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Generalized Linear Models 
(GLM)
A conceptual introduction to GLM
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Why models? A hook

pos 1 pos 2 pos 3 pos 4 pos 5 pos 6pos 0

linear maze

is this neuron encoding the mouse position?
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Why models? A hook

..actually, not! position and speed 

are correlated

tuning functions don’t tell you the whole story

need better models!
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What are GLMs?

Input

Pre-process

wa wb wc

a   + b   + c  ⋅ wa ⋅ wb ⋅ wc

scale the inputs by some weights

Weights ResponseObserved 
counts
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What are GLMs?

Input

Pre-process

wa wb wc

Weights ResponseObserved 
counts

firing rate = exp( a   + b   + c   )⋅ wa ⋅ wb ⋅ wc

non-linearity to make the result positive

Non-linearity
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What are GLMs?

Input

Pre-process

wa wb wc

Weights ResponseObserved 
counts

Non-linearity

probability(spike count = k) = Poisson(k |firing rate)

firing rate = exp( a   + b   + c   )⋅ wa ⋅ wb ⋅ wc

Poisson 
prob.
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What are GLMs?

Input

Pre-process

wa wb wc

Weights ResponseObserved 
counts

Non-linearity

probability(spike count = k) = Poisson(k |firing rate)

firing rate = exp( a   + b   + c   )⋅ wa ⋅ wb ⋅ wc

Poisson 
prob.

Linear  -   NonLinear -   Poisson (LNP)



What are GLMs?
Input

wa wb wc

Response

spike history

Input

wa wb wc

spike history

coupling
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Terminology

firing rate = exp( a   + b   + c   )⋅ wa ⋅ wb ⋅ wc

• a, b, c are called features or predictors
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Terminology

firing rate = exp( a   + b   + c   )⋅ wa ⋅ wb ⋅ wc

• a, b, c are called features or predictors 
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Terminology

• a, b, c are called features or predictors 

• , ,  are called weights or coefficients 

• Features are concatenated to form the  
 design or feature matrix a, b, c]

wa wb wc

X = [

firing rate = exp( a   + b   + c   )⋅ wa ⋅ wb ⋅ wc

Design matrix
Feature matrix
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Terminology

• a, b, c are called features or predictors 

• , ,  are called weights or coefficients 

• Features are concatenated to form the  
 design or feature matrix a, b, c]


• The likelihood is the probability of observing  
 spike counts given some features and weights. 


• The likelihood is a function of the weights  
 because counts and features are fixed.

wa wb wc

X = [

firing rate = exp( a   + b   + c   )⋅ wa ⋅ wb ⋅ wc
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Design matrix
Design matrix

probability(spike count = k |X, w)

Likelihood
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Why GLMs?

1. Why not linear regression? 
which assumes normality 

A. Spike counts are non-Gaussian

B. Neural activity variance is non-constant


2. GLM are as easy to fit as linear 
regression 
convex, unique optimal solution 

3. GLM are flexible 
model multiple inputs jointly
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Why GLMs?

Dean, 1981

1. Why not linear regression? 
which assumes normality 

A. Spike counts are non-Gaussian

B. Neural activity variance is non-constant


2. GLM are as easy to fit as linear 
regression 
convex, unique optimal solution 

3. GLM are flexible 
model multiple inputs jointly
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19

Why GLMs?

convexnon-convex
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Why GLMs?

Firing rate model: 


firing rate = exp(w0 ⋅ pos0(t) + . . . + w6 ⋅ pos6(t))

posi(t) = {1 if mouse is in position i at timet
0 otherwise

pos 1 pos 2 pos 3 pos 4 pos 5 pos 6pos 0

true weights GLM position

1. Why not linear regression? 
which assumes normality 

A. Spike counts are non-Gaussian

B. Neural activity variance is non-constant


2. GLM are as easy to fit as linear 
regression 
convex, unique optimal solution 

3. GLM are flexible 
model multiple inputs jointly
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Why GLMs?

Firing rate model: 

  
firing rate = exp(w0 ⋅ pos0(t) + . . . + w6 ⋅ pos6(t) + ws ⋅ speed(t))

