisely matches the
computational lower bound in [Kunisky, 2023].

Numerical Results
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boosted posterior by tilted transport
(provably easier to sample)

target posterior measure space

Remark: A similar two-step approach (marginal sampling + conditional sampling) was recently
proposed for posterior sampling in sparse linear regression [Montanari and Wu, 2024].
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Future work:

= Flow Matching/Stochastic Interpolant Oracles [Chen et al., Albergo et al.]
= [terated Tilted Transport
= From Linear to Nonlinear inverse problems



