

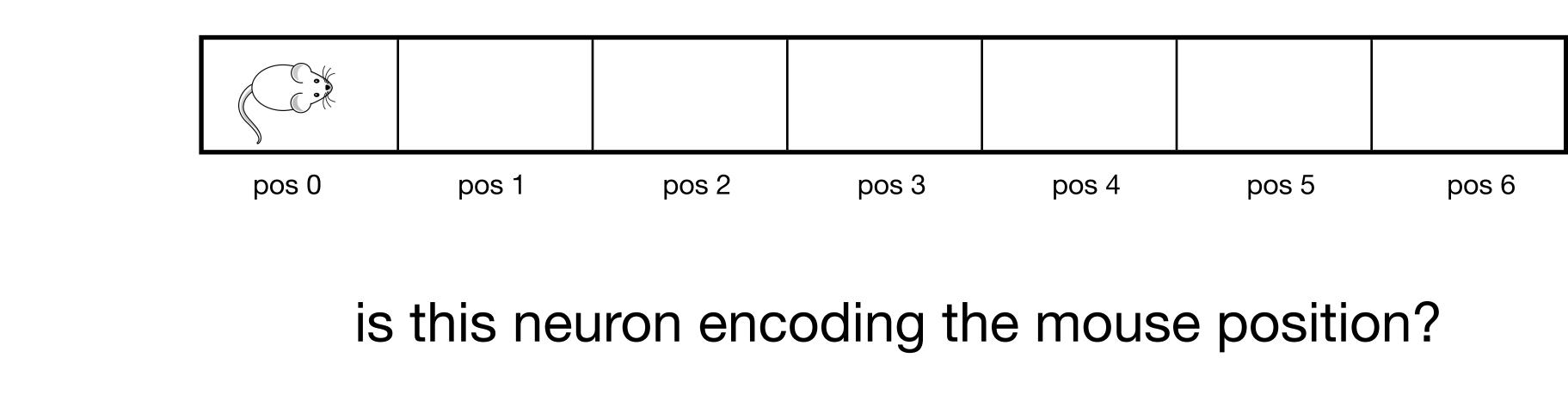
Generalized Linear Models (GLM) A conceptual introduction to GLM

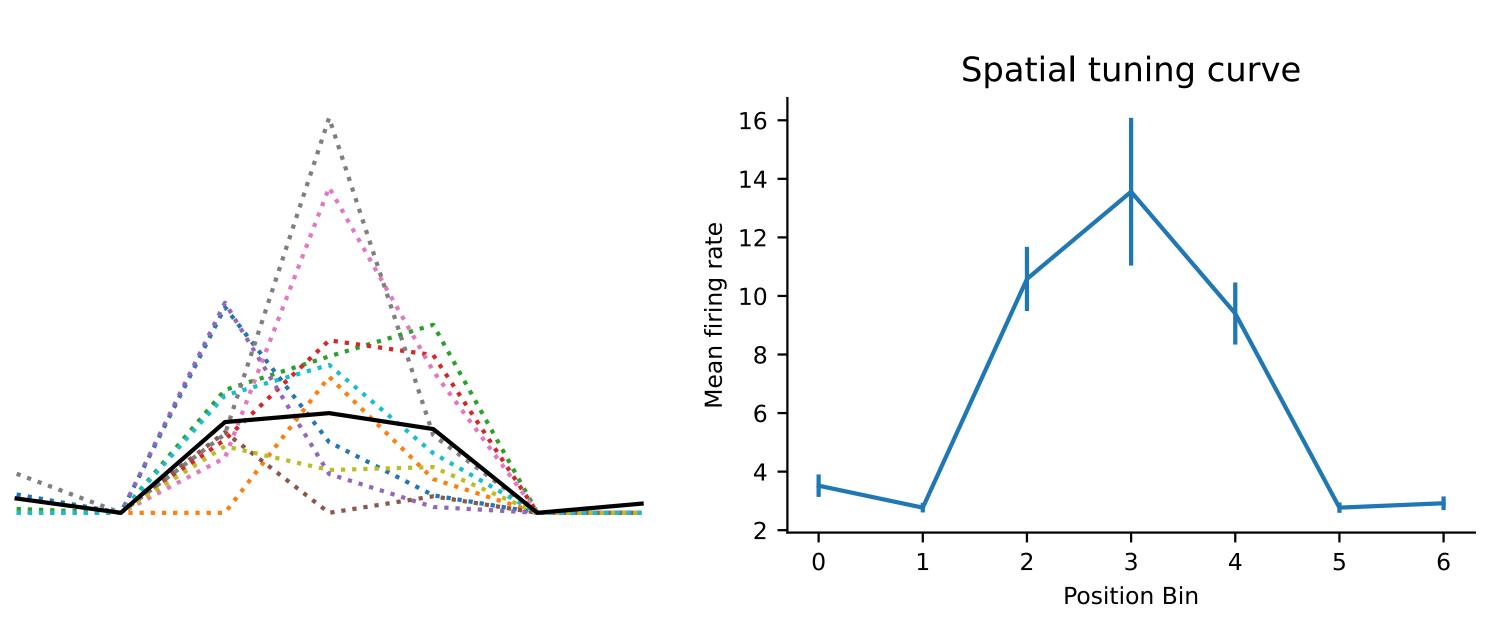
Edoardo Balzani, Sep 23rd 2024

Roadmap

- Why models?
- What are GLMs?
- Why GLMs?
- What can I do with a GLM?
- GLMs In NeMoS
- What features can/should I use?
- Feature construction with Basis
- Summary
- Today's roadmap

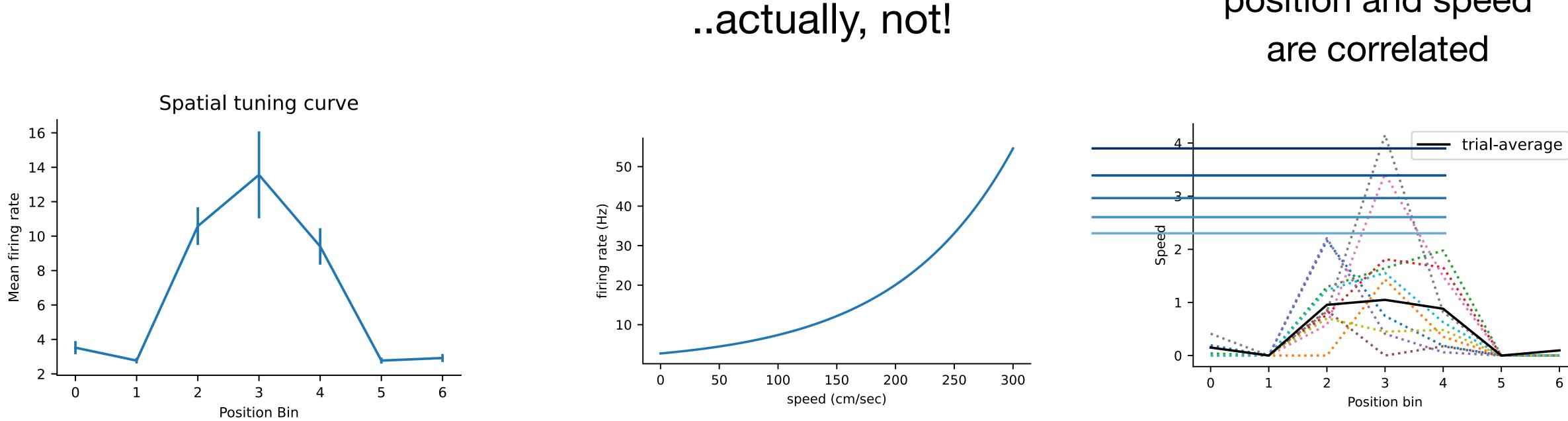
Why models? A hook



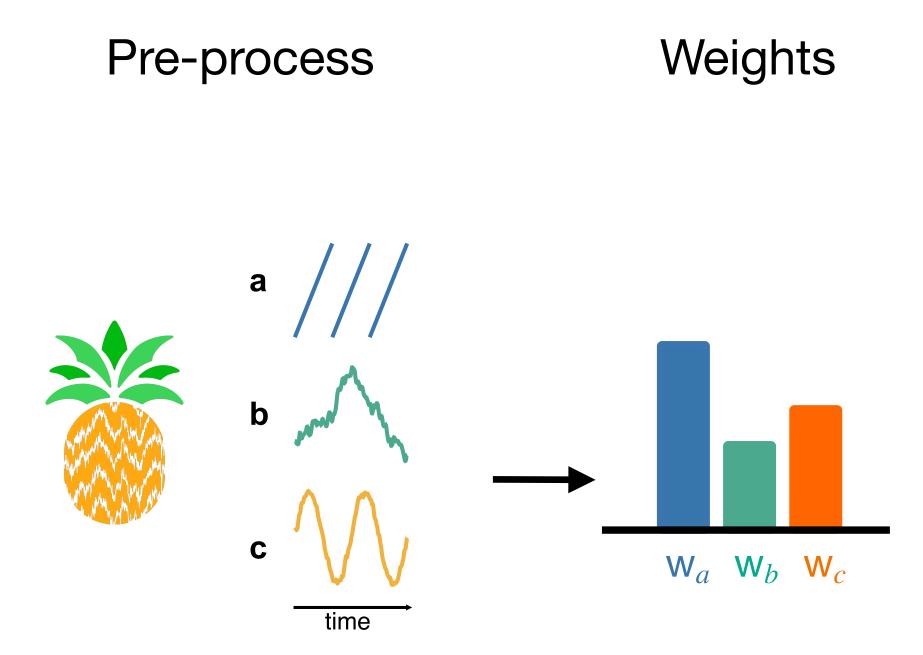


linear maze

Why models? A hook



ning functions don't tell you the whole story need better models!

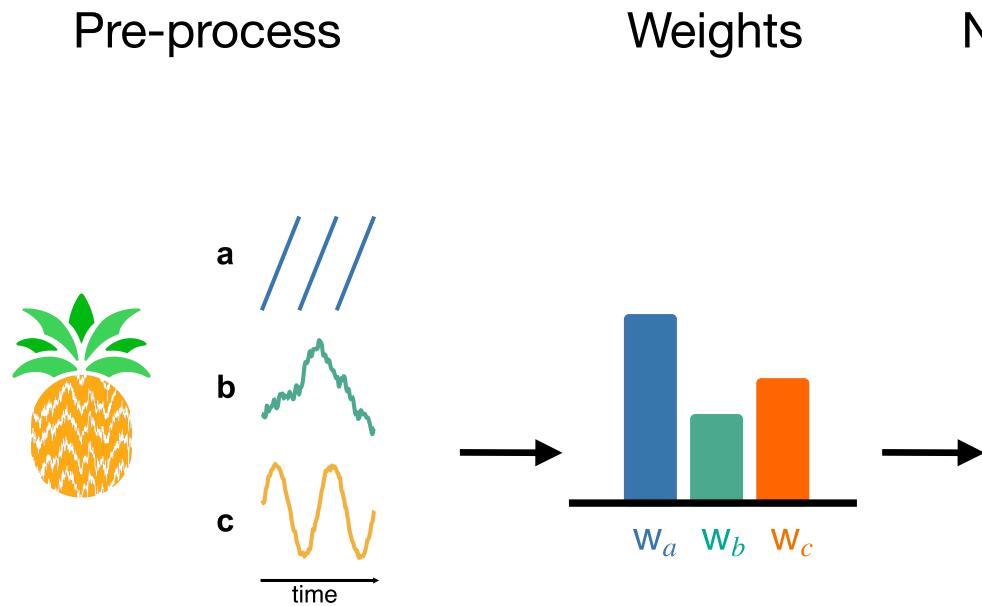


Observed counts

time

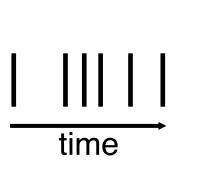
scale the inputs by some weights

 $\mathbf{a} \cdot \mathbf{w}_a + \mathbf{b} \cdot \mathbf{w}_b + \mathbf{c} \cdot \mathbf{w}_c$



