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Central Question of Interest

Given a prior distribution π on Rd, we assume known its Denoising Oracle: DOπ(y, t) = E[X|Y =
y], where X ∼ π and Y = X + tZ , Z ∼ γd = N (0, Id).
By Tweedie’s formula, DOπ is equivalent to score along Ornstein-Ulhenbeck (or Heat) semigroup.

dXt = −Xtdt +
√

2dWt, X0 ∼ π (forwardSDE)

dX←t = (−X←t − 2∇ log πt(X←t ))dt +
√

2dW t, X←T ∼ γd . (reverseSDE)

Given linear observations

y = Ax + σw, σ > 0, x ∼ π, w ∼ γd′,

we aim to solve the Bayesian inverse problem by provably sampling the (possibly multimodal)

posterior distribution

ν(x) := p(x|y) ∝ π(x)p(y|x) ∝ π(x) exp
{
− 1

2σ2‖Ax− y‖2
}

.

Notation: For Q � 0 in Rd×d and b ∈ Rd, the quadratic tilt of π is the measure TQ,bπ � π with
dTQ,bπ

dπ (x) ∝ exp
{
−1

2x>Qx + x>b
}
. So we aim to sample

ν = TQ,bπ , with Q = σ−2A>A , b = −σ−2A>y .

Background

If λmin(Q)� 1, ν becomes strongly log-concave, allowing fast relaxation of Langevin dynamics

(Logarithmic Sobolev Inequality and Bakry-Emery criterion).

If λmax(Q)� 1, ν ≈ π, so samples from π can be efficiently perturbed into samples from ν via

importance sampling.

If A is unitary, Q = σ−2Id, reducing the problem to isotropic Gaussian denoising, seems

compatible with the denoising oracle (see next block).

Two key problem parameters: SNR := λmin(Q) = λmin(A)2/σ2 and κ(A) := λmax(A)/λmin(A).

Denoising as a Motivating Example

When the task is denoising

y = x + σw,

the observation has a similar structure to the forward process

Xs
d= e−sX0 + (1− e−2s)w.

By defining

T ∗ = 1
2

log(1 + σ2), ỹ = e−T ∗y,

we have

(x, ỹ) d= (X0, XT ∗).

Therefore, sampling p(x|y) is equivalent to p(X0|XT ∗), which can be achieved by the following:

1. Initialize X←T ∗ = e−T ∗y

2. Run the original reverse SDE from T ∗ to 0 to get the desired sample

General Cases via Tilted Transport

We consider a one-parameter family of distributions

νt of the form

νt(x) := πt(x) exp
{
− 1

2
x>Qtx + x>bt

}
= TQt,bt

πt ,

with πt denoting the density of Xt in the forward

process and Qt, bt satisfying the first-order ODE:{
Q̇t = 2(I + Qt)Qt , Q0 = Q ,

ḃt = (I + 2Qt)bt , b0 = b .
(1)

Theorem 1 (Tilted Transport) Assume t < T ∗ := 1
2 log(1 + λmax(Q)−1) such that the ODE (1) is

well-defined on [0, t]. By initializing X←t ∼ νt and running reverseSDE from t to 0, we have X←s ∼ νs

for s ∈ [0, t]; specifically, X←0 gives a sample from the desired posterior.

Key takeaway: The same reverse SDE allows us to move samples along νt backward, and νt
becomes easier to sample from as t increases since

νt(x) = πt(x)︸ ︷︷ ︸
easier prior

exp
{
− 1

2
x>Qtx + x>bt

}
︸ ︷︷ ︸

easier likelihood

Resulting Numerical Algorithm

Given a baseline sampling algorithm Alg (e.g. Langevin Diffusion) and starting time T̃ = T ∗− ε (for
stable ODE solutions), the tilted transport works in two steps:

1. Use the baseline sampling algorithm Alg to sample X←
T̃

from πT̃ (x) exp
{
− 1

2x>QT̃ x + x>bT̃

}
2. Run the original reverse SDE from T̃ to 0 to get the desired sample

same reverse SDE
 

posterior data generation: 
 

from a chosen  and boosted posterior 

from a large  and standard Gaussian

prior data generation: 

target posterior boosted posterior by tilted transport
(provably easier to sample)

 measure space

same reverse SDE

prior

posterior

Step 2

Step 1 (init) 

Remark: A similar two-step approach (marginal sampling + conditional sampling) was recently

proposed for posterior sampling in sparse linear regression [Montanari and Wu, 2024].

Provable Sampling

Definition: (known as the susceptibility in the literature of stochastic localization and Polchinsky

renormalisation group)

χt(π) := sup
x∈Rd

‖Cov[TtI,txπ]‖,

Theorem 2 (Strong Log-Concavity of νT ∗) νT ∗ is strongly log-concave if

χ‖Q‖(π) < ‖Q‖−1 κ(Q)
κ(Q)− 1

.

Gaussian Mixtures: Let π = µ ∗ γδ
and diam(supp(µ)) ≤ R, then νT ∗ is

strongly log-concave if

R2 <
(1 + δSNR2)(δκ(A)2 + SNR−2)

κ(A)2 − 1
.
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Ising Models: Let π be the uniform measure on the hypercube {±1}d, and Q such that

λmax(Q)− λmin(Q) < 1. Then νT ∗ is strongly log-concave, and therefore the Ising model

ν = TQπ can be sampled efficiently (in continuous-time). This bound precisely matches the

computational lower bound in [Kunisky, 2023].

Numerical Results
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Future work:

Flow Matching/Stochastic Interpolant Oracles [Chen et al., Albergo et al.]

Iterated Tilted Transport

From Linear to Nonlinear inverse problems


