

Central Question of Interest

Given a prior distribution π on \mathbb{R}^d , we assume known its Denoising Oracle: $\mathsf{DO}_{\pi}(y,t) = \mathbb{E}[X|Y = \mathbb{E}[X|Y]$ y], where $X \sim \pi$ and Y = X + tZ, $Z \sim \gamma_d = \mathcal{N}(0, I_d)$.

By Tweedie's formula, DO_{π} is equivalent to score along Ornstein-Ulhenbeck (or Heat) semigroup.

$$dX_t = -X_t dt + \sqrt{2} dW_t, \qquad X_0 \sim \pi$$

$$dX_t^{\leftarrow} = (-X_t^{\leftarrow} - 2\nabla \log \pi_t(X_t^{\leftarrow})) dt + \sqrt{2} d\overline{W}_t, \qquad X_T^{\leftarrow} \sim \gamma_d.$$

Given linear observations

 $y = Ax + \sigma w, \quad \sigma > 0, x \sim \pi, w \sim \gamma_{d'},$

we aim to solve the **Bayesian inverse problem** by **provably sampling the (possibly multimodal)** posterior distribution

$$\nu(x) \coloneqq p(x|y) \propto \pi(x)p(y|x) \propto \pi(x) \exp\left\{-\frac{1}{2\sigma^2} \|Ax - y\|^2\right\}$$

Notation: For $Q \succeq 0$ in $\mathbb{R}^{d \times d}$ and $b \in \mathbb{R}^d$, the **quadratic tilt** of π is the measure $\mathsf{T}_{Q,b}\pi \ll \pi$ with $\frac{\mathrm{d}\mathsf{T}_{Q,b}\pi}{\mathrm{d}\pi}(x) \propto \exp\left\{-\frac{1}{2}x^{\top}Qx + x^{\top}b\right\}.$ So we aim to sample

 $\nu = \mathsf{T}_{Q,b}\pi$, with $Q = \sigma^{-2}A^{\top}A$, $b = -\sigma^{-2}A^{\top}y$.

Background

- If $\lambda_{\min}(Q) \gg 1$, ν becomes strongly log-concave, allowing fast relaxation of Langevin dynamics (Logarithmic Sobolev Inequality and Bakry-Emery criterion).
- If $\lambda_{\max}(Q) \ll 1$, $\nu \approx \pi$, so samples from π can be efficiently perturbed into samples from ν via importance sampling.
- If A is unitary, $Q = \sigma^{-2}$ Id, reducing the problem to isotropic Gaussian denoising, seems compatible with the denoising oracle (see next block).

Two key problem parameters: SNR := $\lambda_{\min}(Q) = \lambda_{\min}(A)^2/\sigma^2$ and $\kappa(A) := \lambda_{\max}(A)/\lambda_{\min}(A)$.

Denoising as a Motivating Example

When the task is **denoising**

$$y = x + \sigma w,$$

the observation has a similar structure to the forward process

$$X_s \stackrel{d}{=} e^{-s} X_0 + (1 - e^{-2s})w.$$

By defining

$$T^* = \frac{1}{2}\log(1+\sigma^2), \quad \tilde{y} = e^{-T^*}y,$$

we have

$$(x,\tilde{y}) \stackrel{d}{=} (X_0, X_{T^*}).$$

Therefore, sampling p(x|y) is equivalent to $p(X_0|X_{T^*})$, which can be achieved by the following:

Initialize $X_{T^*}^{\leftarrow} = e^{-T^*}y$ Run the original reverse SDE from T^* to 0 to get the desired sample

Provable Posterior Sampling with Denoising Oracles via Tilted Transport

Joan Bruna¹ Jiequn Han²

²Flatiron Institute ¹NYU

General Cases via Tilted Transport

We consider a one-parameter family of distributions ν_t of the form

 $\nu_t(x) \coloneqq \pi_t(x) \exp\left\{-\frac{1}{2}x^\top Q_t x + x^\top b_t\right\} = \mathsf{T}_{Q_t, b_t} \pi_t ,$ with π_t denoting the density of X_t in the forward

process and Q_t, b_t satisfying the first-order ODE:

$$\begin{cases} \dot{Q}_t = 2(I+Q_t)Q_t , & Q_0 = Q ,\\ \dot{b}_t = (I+2Q_t)b_t , & b_0 = b . \end{cases}$$
(1)

Theorem 1 (Tilted Transport) Assume $t < T^* := \frac{1}{2}\log(1 + \lambda_{\max}(Q)^{-1})$ such that the ODE (1) is well-defined on [0, t]. By initializing $X_t^{\leftarrow} \sim \nu_t$ and running reverseSDE from t to 0, we have $X_s^{\leftarrow} \sim \nu_s$ for $s \in [0, t]$; specifically, X_0^{\leftarrow} gives a sample from the desired posterior.

Key takeaway: The same reverse SDE allows us to move samples along ν_t backward, and ν_t becomes easier to sample from as t increases since

$$\nu_t(x) = \underbrace{\pi_t(x)}_{\text{easier prior}} \underbrace{\exp\left\{-\frac{1}{2}x^{\top}Q_tx + x^{\top}b_t\right\}}_{\text{easier likelihood}}$$

Resulting Numerical Algorithm

Given a baseline sampling algorithm Alg (e.g. Langevin Diffusion) and starting time $\tilde{T} = T^* - \epsilon$ (for stable ODE solutions), the tilted transport works in two steps:

Use the baseline sampling algorithm Alg to sample $X_{\tilde{T}}^{\leftarrow}$ from $\pi_{\tilde{T}}(x) \exp\left\{-\frac{1}{2}x^{\top}Q_{\tilde{T}}x + x^{\top}b_{\tilde{T}}\right\}$ Run the original reverse SDE from \tilde{T} to 0 to get the desired sample

Remark: A similar two-step approach (marginal sampling + conditional sampling) was recently proposed for posterior sampling in sparse linear regression [Montanari and Wu, 2024].

(forwardSDE) (reverseSDE)

Definition: (known as the **susceptibility** in the literature of stochastic localization and Polchinsky renormalisation group)

Theorem 2 (Strong Log-Concavity of ν_{T^*} **)** ν_{T^*} is strongly log-concave if

• Gaussian Mixtures: Let $\pi = \mu * \gamma_{\delta}$ and diam(supp(μ)) $\leq R$, then ν_{T^*} is strongly log-concave if

$$R^2 < \frac{(1+\delta \mathrm{SNR}^2)(\delta \kappa(A)^2 + \mathrm{SNR}^{-2})}{\kappa(A)^2 - 1}$$

computational lower bound in [Kunisky, 2023].

Future work:

- Flow Matching/Stochastic Interpolant Oracles [Chen et al., Albergo et al.]
- Iterated Tilted Transport
- From Linear to Nonlinear inverse problems

Provable Sampling

• Ising Models: Let π be the uniform measure on the hypercube $\{\pm 1\}^d$, and Q such that $\lambda_{\max}(Q) - \lambda_{\min}(Q) < 1$. Then ν_{T^*} is strongly log-concave, and therefore the Ising model $\nu = T_O \pi$ can be sampled efficiently (in continuous-time). This bound precisely matches the

Numerical Results