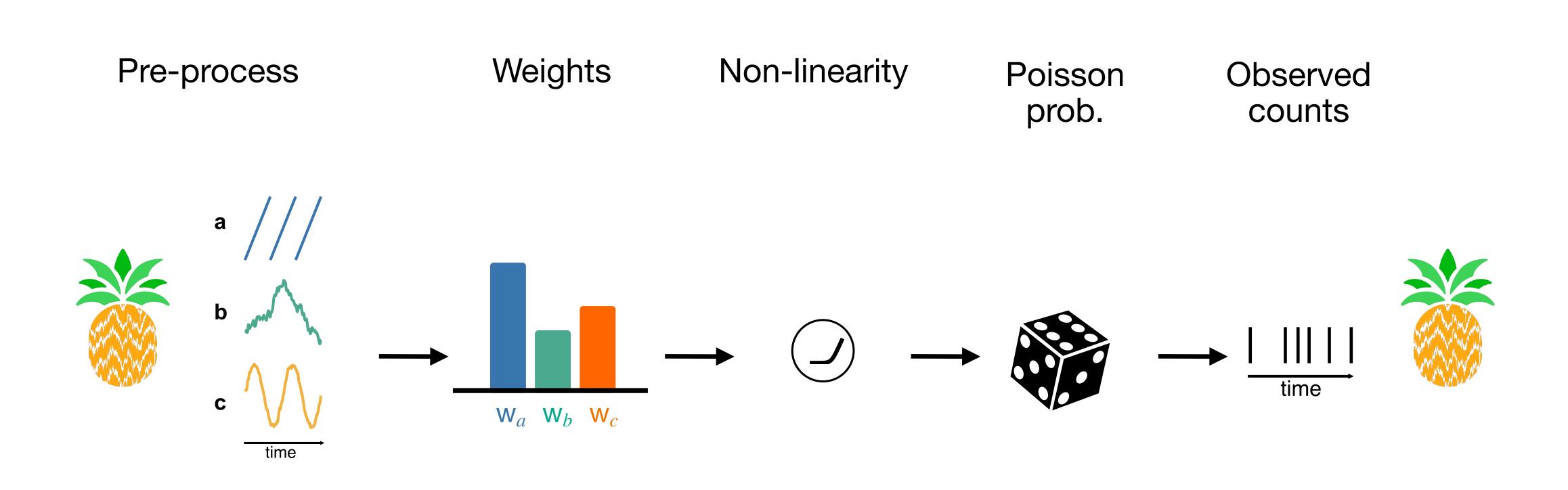
Non-linearity

Observed counts

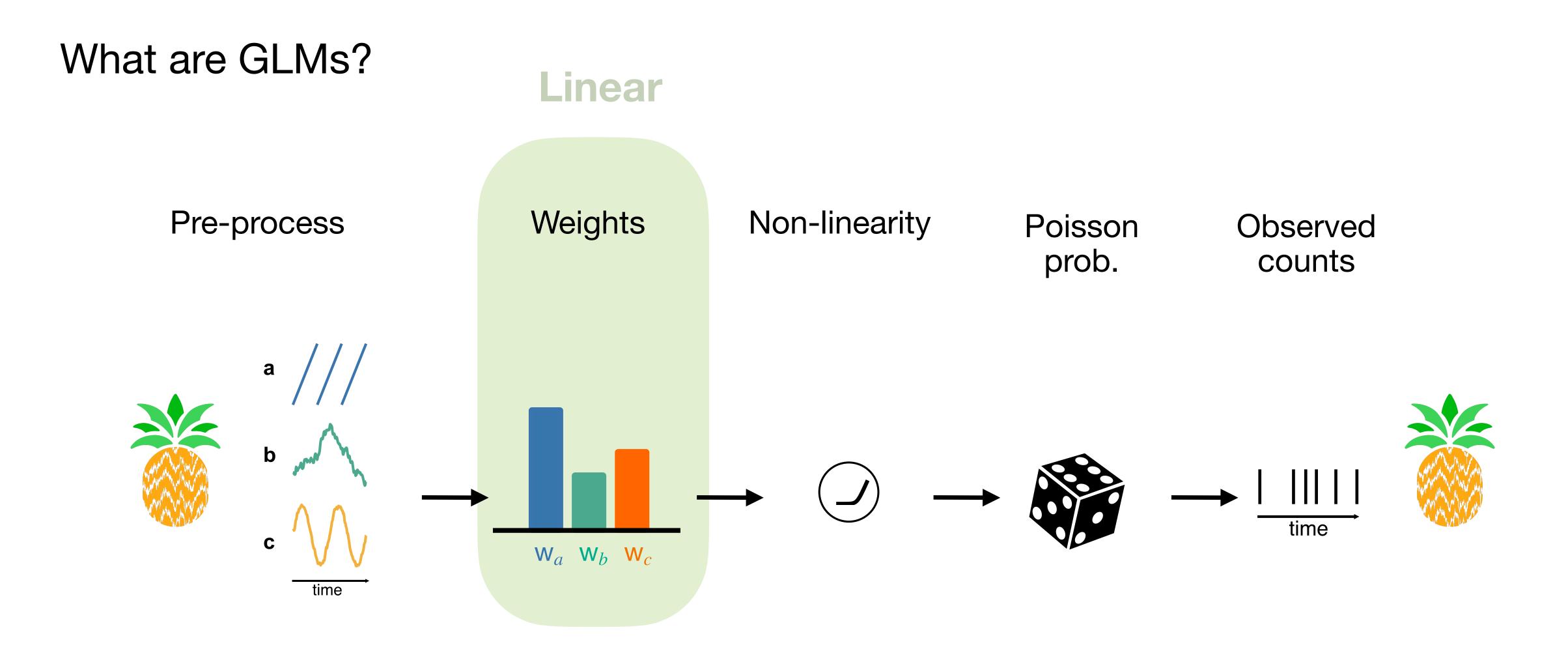


non-linearity to make the result positive

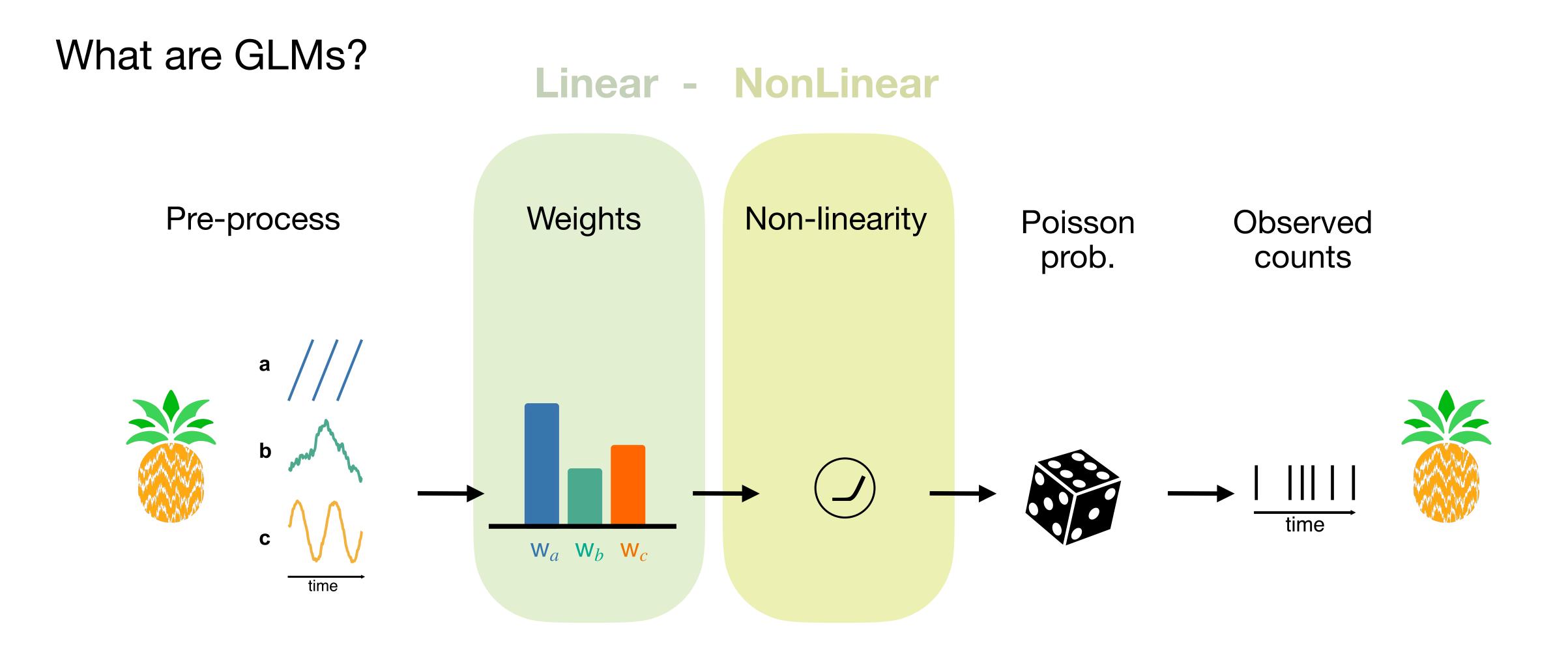
firing rate = exp($\mathbf{a} \cdot \mathbf{w}_a + \mathbf{b} \cdot \mathbf{w}_b + \mathbf{c} \cdot \mathbf{w}_c$)



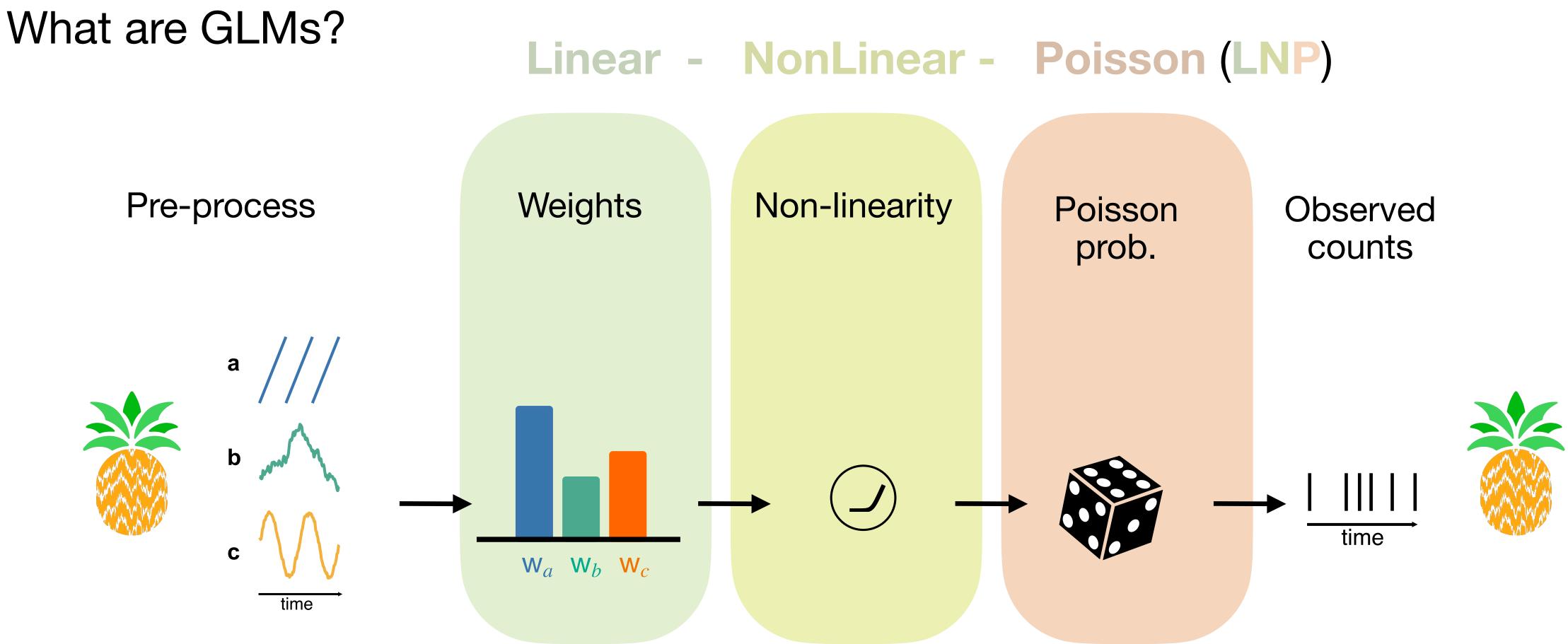
firing rate = exp($\mathbf{a} \cdot \mathbf{w}_a + \mathbf{b} \cdot \mathbf{w}_b + \mathbf{c} \cdot \mathbf{w}_c$) probability(spike count = k) = Poisson(k | firing rate)



firing rate = exp($\mathbf{a} \cdot \mathbf{w}_a + \mathbf{b} \cdot \mathbf{w}_b + \mathbf{c} \cdot \mathbf{w}_c$) probability(spike count = k) = Poisson(k | firing rate)