posi(t) = {1 if mouse is in position i at timet
0 otherwise

pos 1 pos 2 pos 3 pos 4 pos 5 pos 6pos 0

true weights GLM position GLM position + speed

1. Why not linear regression? 
which assumes normality 

A. Spike counts are non-Gaussian

B. Neural activity variance is non-constant


2. GLM are as easy to fit as linear 
regression 
convex, unique optimal solution 

3. GLM are flexible 
model multiple inputs jointly



1. Model responses to high dimensional inputs  
images, videos, 2D/3D positions… 

2. Non-linear responses 
place cells, head-direction, grid cells 

3. Functional connectivity  
and other time-dependent effects 

4. Generate surrogate dataset
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What can I do with a GLM?

Hardcastle et al., 2018

MEC mice

Pillow at al., 2008 
Retina Macaques

Park et al. 2019 
LIP Macaques

Weber & Pillow 2017

simulations

Gardner et al. 2019  
MEC rats

Peyrache et al., 2018  
ADN mice

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5498174/
https://pubmed.ncbi.nlm.nih.gov/18650810/
https://www.nature.com/articles/nn.3800
https://direct.mit.edu/neco/article/29/12/3260/8316/Capturing-the-Dynamical-Repertoire-of-Single
https://www.nature.com/articles/s41593-019-0360-0
http://Pillow%20at%20al.,%202008%20(Retina%20Macaque)
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GLM in NeMoS
Input

wa wb wc

Response

Linear Non-Linear Poisson

Design matrix
Feature matrix
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GLM in NeMoS
Input

wa wb wc
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GLM in NeMoS

Define the model

Fit the GLM (learn , , ) wa wb wc

Input

wa wb wc

Response

Linear Non-Linear Poisson

Design matrix
Feature matrix
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GLM in NeMoS

Define the model

Fit the GLM (learn , , ) wa wb wc

Predict the firing rate 
exp( a   + b   + c   )⋅ wa ⋅ wb ⋅ wc

Input

wa wb wc

Response

Linear Non-Linear Poisson

Design matrix
Feature matrix
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GLM in NeMoS

Define the model

Fit the GLM (learn , , ) wa wb wc

Predict the firing rate 
exp( a   + b   + c   )⋅ wa ⋅ wb ⋅ wc

Compute the log-likelihood

Input

wa wb wc

Response

Linear Non-Linear Poisson

Design matrix
Feature matrix
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What features can/should I use?

• It’s up to the scientist!


• Choosing features is a way to formulate hypothesis about the neural 
encoding.


• Any fixed (not learned) transformation of your data is valid* (counting, 
binning, projecting into Principal Components, filtering, squaring …)

*as long as the resulting time axis matches that of the spike counts
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• NeMoS provides the basis module for feature 
construction


• Basis are fixed non-linearities 

• Assume that firing rate varies smoothly/
gradually


• Used for:

1. Reducing dimensionality

2. Non-linear firing rate modulation

3. Time dependent effects 

Constructing Features in NeMoS

1D

2D

log-stretched
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Example: Non-Linear Rate Map

...
...

2D basis

×sum =

weights

…
…

data model

x

y



• Input: constant current


• Response:


• Initial transient activation


• Subsequent inhibition


• Lower than baseline firing 
rate
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Example 2: Capturing Temporal Effects
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Example 2: Capturing Temporal Effects

Linear filter

Response to a current impulse


• Increase in rate


• Inhibition




Example 2: Capturing Temporal Effects

Linear filter convolved with the current + non linearity
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Example 2: Capturing Temporal Effects

Linear filter Basis Coefficients

×=

• 1ms resolution, for 200ms window => 200 numbers to describe the filter


• With basis you need only 8 numbers
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Example 2: Capturing Temporal Effects

Many different responses can be captured by a linear filter

Filter Response
convolved filter 1
convolved filter 2

filter 1
filter 2

injected current
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Summary

• Tuning functions do not fully characterize neural encoding.
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Summary

• Tuning functions do not fully characterize neural encoding.


• GLMs retain many of the advantageous properties of linear regression 
(easy to fit, unique solution) 

• Better suited for non-normally distributed data. 

• Rich framework: model jointly many features, flexible design…
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Today’s roadmap

• Current injection notebook: 

• Load and explore a intracellular recordings from the Allen Brain Map with pynapple.


• Fit an LNP model.


• Capture temporal effects using NeMoS’ basis.


• Head direction notebook 

• Capture spike history effects with a recurrently connected GLM.


• Functional connectivity with a coupled GLM.


• Place cell notebook 

• Introduction to model selection by cross-validation.


• Model selection with NeMoS and scikit-learn.
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https://nemos.readthedocs.io/en/stable/

https://pynapple.org/ @thepynapple

Documentation Website

@nemos_neuro


