Jason Kaye
I am an Associate Research Scientist, joint between the
Center for Computational Mathematics
and the
Center for Computational Quantum Physics
at the
Flatiron Institute.
My research focuses on the development of robust, high-order,
and scalable numerical algorithms for problems in computational quantum physics. I work
with tools involving the numerical solution of partial
differential equations and integral equations, high-order
methods, and fast algorithms for the compression and
application of structured operators.
I place an emphasis on developing practical algorithms to
address specific bottlenecks faced by computational
scientists. Most of my projects involve close
collaborations with physicists, and cover algorithm
development, implementation, and software.
Download my CV (Feb '23)
Publications/Preprints
(ordered by first appearance)If no arXiv link is given, journal publication is open access.
- H. LaBollita, J. Kaye, A. Hampel, "Stabilizing the calculation of the self-energy in dynamical mean-field theory using constrained residual minimization", arXiv:2310.01266 (2023). arXiv
- J. Kaye, H. U. R. Strand, D. Golež, "Decomposing imaginary time Feynman diagrams using separable basis functions: Anderson impurity model strong coupling expansion", arXiv:2307.08566 (2023). arXiv
- N. Sheng, A. Hampel, S. Beck, O. Parcollet, N. Wentzell, J. Kaye, K. Chen, "Low-rank Green's function representations applied to dynamical mean-field theory", Phys. Rev. B., 107, 245123 (2023). journal arXiv
- J. Kaye, S. Beck, A. Barnett, L. Van Muñoz, O. Parcollet, "Automatic, high-order, and adaptive algorithms for Brillouin zone integration", SciPost Phys., 15 (2), 062 (2023). journal
- J. Kaye, A. Barnett, L. Greengard, U. De Giovannini, A. Rubio, "Eliminating artificial boundary conditions in time-dependent density functional theory using Fourier contour deformation", J. Chem. Theory Comput., 19 (5), 1409-1420 (2023). journal arXiv
- Y. Núñez-Fernández, M. Jeannin, P. T. Dumitrescu, T. Kloss, J. Kaye, O. Parcollet, X. Waintal, "Learning Feynman diagrams with tensor trains", Phys. Rev. X, 12, 041018 (2022). journal
- J. Hoskins, J. Kaye, M. Rachh, J. C. Schotland, "Analysis of single-excitation states in quantum optics", arXiv:2110.07049 (2021). arXiv
- J. Kaye, K. Chen, H. U. R. Strand, "libdlr: Efficient imaginary time calculations using the discrete Lehmann representation", Comput. Phys. Commun., 280, 108458 (2022). journal
- J. Kaye, H. U. R. Strand, "A fast time domain solver for the equilibrium Dyson equation", Adv. Comput. Math., 49, 63 (2023). journal
- J. Hoskins, J. Kaye, M. Rachh, J. C. Schotland, "A fast, high-order numerical method for the simulation of single-excitation states in quantum optics", J. Comput. Phys., 473, 111723 (2023). journal arXiv
- J. Kaye, K. Chen, O. Parcollet, "Discrete Lehmann representation of imaginary time Green's functions", Phys. Rev. B, 105, 235115 (2022). journal arXiv
- J. Kaye, D. Golež, "Low rank compression in the numerical solution of the nonequilibrium Dyson equation", SciPost Phys., 10 (4), 091 (2021). journal
- J. Kaye, A. Barnett, L. Greengard, "A high-order integral equation-based solver for the time-dependent Schrödinger equation", Comm. Pure Appl. Math., 75, 1657-1712 (2022). journal arXiv
- J. Kaye, L. Greengard, "A fast solver for the narrow capture and narrow escape problems in the sphere", J. Comput. Phys. X, 5, 100047 (2020). journal
- J. Kaye, L. Greengard, "Transparent boundary conditions for the time-dependent Schrödinger equation with a vector potential", arXiv:1812.04200 (2018). arXiv
- Y. Bao, J. Kaye, C. S. Peskin, "A Gaussian-like immersed-boundary kernel with three continuous derivatives and improved translational invariance", J. Comput. Phys., 316, 139-144 (2016). journal arXiv
- J. Kaye, L. Lin, C. Yang, "A posteriori error estimator for adaptive local basis functions to solve Kohn-Sham density functional theory", Commun. Math. Sci., 13 (7), 1741-1773 (2015). journal arXiv
- S. E. Field, C. R. Galley, J. S. Hesthaven, J. Kaye, M. Tiglio, "Fast prediction and evaluation of gravitational waveforms using surrogate models", Phys. Rev. X, 4 (3), 031006 (2014). journal
Software
cppdlr | C++ library implementing the discrete Lehmann representation of imaginary time Green's functions |
libdlr | Python & Fortran libraries implementing the discrete Lehmann representation of imaginary time Green's functions (see also the libdlr companion paper) |
AutoBZ | Julia library implementing algorithms for automatic, high-order, and adaptive Brillouin zone integration (code written by Lorenzo van Muñoz) |