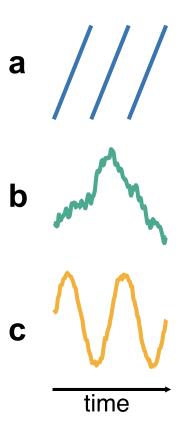
firing rate = exp($\mathbf{a} \cdot \mathbf{w}_a + \mathbf{b} \cdot \mathbf{w}_b + \mathbf{c} \cdot \mathbf{w}_c$) probability(spike count = k) = Poisson(k | firing rate)

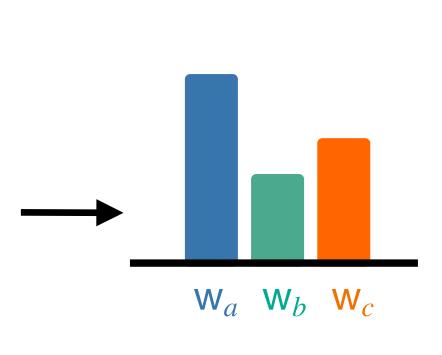


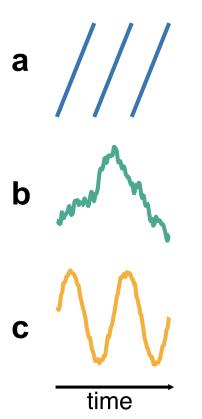
probability(spike count = k) = Poisson(k | firing rate)

firing rate = exp($\mathbf{a} \cdot \mathbf{w}_a + \mathbf{b} \cdot \mathbf{w}_b + \mathbf{c} \cdot \mathbf{w}_c$)

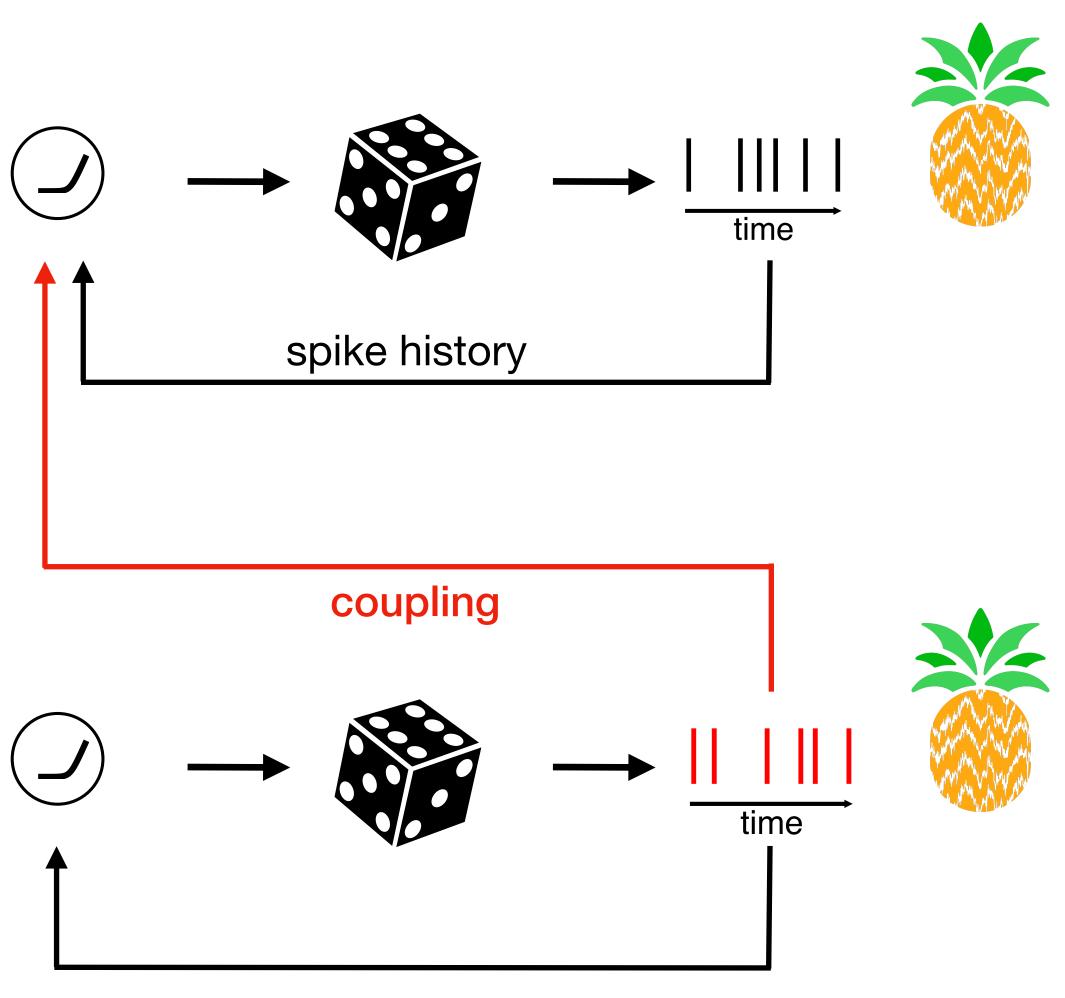
10











spike history

firing rate = exp($\mathbf{a} \cdot \mathbf{w}_a + \mathbf{b} \cdot \mathbf{w}_b + \mathbf{c} \cdot \mathbf{w}_c$)

a, b, c are called features or predictors

12

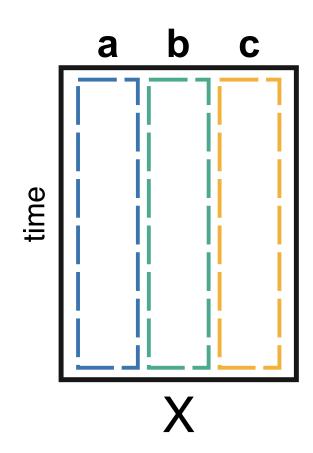
- a, b, c are called features or predictors
- w_a , w_b , w_c are called weights or coefficients

firing rate = exp($\mathbf{a} \cdot \mathbf{w}_a + \mathbf{b} \cdot \mathbf{w}_b + \mathbf{c} \cdot \mathbf{w}_c$)

firing rate = exp($\mathbf{a} \cdot \mathbf{w}_a + \mathbf{b} \cdot \mathbf{w}_b + \mathbf{c} \cdot \mathbf{w}_c$)

- a, b, c are called **features** or **predictors**
- w_a , w_b , w_c are called weights or coefficients
- Features are concatenated to form the design or feature matrix X = [a, b, c]

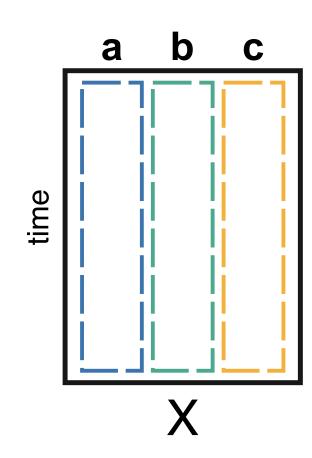
Feature matrix



- a, b, c are called **features** or **predictors**
- w_a , w_b , w_c are called weights or coefficients
- Features are concatenated to form the design or feature matrix X = [a, b, c]
- The likelihood is the probability of observing spike counts given some features and weights.

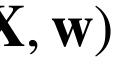
firing rate = exp($\mathbf{a} \cdot \mathbf{w}_a + \mathbf{b} \cdot \mathbf{w}_b + \mathbf{c} \cdot \mathbf{w}_c$)

Design matrix



Likelihood

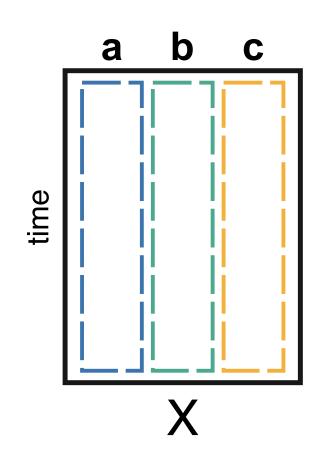
probability(spike count = $k | \mathbf{X}, \mathbf{w}$)



- a, b, c are called **features** or **predictors**
- w_a , w_b , w_c are called weights or coefficients
- Features are concatenated to form the design or feature matrix X = [a, b, c]
- The likelihood is the probability of observing spike counts given some features and weights.
- The likelihood is a function of the weights because counts and features are fixed.

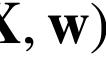
firing rate = exp($\mathbf{a} \cdot \mathbf{w}_a + \mathbf{b} \cdot \mathbf{w}_b + \mathbf{c} \cdot \mathbf{w}_c$)

Design matrix

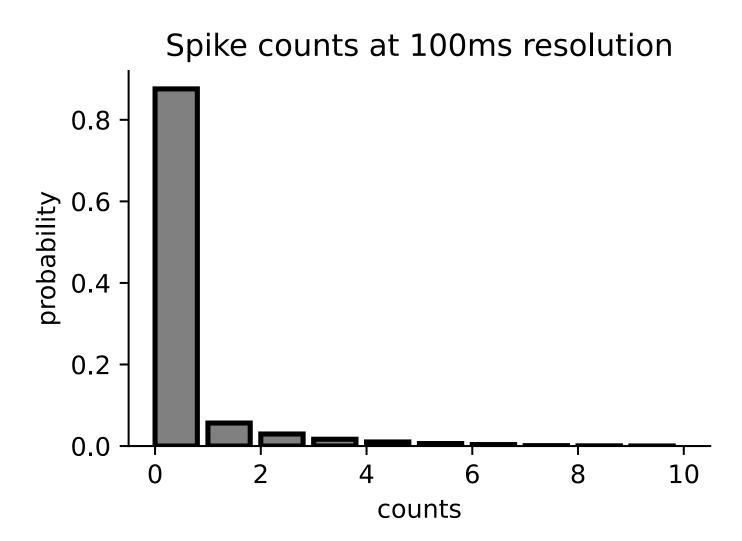


Likelihood

probability(spike count = $k | \mathbf{X}, \mathbf{w}$)

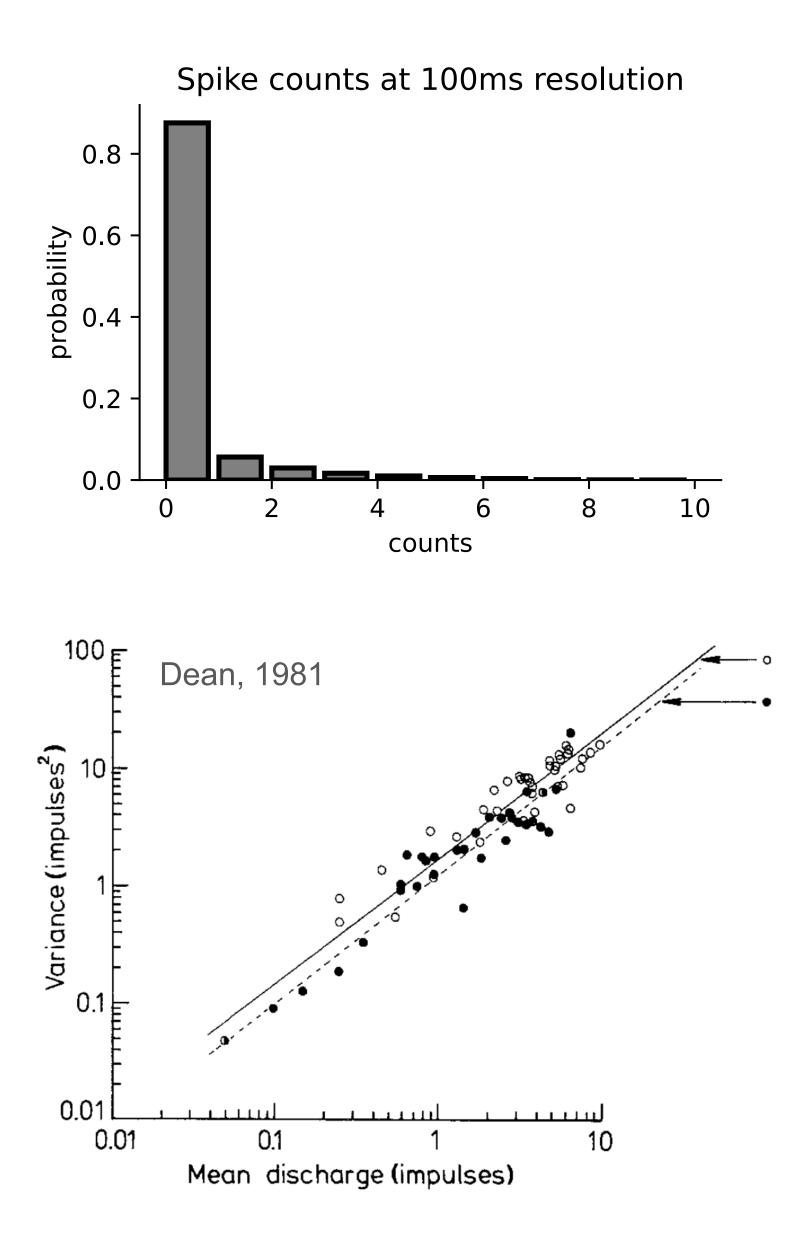


- 1. Why not linear regression? which assumes normality
 - A. Spike counts are non-Gaussian



