next up previous
Next: Appendix I: Scaling expansion Up: Other matrix elements Previous: Dipole matrix elements:

Differential dilation matrix elements: $\hat{O} = {\mathbf r} \cdot \nabla$

For $k_a \neq k_b$ we have for the differential dilation operator,

$\displaystyle \left\langle a\right\vert{\mathbf r}\cdot\nabla\left\vert b\right\rangle _{\mathcal{D}}$ $\textstyle =$ $\displaystyle \frac{1}{\varepsilon }\oint_\Gamma \!\! d{\mathbf s} \,
\left\{ (...
...}{\varepsilon } (a^* \partial_n b - b \partial_n a^*)
\rule{0in}{0.3in} \right.$  
    $\displaystyle \hspace{1in} \left. + \; d \,b \partial_n a^*
+ a^* {\mathbf n}\c...
...bf r}\cdot\nabla)\nabla b +
a^*\!{\leftrightarrow}b\rule{0in}{0.3in} \right\} ,$ (H.24)

where again $\varepsilon \equiv k_a^2 - k_b^2$. This follows from row 2 of the matrix ${\mathcal{M}}^{-1}$. In the Dirichlet BC case this becomes,
\begin{displaymath}
\left\langle a\right\vert{\mathbf r}\cdot\nabla\left\vert b...
...al_n a^* \partial_n b, \hspace{0.5in}
\mbox{(Dirichlet BCs)}.
\end{displaymath} (H.25)

The integral is proportional to the matrix element $(\partial {\mathcal{H}} / \partial x)_{ab}$ of the billiard dilation deformation.

No general form for $k_a = k_b$ has been found. The corresponding unit vector $e_\alpha = \delta_{\alpha 2}$ does not lie in the row space of ${\mathcal{M}}^{-1}$, indicating that other boundary derivatives are needed as input. However, for the particular case of Dirichlet BCs and $b = a$ there exists the simple formula

\begin{displaymath}
\left\langle a\right\vert{\mathbf r}\cdot\nabla\left\vert a...
...\rangle _{\mathcal{D}},\hspace{0.5in}
\mbox{(Dirichlet BCs)},
\end{displaymath} (H.26)

which can be derived by expanding $\nabla\cdot({\mathbf r} \vert a\vert^2)$ and integrating over the domain.


next up previous
Next: Appendix I: Scaling expansion Up: Other matrix elements Previous: Dipole matrix elements:
Alex Barnett 2001-10-03