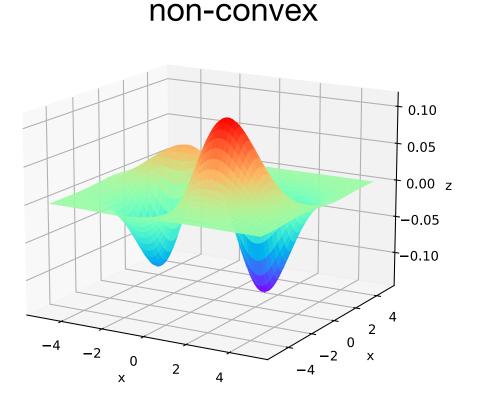
17

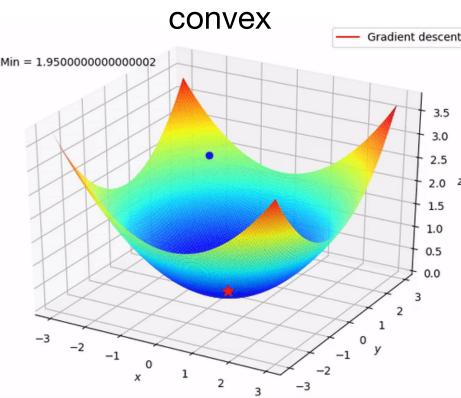
- Why not linear regression? 1. which assumes normality
 - Spike counts are non-Gaussian A.
 - B. Neural activity variance is non-constant

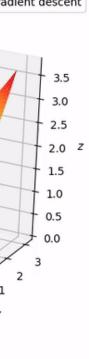


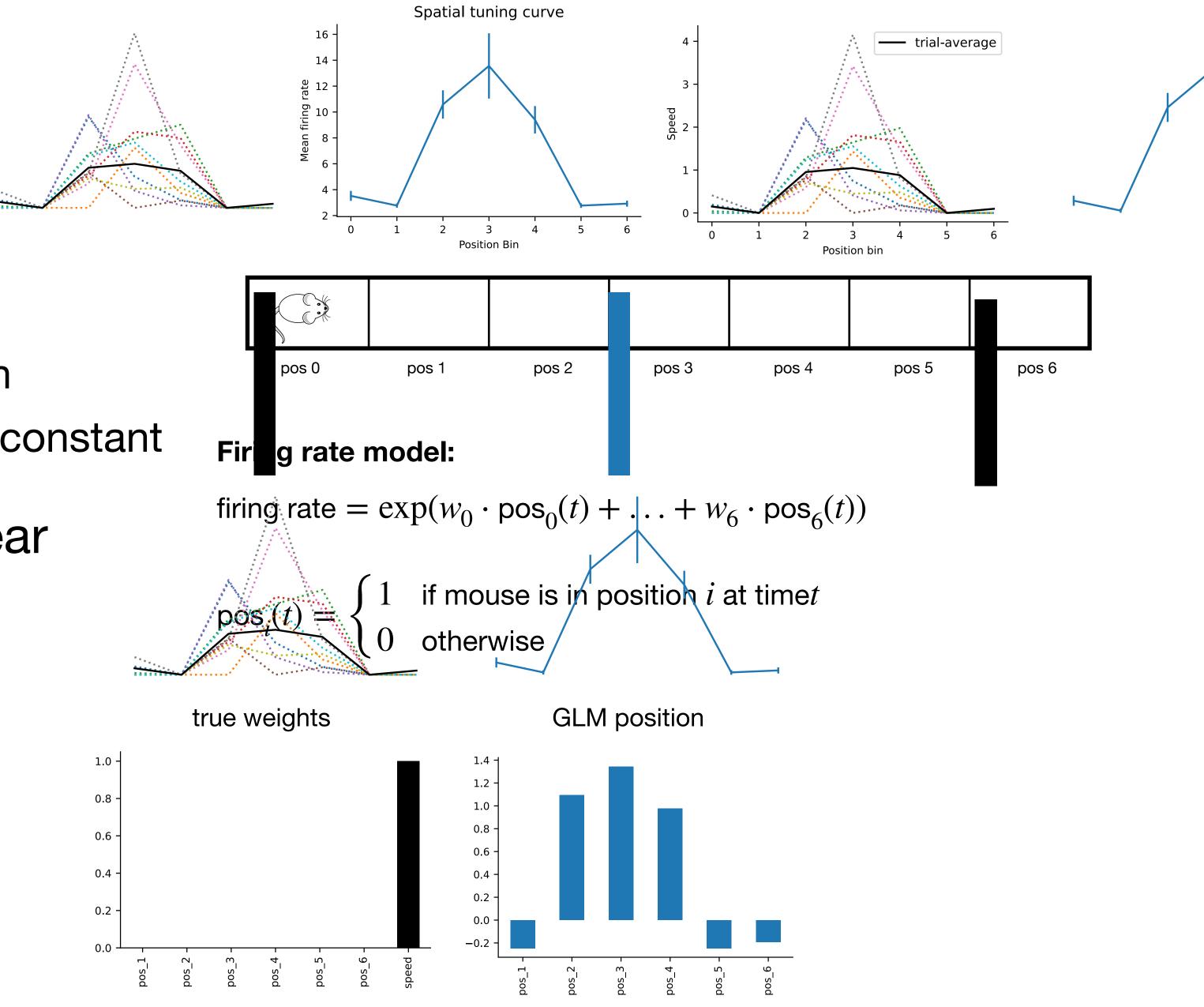
- 1. Why not linear regression? which assumes normality
 - A. Spike counts are non-Gaussian
 - B. Neural activity variance is non-constant

2. GLM are as easy to fit as linear regression convex, unique optimal solution

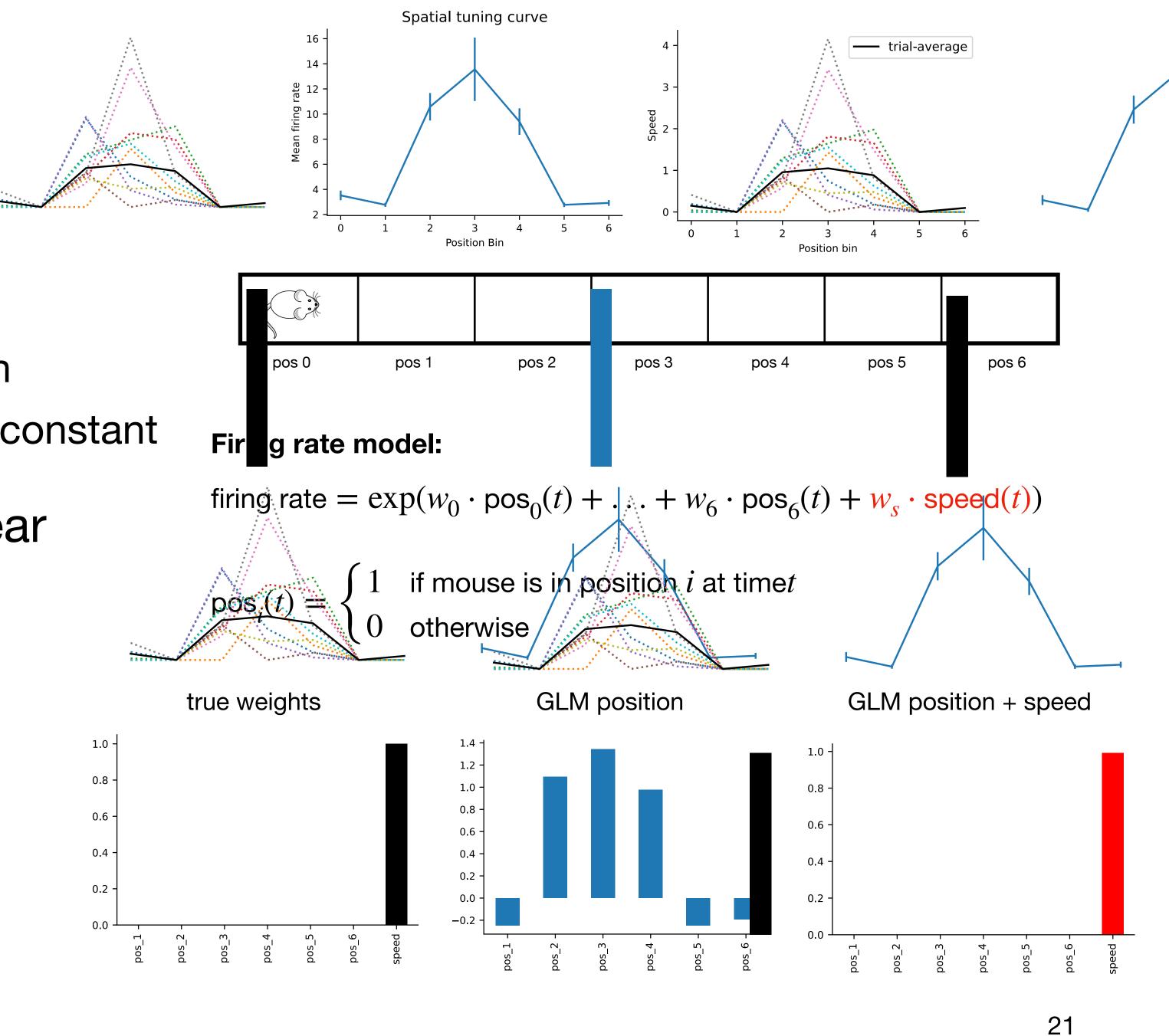






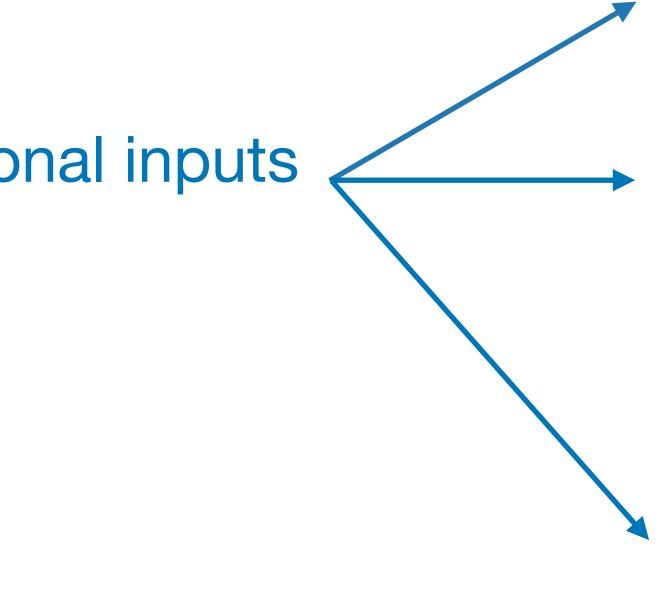


- Why not linear regression? 1. which assumes normality
 - A. Spike counts are non-Gaussian
 - B. Neural activity variance is non-constant
- 2. GLM are as easy to fit as linear regression convex, unique optimal solution
- 3. GLM are flexible model multiple inputs jointly



- 1. Why not linear regression? which assumes normality
 - A. Spike counts are non-Gaussian
 - B. Neural activity variance is non-constant
- 2. GLM are as **easy to fit** as linear regression *convex, unique optimal solution*
- 3. GLM are flexible model multiple inputs jointly

1. Model responses to high dimensional inputs images, videos, 2D/3D positions...



Pillow at al., 2008 Retina Macaques

Hardcastle et al., 2018 MEC mice

Gardner et al. 2019 MEC rats

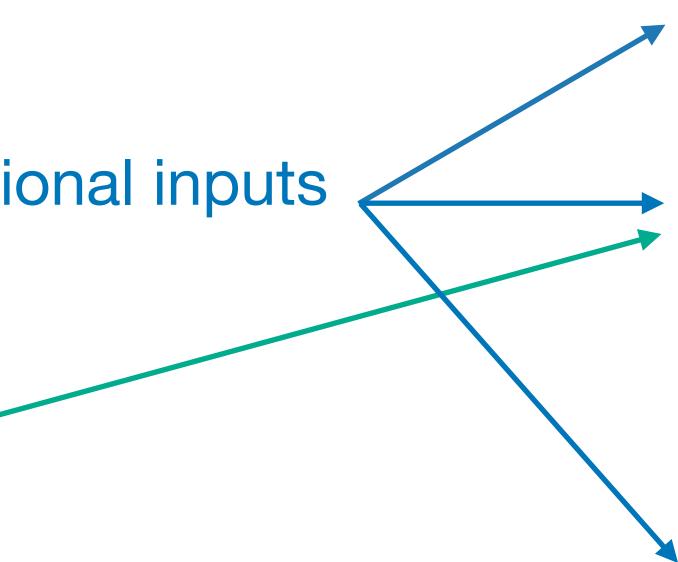
Park et al. 2019 LIP Macaques

Weber & Pillow 2017 simulations

Peyrache et al., 2018 ADN mice

22

- 1. Model responses to high dimensional inputs images, videos, 2D/3D positions...
- 2. Non-linear responses place cells, head-direction, grid cells



Pillow at al., 2008 Retina Macaques

Hardcastle et al., 2018 MEC mice

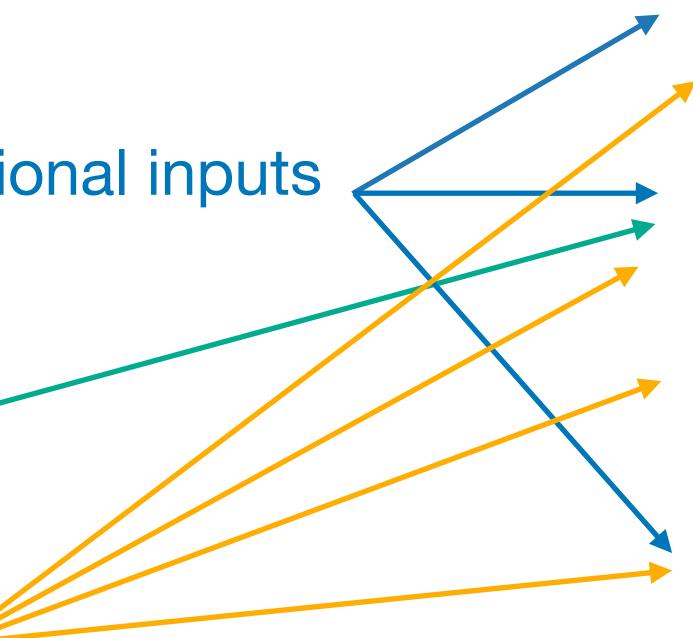
Gardner et al. 2019 MEC rats

Park et al. 2019 LIP Macaques

Weber & Pillow 2017 simulations

Peyrache et al., 2018 ADN mice

- 1. Model responses to high dimensional inputs images, videos, 2D/3D positions...
- 2. Non-linear responses place cells, head-direction, grid cells
- 3. Functional connectivity and other time-dependent effects



Pillow at al., 2008 Retina Macaques

Hardcastle et al., 2018 MEC mice

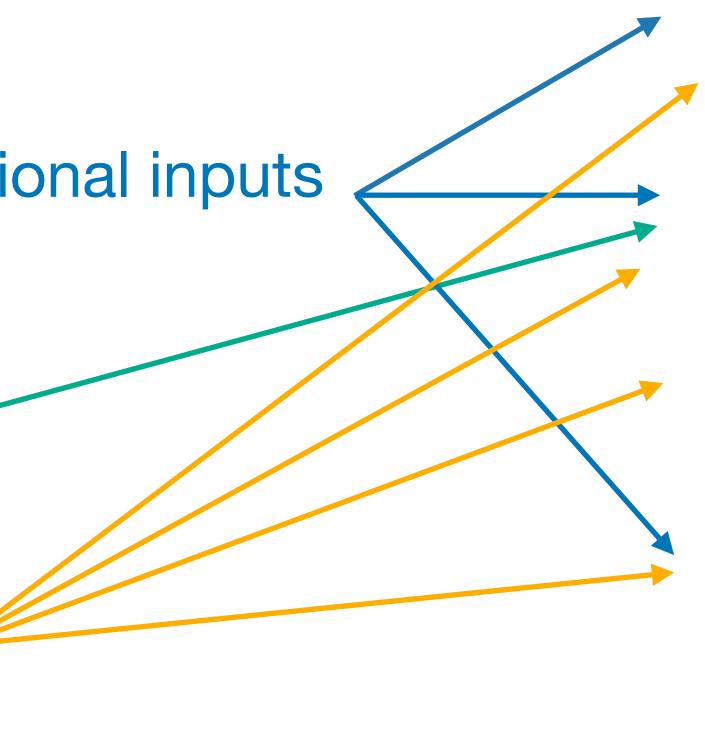
Gardner et al. 2019 MEC rats

Park et al. 2019 LIP Macaques

Weber & Pillow 2017 simulations

Peyrache et al., 2018 ADN mice

- 1. Model responses to high dimensional inputs images, videos, 2D/3D positions...
- 2. Non-linear responses place cells, head-direction, grid cells
- 3. Functional connectivity and other time-dependent effects
- 4. Generate surrogate dataset



Pillow at al., 2008 Retina Macaques

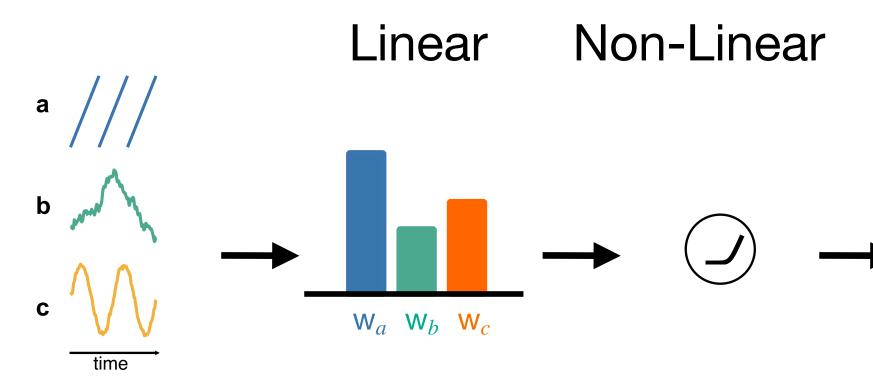
Hardcastle et al., 2018 MEC mice

Gardner et al. 2019 MEC rats

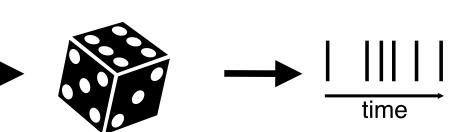
Park et al. 2019 LIP Macaques

Weber & Pillow 2017 simulations

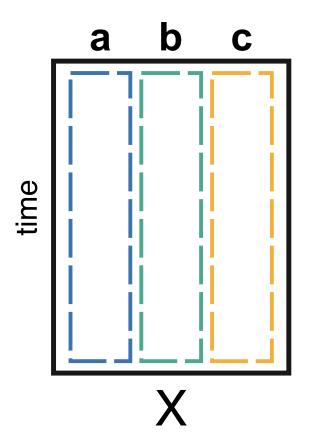
Peyrache et al., 2018 ADN mice

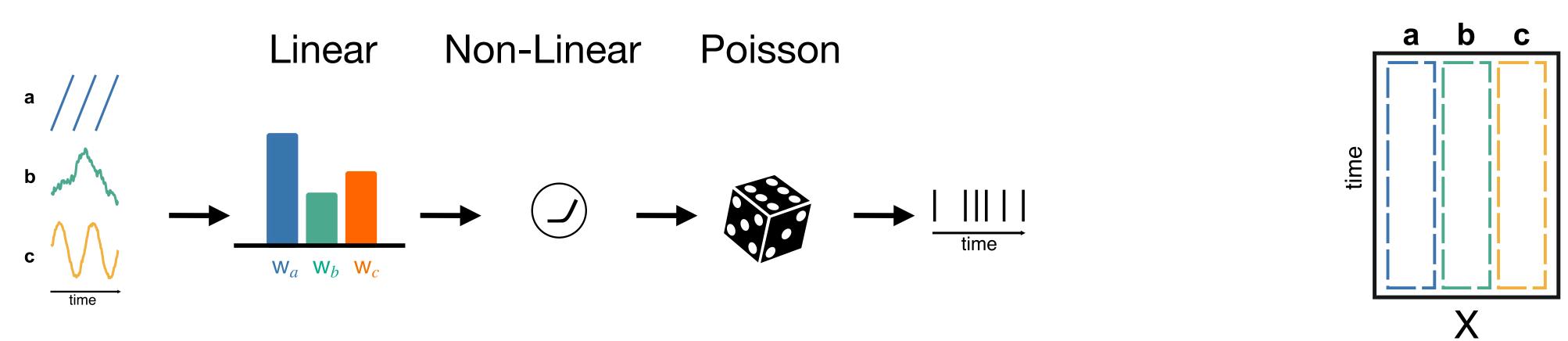


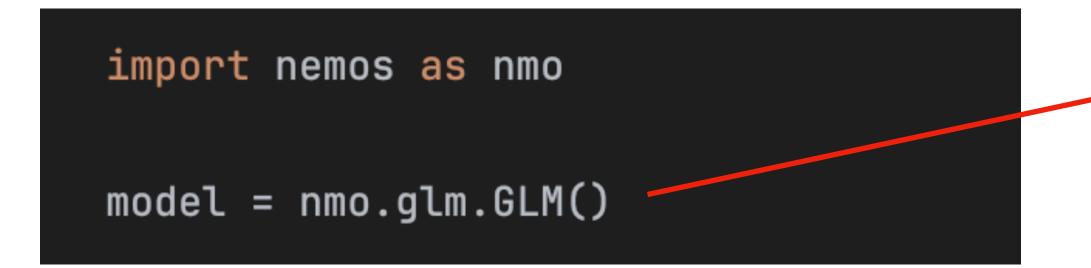
Poisson



Feature matrix

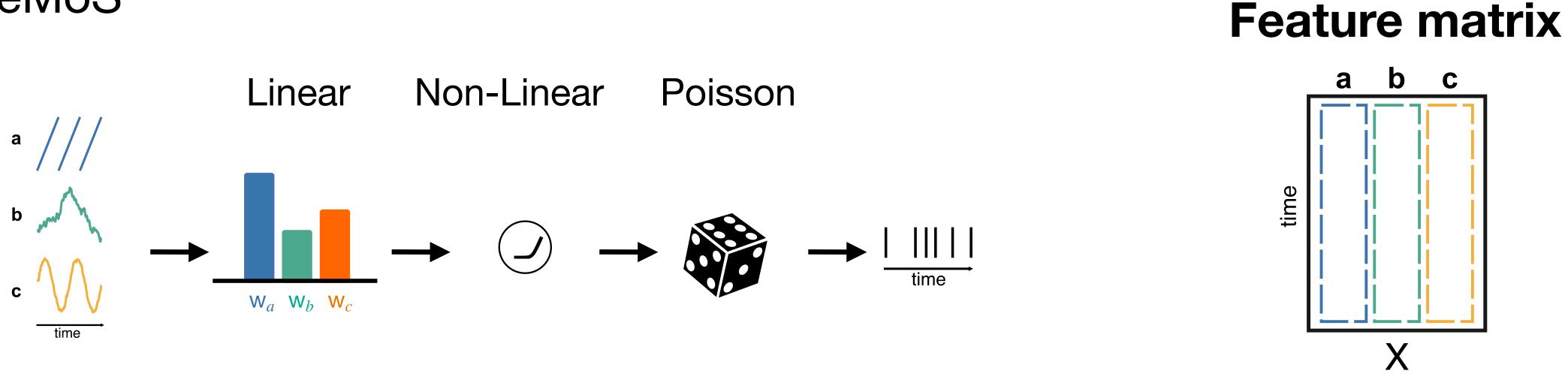


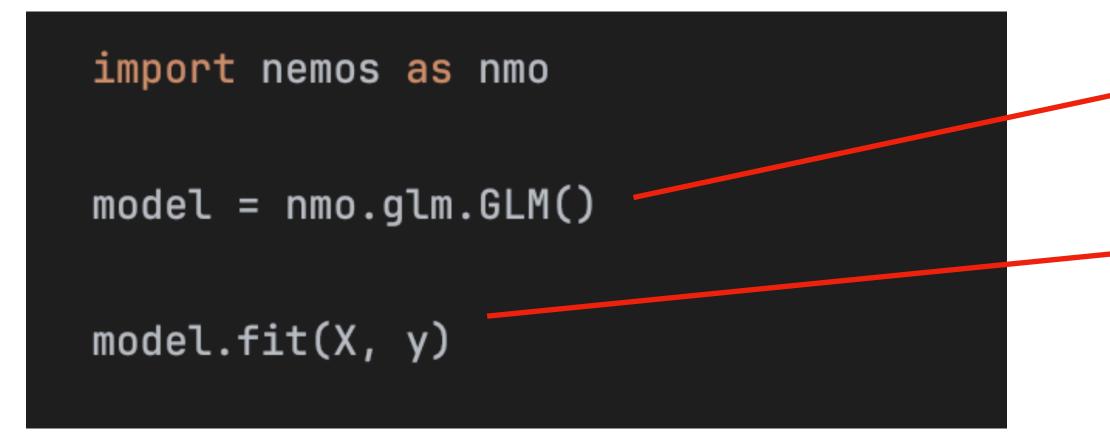




Feature matrix

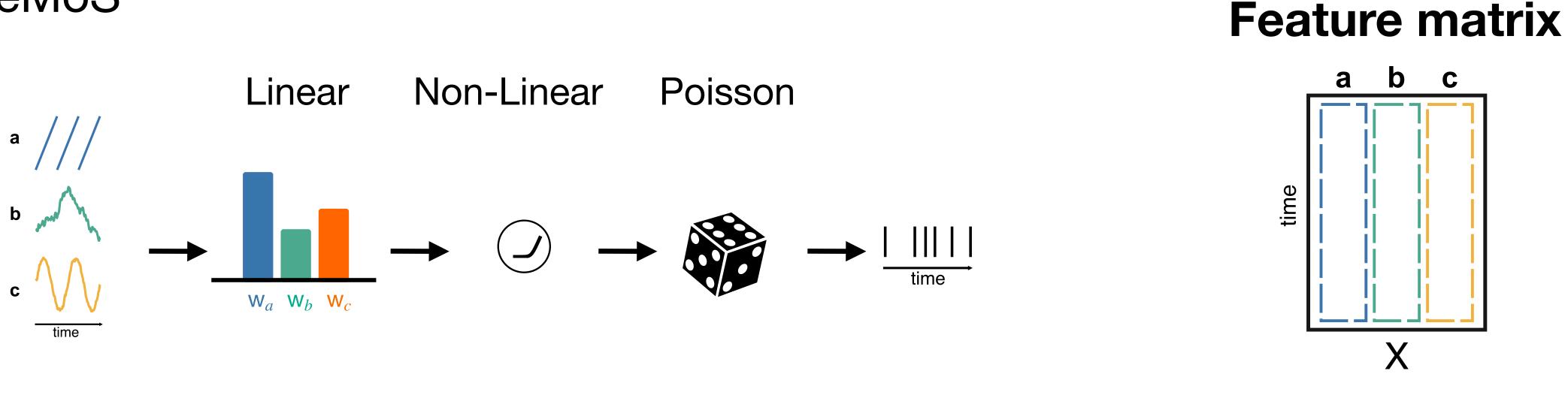
27

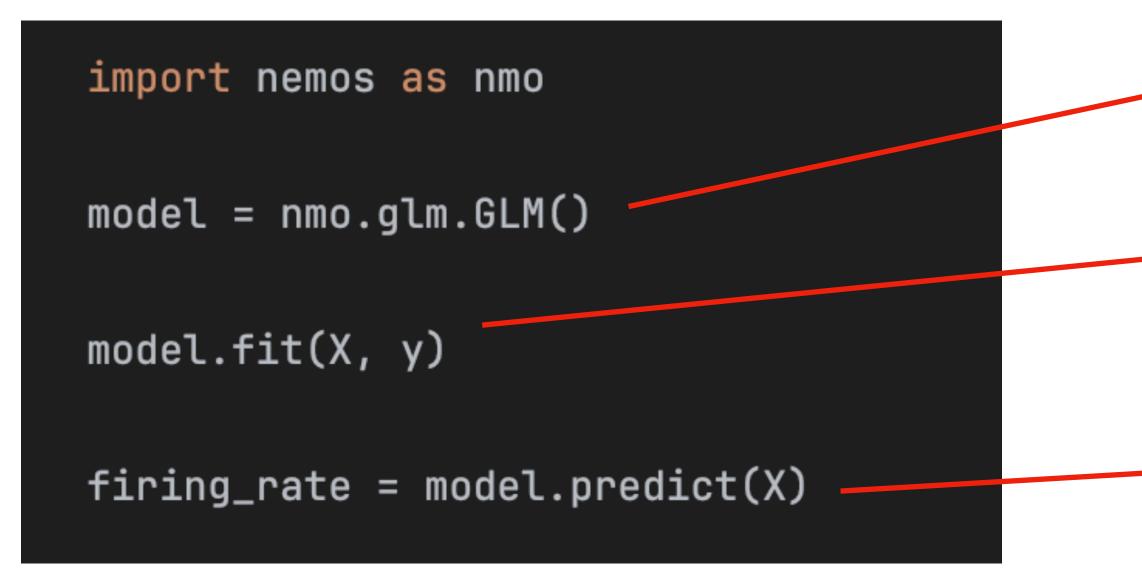




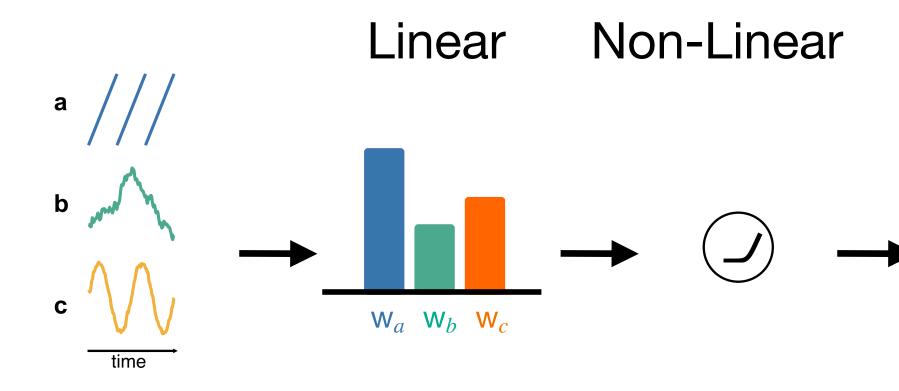
Define the model

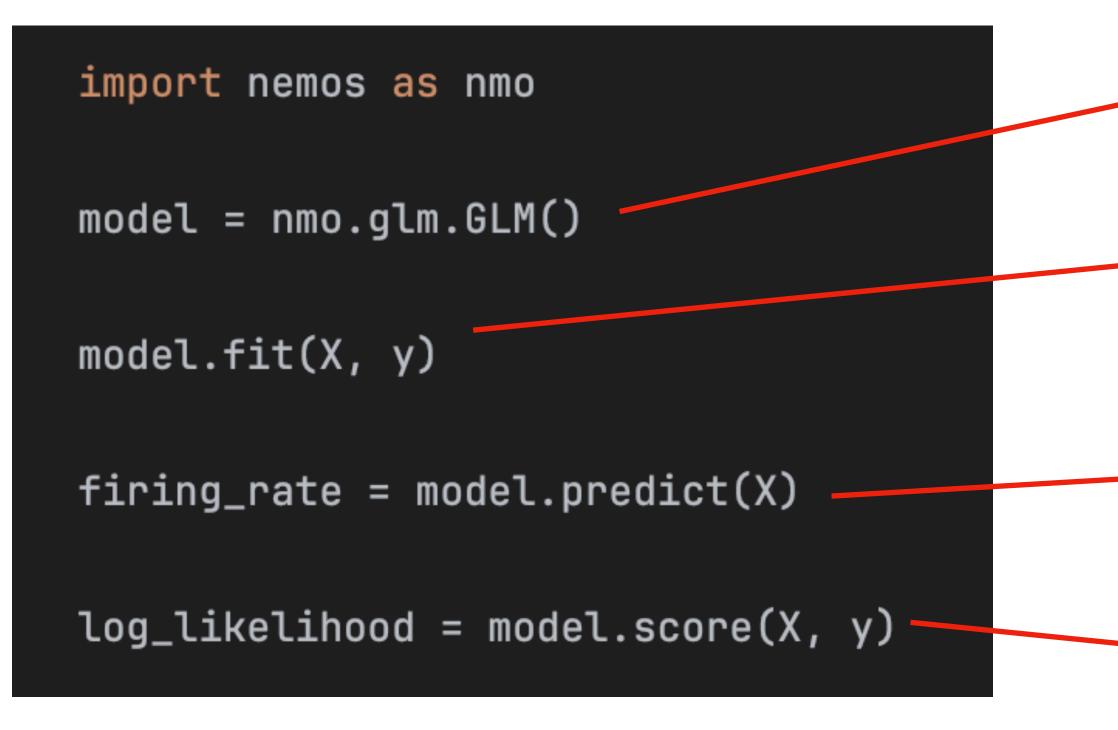
Fit the GLM (learn W_a , W_b , W_c)

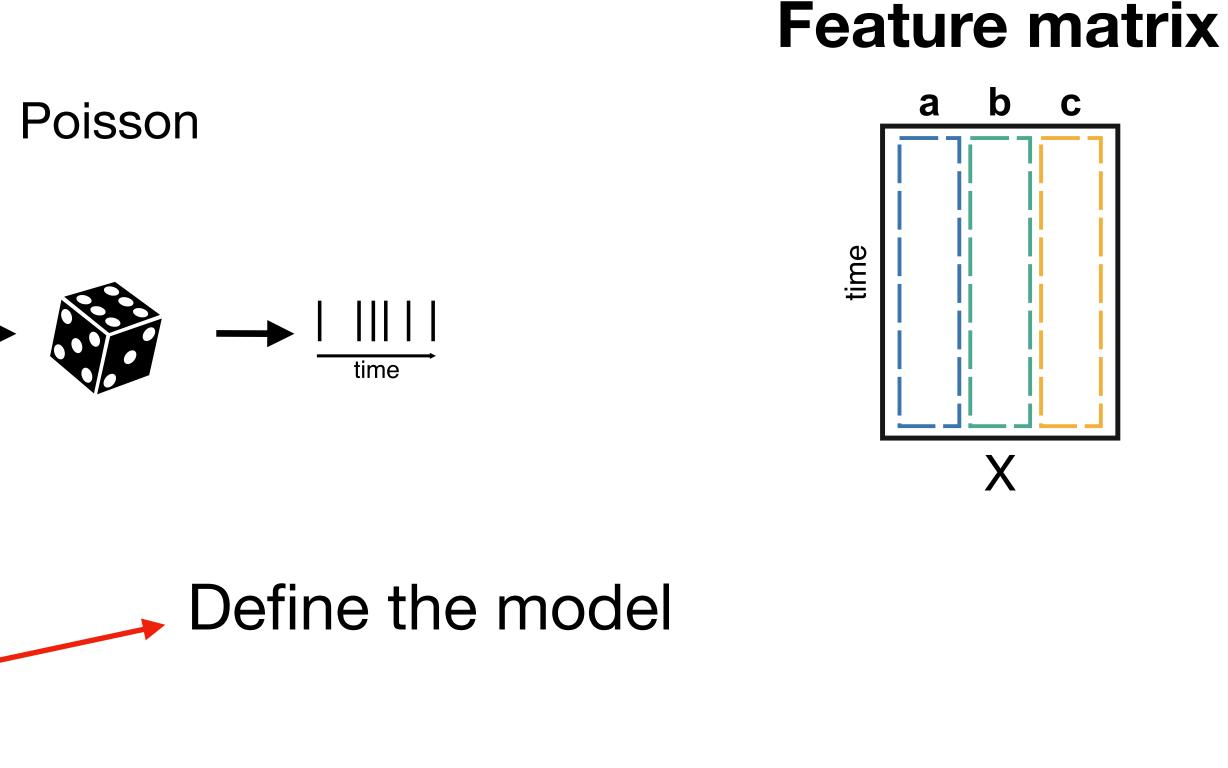




Fit the GLM (learn W_a , W_b , W_c) Predict the firing rate $\exp(\mathbf{a} \cdot \mathbf{w}_a + \mathbf{b} \cdot \mathbf{w}_b + \mathbf{c} \cdot \mathbf{w}_c)$







Fit the GLM (learn W_a , W_b , W_c)

Predict the firing rate $\exp(\mathbf{a} \cdot \mathbf{w}_a + \mathbf{b} \cdot \mathbf{w}_b + \mathbf{c} \cdot \mathbf{w}_c)$

Compute the log-likelihood

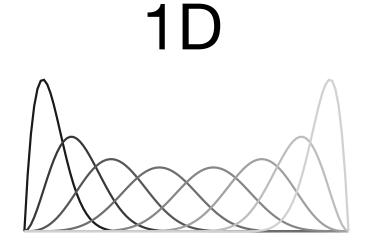
What features can/should I use?

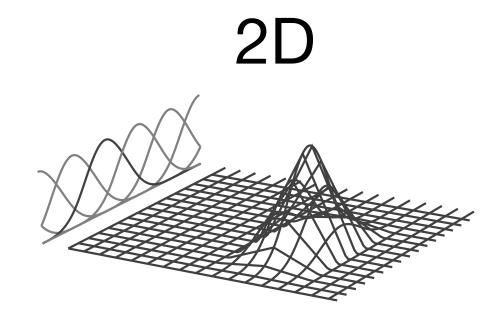
- It's up to the scientist!
- Choosing features is a way to formulate hypothesis about the neural encoding.
- Any fixed (not learned) transformation of your data is valid* (counting, binning, projecting into Principal Components, filtering, squaring ...)

*as long as the resulting time axis matches that of the spike counts

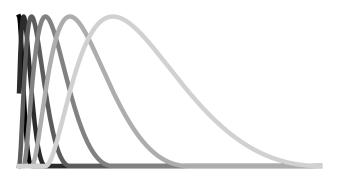
 NeMoS provides the basis module for feature construction

- NeMoS provides the basis module for feature construction
- Basis are fixed non-linearities

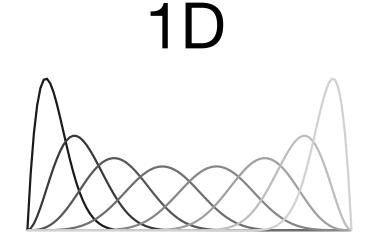


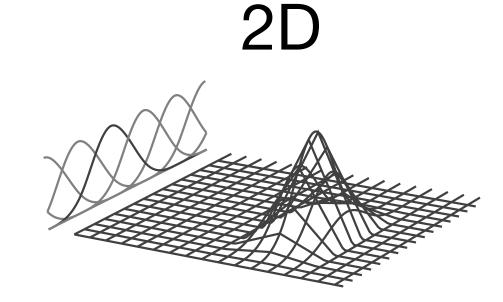


log-stretched

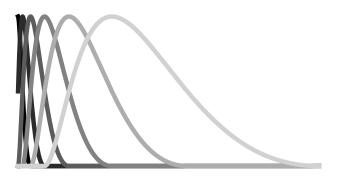


- NeMoS provides the basis module for feature construction
- Basis are **fixed non-linearities** lacksquare
- Assume that firing rate varies smoothly/ gradually

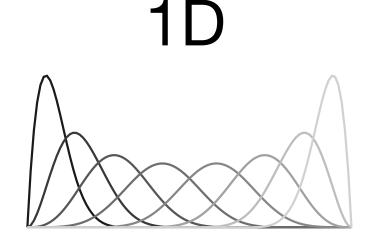


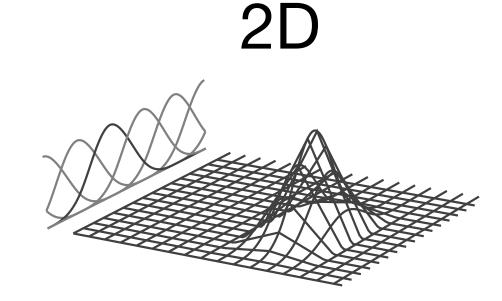


log-stretched

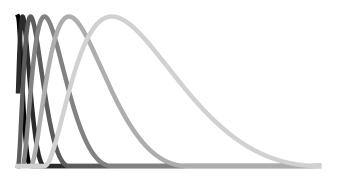


- NeMoS provides the basis module for feature construction
- Basis are **fixed non-linearities** \bullet
- Assume that firing rate varies smoothly/ gradually
- Used for:
 - 1. Reducing dimensionality
 - 2. Non-linear firing rate modulation
 - 3. Time dependent effects

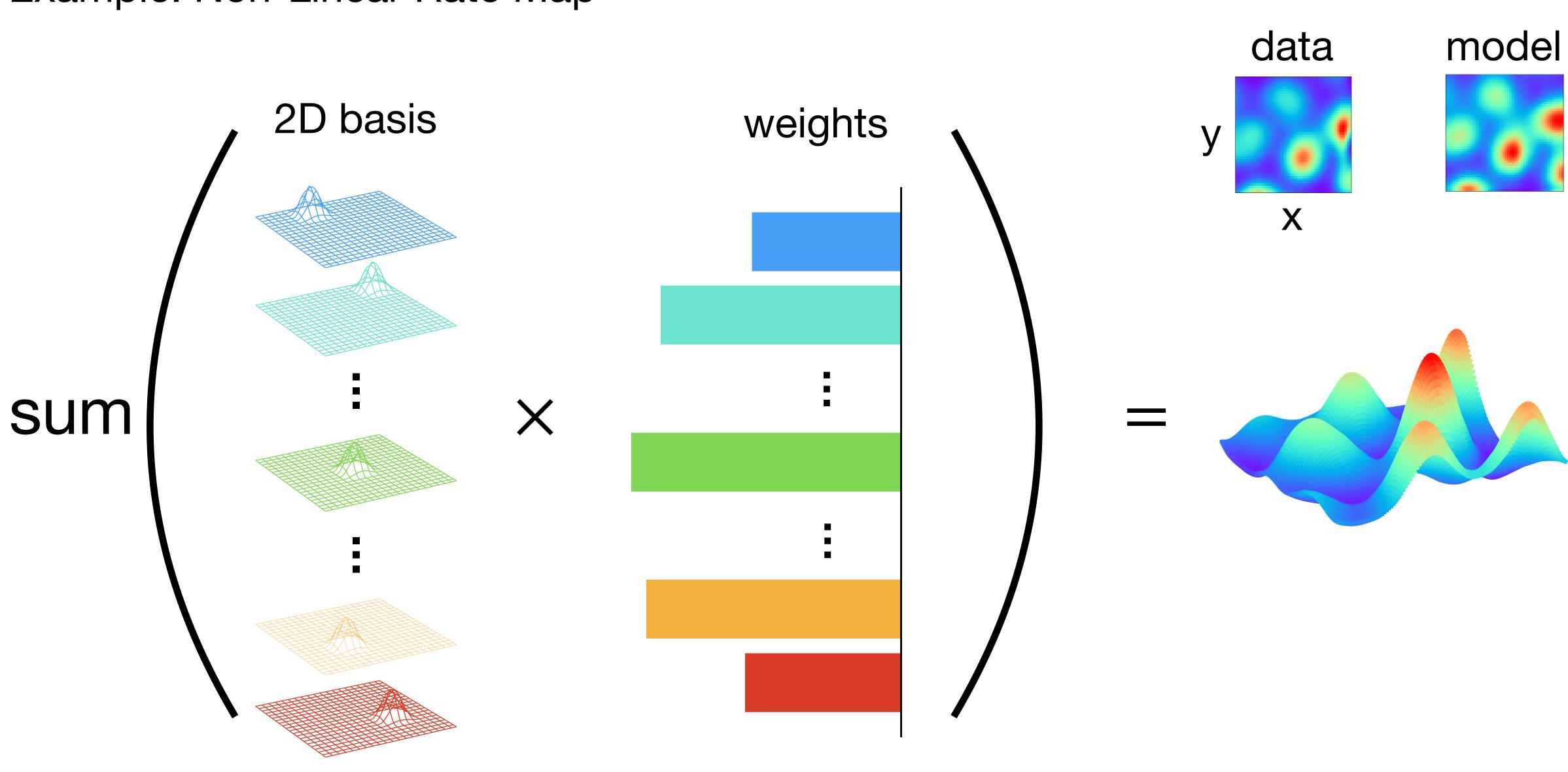


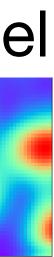


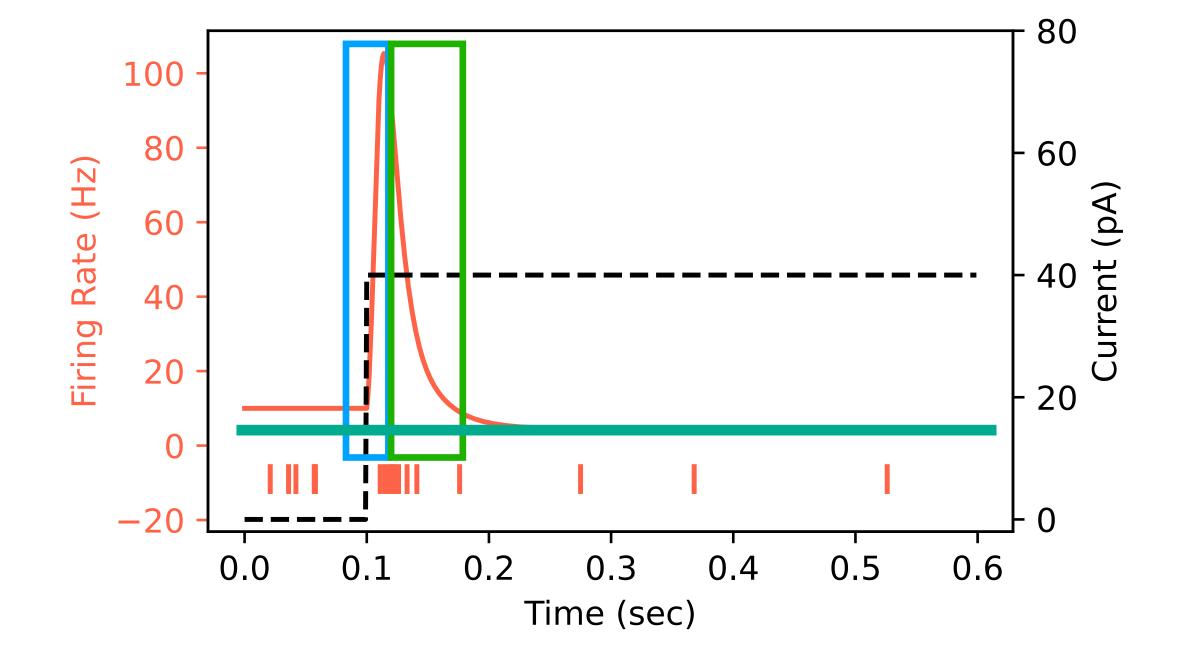
log-stretched



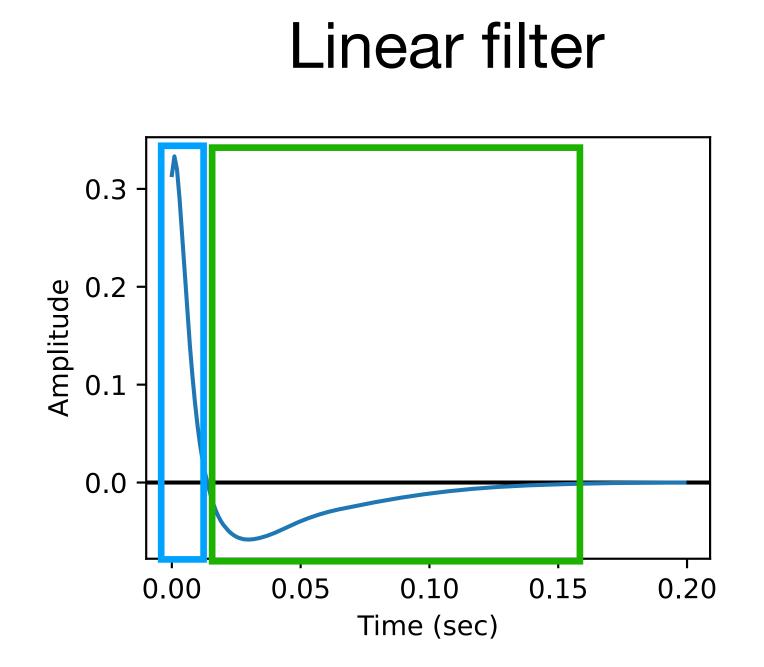
Example: Non-Linear Rate Map





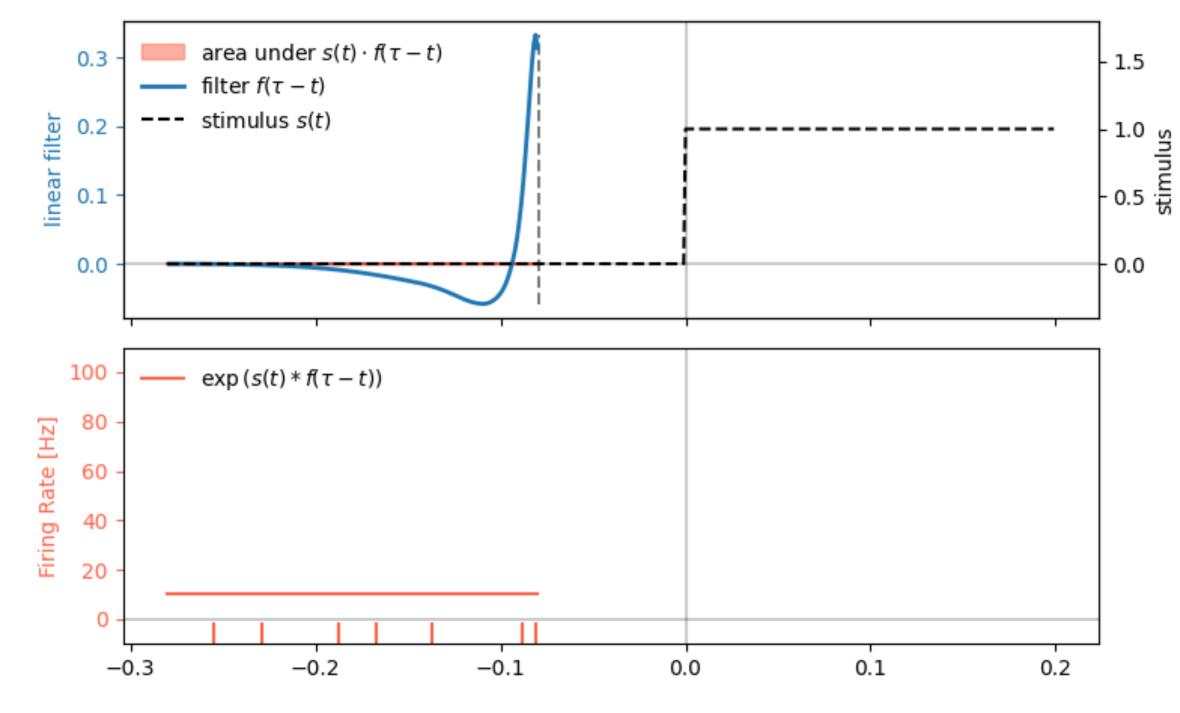


Input: constant current

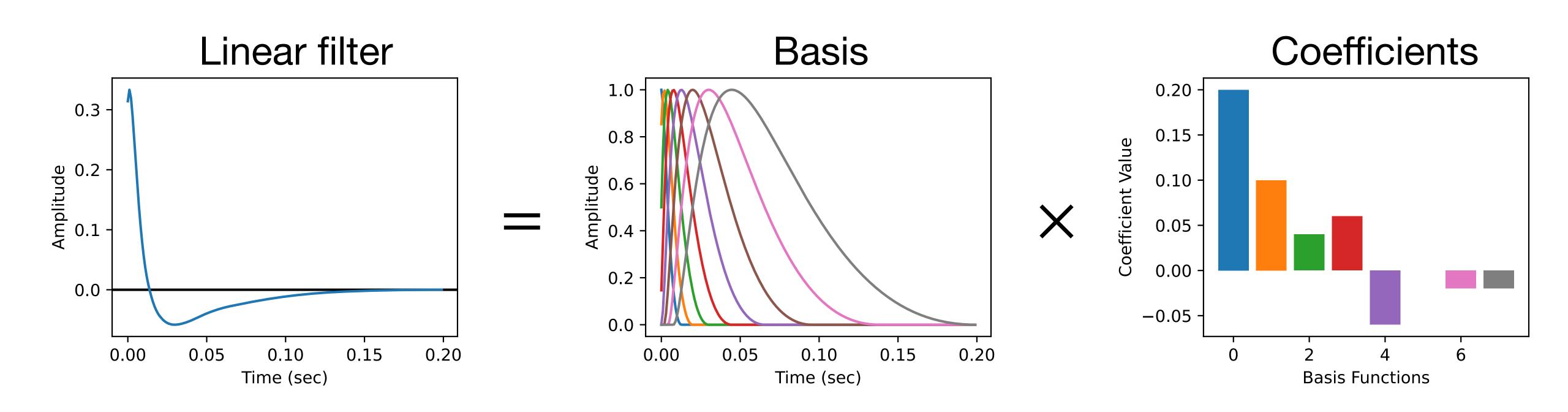


Response to a current impulse

Linear filter convolved with the current + non linearity

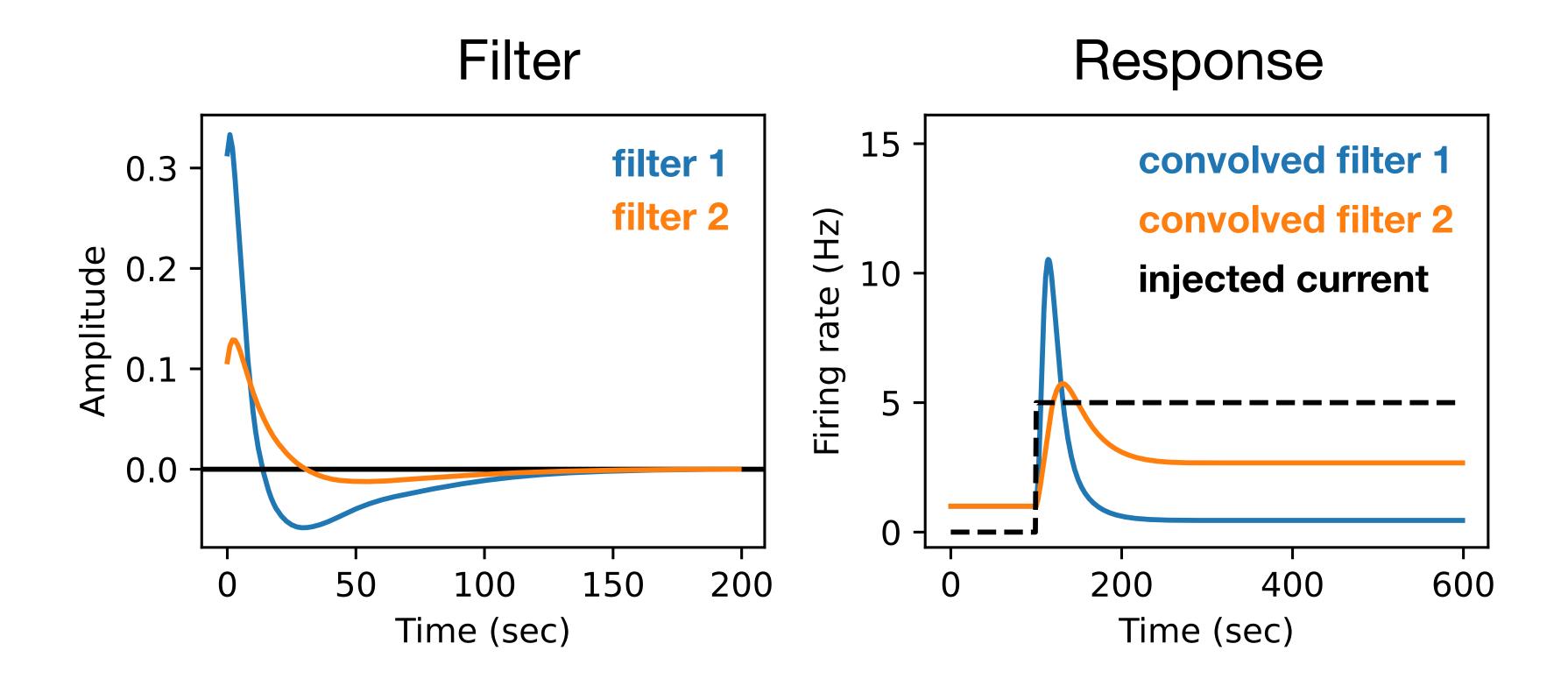


time [s]



- With basis you need only 8 numbers

• 1ms resolution, for 200ms window => 200 numbers to describe the filter



Many different responses can be captured by a linear filter

41

• Tuning functions do not fully characterize neural encoding.

- Tuning functions do not fully characterize neural encoding.
- GLMs retain many of the advanta (easy to fit, unique solution)

• GLMs retain many of the advantageous properties of linear regression

- Tuning functions do not fully characterize neural encoding.
- (easy to fit, unique solution)
- Better suited for non-normally distributed data.

• GLMs retain many of the advantageous properties of linear regression

44

- Tuning functions do not fully characterize neural encoding.
- GLMs retain many of the advantageous properties of linear regression (easy to fit, unique solution)
- Better suited for non-normally distributed data.
- Rich framework: model jointly many features, flexible design...

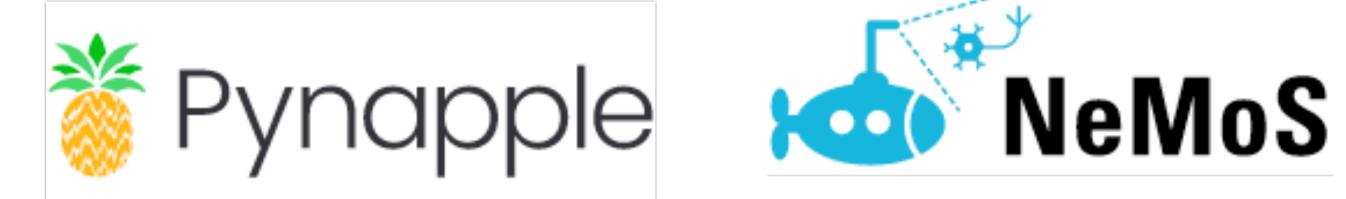
Today's roadmap

- Current injection notebook:
 - ullet
 - Fit an LNP model.
 - Capture temporal effects using NeMoS' basis. ullet

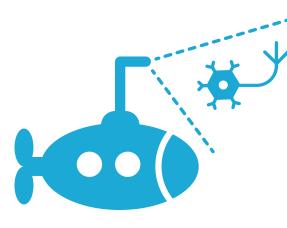
Head direction notebook lacksquare

- Capture spike history effects with a recurrently connected GLM. ullet
- Functional connectivity with a coupled GLM. •
- Place cell notebook lacksquare
 - Introduction to model selection by cross-validation. ullet
 - Model selection with NeMoS and scikit-learn. ullet

Load and explore a intracellular recordings from the Allen Brain Map with pynapple.



Documentation Website



https://nemos.readthedocs.io/en/stable/

https://pynapple.org/



@nemos_neuro

@thepynapple

47